
SecurePtrs
Proving Secure Compilation with 
Data-Flow Back-Translation and 

Turn-Taking Simulation
Akram El-Korashy

MPI-SWS

1

Joint work with
Roberto Blanco, Jérémy Thibault, Adrien Durier (MPI-SP), Deepak Garg (MPI-SWS), Catalin Hritcu

(MPI-SP)



Setup: Secure compilation of partial programs

2



Setup: Secure compilation of partial programs

Risk: Partial programs may be linked against buggy 
or malicious contexts.

3



Setup: Secure compilation of partial programs

Risk: Partial programs may be linked against buggy 
or malicious contexts.

Strategy: Prove that the partial programs, when 
compiled properly, are protected from the contexts.



Setup: Secure compilation of partial programs

For example, a 
single module 
or compilation 

unit



Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}



Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

The context 
implements it

The partial 
program calls it



Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

The partial program 
intentionally shares 
the array with the 

context



Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

The partial program 
NEVER shares the 
user balance with 

the context



Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

The partial program 
NEVER shares the 
user balance with 

the context

Intention is that 
user balance is 
"high integrity"



Setup: Secure compilation of partial programs

Risk: Partial programs may be linked against buggy 
or malicious contexts.

Strategy: Prove that the partial programs, when 
compiled properly, are protected from the contexts.

Recall



Intention is that 
user balance is 
"high integrity"

Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

The partial program 
NEVER shares the 
user balance with 

the context

A buggy/malicious 
context 

might access the 
user balance



Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

A buggy/malicious 
context 

might access the 
user balance

r1

init_network:

addi $r1 $r_arg 1024

sw $r2 0($r1)

OVERWRITE



Setup: Secure compilation of partial programs

Risk: Partial programs may be linked against buggy 
or malicious contexts.

Strategy: Prove that the partial programs, when 
compiled properly, are protected from the contexts.



Setup: Secure compilation of partial programs

Risk: Partial programs may be linked against buggy 
or malicious contexts.

Strategy: Prove that the partial programs, when 
compiled properly, are protected from the contexts.

"Compiled properly" 
means the compiler 

enforces isolation e.g. 
by relying on CHERI, 
micropolicies, etc.



Setup: Secure compilation of partial programs

Risk: Partial programs may be linked against buggy 
or malicious contexts.

Strategy: Prove that the partial programs, when 
compiled properly, are protected from the contexts.

Focus of this talk:

Proof 
techniques



Strategy: Prove that the partial programs, when 
compiled properly, are protected from the contexts.

Desired: Preserve the security of the 
source program part

(assuming a memory-safe source semantics)



Desired: Preserve the security of the 
source program part

(assuming a memory-safe source semantics)

Desired (for our example):
If no execution with a source context overwrites the user 

balance, then
no execution with a target context overwrites it either.



Desired: Preserve the security of the 
source program part

(assuming a memory-safe source semantics)

Desired (for our example):

Forall safety property S, 

If no execution with a source context violates S, 

no execution with a target context violates S
either.



called "Preservation of Robust Safety"

Desired (for our example):

Forall safety property S, 

If no execution of a source context violates S, then

no execution of the target context violates S either.

20



called "Preservation of Robust Safety"

Desired (for our example):

Forall safety property S, 

If no execution of a source context violates S, then

no execution of the target context violates S either.

This talk: Explain a proof technique, 
called data-flow back-translation.



called "Preservation of Robust Safety"

This talk: Explain a proof technique, 
called data-flow back-translation.

Desired (for our example):

Forall safety property S, 

If no execution of a source context violates S, then

no execution of the target context violates S either.

Key
Benefits:

Suited for memory sharing
and syntactic dissimilarity



Desired (for our example):
If no execution with a source context overwrites the user 

balance, then
no execution with a target context overwrites it either.



Alternatively, prove the contrapositive:
If there exists an execution of a target context that 

overwrites the user balance, then
there also exists a source context and an execution in which 

it too overwrites the user balance.



Alternatively, prove the contrapositive:
If there exists an execution of a target context that 

overwrites the user balance, then
there also exists a source context and an execution in which 

it too overwrites the user balance.

called "Back-translation". 
Familiar from plenty of secure compilation literature



Alternatively, prove the contrapositive:
If there exists an execution of a target context that 

overwrites the user balance, then
there also exists a source context and an execution in which 

it too overwrites the user balance.

Can prove a back-translation lemma about just whole programs
[Abate et al. 2018 "When good components go bad"]:

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

Syntax-directed

28

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.

called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

ALL target 
programs, not 
just the image of 
the compiler



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Need to prove that is correct, i.e., satisfies the spec.

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Correctness proof similar to a 
compiler correctness proof

32

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Correctness proof similar to a 
compiler correctness proof

Compiling unstructured target 
to a structured source unclear

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Trace-directed
Ignore the given program.
Focus just on the given 
execution trace (i.e., on an 
individual run of the program).

Correctness proof similar to a 
compiler correctness proof

Compiling unstructured target 
to a structured source unclear

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Trace-directed
interaction 

traces: source 
programs

Correctness proof similar to a 
compiler correctness proof

Compiling unstructured target 
to a structured source unclear

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Trace-directed
interaction 

traces: source 
programs

Correctness proof similar to a 
compiler correctness proof

Compiling unstructured target 
to a structured source unclear

A prefix of one target 
trace.

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Trace-directed
interaction 

traces: source 
programs

Correctness proof similar to a 
compiler correctness proof

Compiling unstructured target 
to a structured source unclear

Indifferent to syntactic dissimilarity 
between target and source

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.

called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Trace-directed
interaction 

traces: source 
programs

Correctness proof similar to a 
compiler correctness proof

Compiling unstructured target 
to a structured source unclear

Indifferent to syntactic dissimilarity 
between target and source

No need anymore to 
translate the within-

module control 
constructs. Only mimic 

the external interaction 
(flexible def of the back-

translation)



called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Trace-directed
interaction 

traces: source 
programs

Correctness proof similar to a 
compiler correctness proof

Compiling unstructured target 
to a structured source unclear

Indifferent to syntactic dissimilarity 
between target and source

Correctness proof with memory 
sharing is involved.

If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.



If there exists an execution of a whole target program, then 
there exists a whole source program and a related execution.

called "Back-translation". Two techniques in the literature:

Syntax-directed
target

programs: source 
programs

Trace-directed
interaction 

traces: source 
programs

Correctness proof similar to a 
compiler correctness proof

Compiling unstructured target 
to a structured source unclear

Indifferent to syntactic dissimilarity 
between target and source

Correctness proof with memory 
sharing is involved.

40



Trace-directed
interaction 

traces: source 
programs

Correctness proof 
with memory sharing is involved.



Trace-directed
interaction 

traces: source 
programs

Given a trace emitted by 
a target program

Correctness proof 
with memory sharing is involved.



Trace-directed
interaction 

traces: source 
programs

Given a trace emitted by 
a target program

Find a source program 
emitting a related trace

Correctness proof 
with memory sharing is involved.



Trace-directed
interaction 

traces: source 
programs

Given a trace emitted by 
a target program

Find a source program 
emitting a related trace

Correctness proof 
with memory sharing is involved.

Back-translation has to 
mimic the visible shared 
memory operations to 

emit a related trace.



45

and

are traces of only the externally observable events



46

and

are traces of only the externally observable events



47

and

are traces of only the externally observable events

Silent labels denote 
internal execution. All 
silent labels are 
eventually dropped.



48

and

are traces of only the externally observable events

There are two kinds of border-
crossing call events (program to 
context, and context to program).



49

and

are traces of only the externally observable events

There are two kinds of border-
crossing return events (program to 
context, and context to program).



50

and

are traces of only the externally observable events

Calls and returns record a 
snapshot of all the 
memory shared so far



include module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

51

Walk through the 
example and explain

memory shared so far

and the reason why

Proof of trace-directed back-
translation with memory sharing 

is involved.



include module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

52

border crossing
border crossing



include module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

53

iobuffer[1024]



include module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

54

iobuffer[1024]

The call 
to init_network shares
the iobuffer; a snapshot 
of its contents appears now 
and in all future border-
crossing events.



include module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

55

iobuffer[1024]

The return 
from init_network still 
shows the iobuffer with 
the same contents.



include module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

56

iobuffer[1024]

The call to receive does 

not (directly) share anything 
new, but still



include module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

57

iobuffer[1024]

The return 
event from receive also

shows a snapshot 
of iobuffer, now with 
the received data!



include module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer);

Net.receive();

}

}

58

iobuffer[1024]

The init_network function

must have 

stashed the pointer 
to iobuffer somewhere in order 
to enable other functions of 
Net to access it.



59

The init_network function must have 

stashed the pointer
to iobuffer somewhere in order to enable other functions of Net

to access it, but

this stash does NOT appear on the 
interaction trace because it is not part of the 

shared memory.



60

The init_network function must have 

stashed the pointer
to iobuffer somewhere in order to enable other functions of Net

to access it, but

this stash does NOT appear on the 
interaction trace because it is not part of the 

shared memory.

Trace-directed
interaction 

traces: source 
programs

Still needs to enable other 
functions of Net
to access iobuffer



61

The init_network function must have 

stashed the pointer
to iobuffer somewhere in order to enable other functions of Net

to access it, but

this stash does NOT appear on the 
interaction trace because it is not part of the 

shared memory.

Trace-directed
interaction 

traces: source 
programs

implements own
stash



62

Drawback of trace-directed back-translation:
must traverse and stash the whole shared memory
CapablePtrs [El-Korashy et al. 2021]

Reason: Pointers may 
be shared indirectly.



63

Fatten the whole graph 
reachable from the shared 
memory and stash it:

init_network_arg_1,

init_network_arg_2,

.. .

init_network_arg_n

and maintain invariants 
between the flattening and 
the original.

Drawback of trace-directed back-translation:
must traverse and stash the whole shared memory
CapablePtrs [El-Korashy et al. 2021]

Reason: Pointers may 
be shared indirectly.



The stashing mechanism of CapablePtrs [El-Korashy et al. 

2021] is not mechanized-proof friendly.

Proving that this stashing mechanism is 
sufficient to mimic every possible 
memory snapshot is not trivial in Coq.



Proving that this stashing mechanism is 
sufficient to mimic every possible 
memory snapshot is not trivial in Coq.

e.g., Termination lemmas for custom graph traversal algorithms have to be 
proved.

The stashing mechanism of CapablePtrs [El-Korashy et al. 

2021] is not mechanized-proof friendly.



66

In summary: Need a back-translation 
technique that

we can mechanize with reasonable effort

supports memory sharing by pointer passing



67

In summary: Need a back-translation 
technique that

we can mechanize with reasonable effort

supports memory sharing by pointer passing

is indifferent to syntactic dissimilarity between target and source



68

In summary: Need a back-translation 
technique that

we can mechanize with reasonable effort

supports memory sharing by pointer passing

is indifferent to syntactic dissimilarity between target and source

Data-Flow
Back-Translation

x 3



69

Data-Flow Back-Translation
[Under submission]

High level idea: Make the traces more informative
so that trace-directed back-translation is easier.



70

Data-Flow Back-Translation
[Under submission]

Need to be careful: The validity of the top-level theorem 
depends on the interaction traces capturing just the externally 

observable behavior of a module.

High level idea: Make the traces more informative
so that trace-directed back-translation is easier.



71

Data-Flow Back-Translation
[Under submission]

(Turns out: easy to decouple the trace alphabet of the main theorem from the trace alphabet of the 
back-translation. See the enrichment lemma and the projection function in the manuscript.)

Need to be careful: The validity of the top-level theorem 
depends on the interaction traces capturing just the externally 

observable behavior of a module.

High level idea: Make the traces more informative
so that trace-directed back-translation is easier.



72

Data-Flow Back-Translation

Silent labels denote 
internal execution.

Recall alphabet of 
interaction traces



73

Data-Flow Back-Translation

Silent labels are 
too abstract.
(They beneficially hide the 
control steps, but 
unbeneficially hide data-flow 
steps.)



74

Data-Flow Back-Translation

Selectively break the 
silent-label abstraction



75

Data-Flow Back-Translation



76

Data-Flow Back-Translation

Data-flow events 
are just a proof 
artefact. They are 
emitted by any 
execution step 
that modifies the
memory or the 
register file.



77

If the target context stashes a pointer, or recovers a pointer from the stash, 
the data-flow events will now reveal the sequence of operations that 

constitute this stashing/recovery.



78

If the target context stashes a pointer, or recovers a pointer from the stash, 
the data-flow events will now reveal the sequence of operations that 

constitute this stashing/recovery.

Data-Flow Back-Translation
maps each individual data-flow event to one or more source-language 

expression/statement(s).

data-flow 
traces: source 

programs



79

a a+5



80

a a+5

Example: The target context stashes the pointer that is stored 
at shared address "a+5" in a private address "b".



81

a a+5

Example: The target context stashes the pointer that is stored 
at shared address "a+5" in a private address "b".

Remember: On the interaction trace (standard trace-directed back-
translation), this stashing will just appear as the silent label.



82

a a+5

Data-Flow Events:



83

a a+5

r_arg: a
r_loc: b

Data-Flow Events:
Reg



84

a a+5

r_arg: a
r_1: a
r_loc: b

Data-Flow Events:
Mov Mem Reg' c r_arg r_1

Reg'



85

a a+5

r_arg: a
r_1: a
r_loc: b
r_ct: 5

Data-Flow Events:
Mov Mem Reg' c r_arg r_1

Const Mem Reg'' c 5 r_ct

Reg''



86

a a+5

r_arg: a
r_1: a+5
r_loc: b
r_ct: 5

Data-Flow Events:
Mov Mem Reg' c r_arg r_1

Const Mem Reg'' c 5 r_ct

BinOp Mem Reg''' c add r_1 r_ct r_1

Reg'''



87

a a+5

r_arg: a
r_1: ptr
r_loc: b
r_ct: 5

Data-Flow Events:
Mov Mem Reg' c r_arg r_1

Const Mem Reg'' c 5 r_ct

BinOp Mem Reg''' c add r_1 r_ct r_1

Load Mem Reg'''' c r_1 r_1

Reg''''



88

a a+5
r_arg: a
r_1: ptr
r_loc: b
r_ct: 5

Reg''''

Data-Flow Events:
Mov Mem Reg' c r_arg r_1

Const Mem Reg'' c 5 r_ct

BinOp Mem Reg''' c add r_1 r_ct r_1

Load Mem Reg'''' c r_1 r_1

Store Mem' Reg'''' c r_loc r_1

b: ptr

Mem'



89

Mov Mem Reg' c r_arg r_1

Const Mem Reg'' c 5 r_ct

BinOp Mem Reg''' c add r_1 r_ct r_1

Load Mem Reg'''' c r_1 r_1

Store Mem' Reg'''' c r_loc r_1



90

Data-Flow Back-Translation:

Mov Mem Reg' c r_arg r_1

Const Mem Reg'' c 5 r_ct

BinOp Mem Reg''' c add r_1 r_ct r_1

Load Mem Reg'''' c r_1 r_1

Store Mem' Reg'''' c r_loc r_1

module Net {

f (arg) {

...

// tmp_loc points to Net-private memory



91

Data-Flow Back-Translation:

Mov Mem Reg' c r_arg r_1

Const Mem Reg'' c 5 r_ct

BinOp Mem Reg''' c add r_1 r_ct r_1

Load Mem Reg'''' c r_1 r_1

Store Mem' Reg'''' c r_loc r_1

module Net {

f (arg) {

...

// tmp_loc points to Net-private memory

Reserve one 
fixed source 
variable to 
simulate 
each target-
language 
register



92

Data-Flow Back-Translation:

Mov Mem Reg' c r_arg r_1

Const Mem Reg'' c 5 r_ct

BinOp Mem Reg''' c add r_1 r_ct r_1

Load Mem Reg'''' c r_1 r_1

Store Mem' Reg'''' c r_loc r_1

module Net {

f (arg) {

...

// tmp_loc points to Net-private memory



93

Data-Flow Back-Translation:

Const Mem Reg'' c 5 r_ct

BinOp Mem Reg''' c add r_1 r_ct r_1

Load Mem Reg'''' c r_1 r_1

Store Mem' Reg'''' c r_loc r_1

module Net {

f (arg) {

...

// tmp_loc points to Net-private memory

tmp_1 := arg;



94

Data-Flow Back-Translation:

BinOp Mem Reg''' c add r_1 r_ct r_1

Load Mem Reg'''' c r_1 r_1

Store Mem' Reg'''' c r_loc r_1

module Net {

f (arg) {

...

// tmp_loc points to Net-private memory

tmp_1 := arg;

tmp_ct := 5;



95

Data-Flow Back-Translation:

Load Mem Reg'''' c r_1 r_1

Store Mem' Reg'''' c r_loc r_1

module Net {

f (arg) {

...

// tmp_loc points to Net-private memory

tmp_1 := arg;

tmp_ct := 5;

tmp_1 := tmp_1 + tmp_ct



96

Data-Flow Back-Translation:

Store Mem' Reg'''' c r_loc r_1

module Net {

f (arg) {

...

// tmp_loc points to Net-private memory

tmp_1 := arg;

tmp_ct := 5;

tmp_1 := tmp_1 + tmp_ct

tmp_1 := *(tmp_1)



module Net {

f (arg) {

...

// tmp_loc points to Net-private memory

tmp_1 := arg;

tmp_ct := 5;

tmp_1 := tmp_1 + tmp_ct

tmp_1 := *(tmp_1)

*(tmp_loc) := tmp_1

. . .

}

}
97

Data-Flow Back-Translation:



module Net {

f (arg) {

...

// tmp_loc points to Net-private memory

tmp_1 := arg;

tmp_ct := 5;

tmp_1 := tmp_1 + tmp_ct

tmp_1 := *(tmp_1)

*(tmp_loc) := tmp_1

. . .

}

}
98

Data-Flow Back-Translation:

Stashing 
pointers is 
for free. 

No need to implement a 
traversal of the whole 
reachable memory.



module Net {

f (arg) {

...

// tmp_loc points to Net-private memory

tmp_1 := arg;

tmp_ct := 5;

tmp_1 := tmp_1 + tmp_ct

tmp_1 := *(tmp_1)

*(tmp_loc) := tmp_1

. . .

}

}
99

Data-Flow Back-Translation:

Source variables 
mimic every 
change to target 
registers and 
private memory. 
thanks to the fine-grained information 
carried by the data-flow events.



100

supports memory sharing (without the need for graph traversal)

Data-Flow Back-Translation



101

supports memory sharing (without the need for graph traversal)

Data-Flow Back-Translation

comes with a mechanized back-translation lemma in Coq (12k LoC)



102

supports memory sharing (without the need for graph traversal)

Data-Flow Back-Translation

works for syntactically dissimilar languages: a safe untyped target with 
unstructured control and a safe untyped source language with 
structured control

comes with a mechanized back-translation lemma in Coq (12k LoC)



103

More in the 
paper

https://bit.ly/SecurePtrs

https://bit.ly/SecurePtrs


104

More in the 
paper

https://bit.ly/SecurePtrs

Our secure compilation proof allows reuse of 
whole-program compiler correctness lemmas
(enabled by a novel turn-taking simulation).

https://bit.ly/SecurePtrs


Why reuse whole-program compiler 
correctness lemmas?

Some kind of a compiler correctness obligation usually shows up in a 
secure compilation proof.



Why reuse whole-program compiler 
correctness lemmas?

Some kind of a compiler correctness obligation usually shows up in a 
secure compilation proof.

If we hope to scale secure compilation proofs to a verified compiler, it will 
be easier to reuse rather than redo years-worth of manual proof effort.



Why reuse whole-program compiler 
correctness lemmas?

Some kind of a compiler correctness obligation usually shows up in a 
secure compilation proof.

If we hope to scale secure compilation proofs to a verified compiler, it will 
be easier to reuse rather than redo years-worth of manual proof effort.

Whole-program compiler correctness makes no assumptions about the 
context (because there is no context). So, a priori, there will be no difficulty 
in instantiating it (as opposed to partial-program correctness lemmas).



Summary: Proof technique for robust safety 
preservation

Mechanized in Coq (approx. 30 kLoC)

Reuses whole-program compiler correctness lemmas

Handles syntactically dissimilar target and source languages.

Supports languages with memory sharing

https://bit.ly/SecurePtrs

https://bit.ly/SecurePtrs


Backup 



State-of-the-art re reuse of whole-program 
compiler correctness lemmas in secure compilation

[Abate et al. 2018 "When good components go bad"] [El-Korashy et al. 2021 "CapablePtrs"]

Mechanized in Coq

Supports memory sharing by 
pointer passing

Detailed technique but not 
machine checkable

Languages have static 
memory partition with only 
primitive values passable as 
arguments.



Scaled the proof of Abate et al. 2018 to languages 
with memory sharing

[Abate et al. 2018 "When good components go bad"] [El-Korashy et al. 2021 "CapablePtrs"]

Mechanized in Coq

Supports memory sharing by 
pointer passing

Detailed technique but not 
machine checkable

Languages have static 
memory partition with only 
primitive values passable as 
arguments.



Scaled the proof of Abate et al. 2018 to languages 
with memory sharing

[Abate et al. 2018 "When good components go bad"] [El-Korashy et al. 2021 "CapablePtrs"]

Mechanized in Coq

Supports memory sharing by 
pointer passing

Detailed technique but not 
machine checkable

Novel ternary turn-taking 
relation to support 
memory sharing. 
(13k LoC in Coq)



Borrowed some intuitions from CapablePtrs

[Abate et al. 2018 "When good components go bad"] [El-Korashy et al. 2021 "CapablePtrs"]

Key Ingredient: Rely on a ternary relation. Key Ingredient: Rely on a ternary relation.



Borrowed some intuitions from CapablePtrs

[Abate et al. 2018 "When good components go bad"] [El-Korashy et al. 2021 "CapablePtrs"]

Key Ingredient: Rely on a ternary relation
(called recomposition) between three target-
language executions.

Key Ingredient: Rely on a ternary relation (called 
TrICL) between two target-language executions, and 
a third source executon.



Borrowed some intuitions from CapablePtrs

[Abate et al. 2018 "When good components go bad"] [El-Korashy et al. 2021 "CapablePtrs"]

Key Ingredient: Rely on a ternary relation
(called recomposition) between three target-
language executions.

Key Ingredient: Rely on a ternary relation (called 
TrICL) between two target-language executions, and 
a third source executon.

Use ideas from the
strong/weak binary similarity

in CapablePtrs to make the
ternary recomposition 

relation aware of memory 
sharing.





Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

r1

init_network:

addi $r1 $r_arg 1024

sw $r2 0($r1)



Setup: Secure compilation of partial programs

import module Net

module Main {

char iobuffer[1024];

static long int user_balance_usd;

int main(void) {

Net.init_network(iobuffer)

Net.receive();

}

}

r1

init_network:

addi $r1 $r_arg 1024

sw $r2 0($r1)

Compiler should 
ensure that the 

context 
CANNOT access
the user balance



119

Example: stash of the Net module
CapablePtrs [El-Korashy et al. 2021]



120

Given a target interaction trace with Net

Call ? init_network

Example: stash of the Net module
CapablePtrs [El-Korashy et al. 2021]



121

Given a target interaction trace with Net

Call ? init_network

Ret !

Example: stash of the Net module
CapablePtrs [El-Korashy et al. 2021]



122

Given a target interaction trace with Net

Call ? init_network

Ret !

Call ? receive

Example: stash of the Net module
CapablePtrs [El-Korashy et al. 2021]



123

Given a target interaction trace with Net

Call ? init_network

Ret !

Call ? receive

Ret !

Example: stash of the Net module
CapablePtrs [El-Korashy et al. 2021]



124

Given a target interaction trace with Net

Call ? init_network

Ret !

Call ? receive

Ret !

Find a source 
implementation 
of Net that emits a related 
interaction trace.

Example: stash of the Net module
CapablePtrs [El-Korashy et al. 2021]



125

Given a target interaction trace with Net

Call ? init_network

Ret !

Call ? receive

Ret !

Before the source 
implementation 
of init_network
returns, it stashes its 
argument in private 
memory, e.g. in a variable 
called 
init_network_arg.

Example: stash of the Net module
CapablePtrs [El-Korashy et al. 2021]



126

Given a target interaction trace with Net

Call ? init_network

Ret !

Call ? receive

Ret !

Before receive

returns, it uses the pointer 
stashed in 
init_network_arg to 
hardcode in the iobuffer 
all the green values that 
appeared on the given trace.

Example: stash of the Net module
CapablePtrs [El-Korashy et al. 2021]



127

In general, must stash the whole shared memory
CapablePtrs [El-Korashy et al. 2021]

The same function may have 
been called more than once:

init_network_arg_1_c1,

init_network_arg_2_c1,

.. .

init_network_arg_n_c1



128

In general, must stash the whole shared memory
CapablePtrs [El-Korashy et al. 2021]

The same function may have 
been called more than once:

init_network_arg_1_c1,

init_network_arg_2_c1,

.. .

init_network_arg_n_c1

init_network_arg_1_c2,

init_network_arg_2_c2,

.. .

init_network_arg_m_c2


