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ABSTRACT
We present Sonoloc, a mobile app and system that allows a set of

co-located commodity smart devices to determine their relative

positions without local infrastructure. Sonoloc enables users to

address each other based on their relative positions at events like

meetings, talks, or conferences. This capability can, for instance, aid

spontaneous communication among users based on their relative

position (e.g., in a given section of a room, at the same table, or in a

given seat), facilitate interaction between speaker and audience in a

lecture hall, and enable the distribution of materials, crowdsensing,

and feedback collection based on users’ location. Sonoloc can posi-

tion any number of devices within acoustic range with a constant

number of chirps emitted by a self-organized subset of devices. Our

experimental evaluation shows that the system can locate up to

hundreds of devices with an accuracy of tens of centimeters using

up to 15 audio chirps emitted by dynamically selected devices, in

actual rooms and despite substantial background noise.
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1 INTRODUCTION
Mobile apps and services enable organizers of events such as confe-

rences, meetings, concerts, or other events to disseminate informa-

tion and collect feedback in real time. Likewise, these apps allow

event attendees to use such apps to network, exchange commentary,

and share information during or after the event.

A key challenge for such apps is how to enable parties to ad-

dress each other in a convenient and usable manner, particularly

when among new acquaintances or strangers. Most current apps

and services require users to identify communication partners by
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their (nick-)names, e-mail addresses, phone numbers, or OSN IDs.

However, requiring users to manually exchange contact details is

awkward and impractical at large events, and many individuals

find it difficult to remember the names of everyone they met at an

event.

A naïve approach would be to automatically exchange names,

contact details, and portraits among participants, either by having

users’ devices broadcast this information via short-range radio, or,

in case of an organized event, by publishing the information on

the event web site. However, this approach is questionable from a

privacy perspective.

A better approach would be to name communication partners

by their relative spatial position at a given time. For instance, it is

easier to refer to a group of people as “those sitting at the same

table” than by enumerating their names, and many individuals tend

to remember the relative seating positions of people they met at a

meeting or dinner table more easily than their names.

In addition, spatial naming naturally enables communication

scenarios where the position of a user is all that matters, and not

their identity. For instance, one might wish to disseminate different

versions of an exam to test-takers in adjacent seats or disseminate

notes to everyone present at a given table. Likewise, one might wish

to collect feedback about the audiovisual experience in a concert

hall based on the seat a user occupies, tag crowdsourced pictures or

videos with the position from where they were taken, or dispatch

responders based on the position of an individual who has a request

or reports an emergency.

In this paper, we present Sonoloc, a system that allows a set

of commodity smart devices within acoustic range to determine

their relative position map without local infrastructure. The map

can be displayed on the device, allowing the user to identify com-

munication senders or receivers by their relative position at the

time the map was created. By providing a (possibly ephemeral)

network address and an optional nickname along with their rela-

tive position, participating devices can communicate conveniently

and without exchanging any long-term identifiers or personally

identifying information at all.

Sonoloc is able to determine a relative position map among hund-

reds of commodity smart devices in a large room with a constant

number of audio chirps emitted by a dynamically selected subset

of devices. The protocol proceeds in several rounds. Initially, a set

of randomly selected devices emit a sequence of audio chirps. Me-

anwhile, all devices listen to these transmissions. The devices then

compute their positions using differences in chirp arrival times.

First, the transmitters’ positions are computed, and then the re-

maining devices are positioned relative to the set of transmitters.

https://doi.org/10.1145/3210240.3210324
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By sharing their measurements, the devices can tentatively place

themselves on a map. Next, additional transmitters are selected

strategically based on their positions on the tentative map, which

emit more chirps to refine the map in the next round.

The paper makes the following contributions. (1) We present

Sonoloc, a system that can, upon the request of one user, provide

a relative position map of up to hundreds of commodity smart

devices within audio range, without requiring local infrastructure.
1

Unlike naïve audio ranging approaches, which would require Θ(n)
chirps to position n devices, Sonoloc requires an audio chirp from

only a small subset of the participating devices. The key is a novel,

multi-stage iterative transmitter selection and device localization

protocol that can position any number of devices using chirps from

a small number of strategically selected devices. (2) We present

results of extensive simulations with many device layouts, and we

experimentally evaluate an Android Sonoloc prototype with up to

15 Motorola Nexus 6 phones and 100 Raspberry Pi-based passive

devices in different rooms and with different background noise

levels. Our results show that Sonoloc can position hundreds of

devices with an accuracy of tens of centimeters with no more than

15 audio chirps, and with signal-to-noise levels as low as −20 dB.

In the rest of this paper, we discuss related work in Section 2

and present the overall Sonoloc protocol in Section 3. The audio

signal processing pipeline is described in Section 4 and we present

the localization algorithms in Section 5. Results of an experimental

evaluation based on simulations and real-world experiments are

presented in Section 6. We conclude in Section 7.

2 RELATEDWORK
Sonoloc produces a relative map of devices within acoustic range.

Such a map can be derived if pairwise distances between each

device are available, but in Sonoloc, some of these distances must

be inferred since not all devices transmit. Hence, Sonoloc builds on

two broad areas of work: positioning using inter-device distance

measurements (Section 2.1) and localization based on TOA/TDOA

measurements (Section 2.3). Alternative approaches based on local

infrastructure are discussed in Section 2.2.

Distances can be measured using radio and audio signals. Table 1

presents a comparison of representative protocols that use RF, acou-

stic ranging (AR), or both. Measurements based on radio frequency

(RF) signals are unobtrusive but, as the table shows, tend to be

relatively inaccurate [8, 16, 17] or require specialized hardware [39,

36, 34, 35] and/or changes to infrastructure [36, 34, 35]. In contrast,

measurements based on audio signals can be accurate on the order

of centimeters, do not require deployment of special hardware or

infrastructure, but emit audible sounds.

Compared to prior AR-based systems that do not require spe-

cialized infrastructure, Sonoloc achieves similar median accuracy.

However, in contrast to prior work, which either did not evaluate

maximum error or have several meters of maximum error, Sonoloc

has maximum errors of around 0.5m. This is required to position

users relative to each other correctly in practice. Moreover, Sonoloc

can position hundreds of devices with a constant number of chirps.

1
Our prototype relies on cellular orWi-Fi access, but this is not fundamentally required.

2.1 Relative device positioning
The BeepBeep protocol [28] measures the pairwise distance be-

tween two devices by serially emitting a chirp on each device’s

speaker, listening on the microphones of each device, and com-

puting the distance based on the observed signal arrival times.

For pairwise measurements, BeepBeep has an average accuracy of

around 2 cm, and it is the basis of pairwise transmitter distance

measurements in Sonoloc.

Determining the relative positions of devices using pairwise

BeepBeep to support file sharing was proposed in [30]: this method

requires Θ(n)measurements to map n devices, which is impractical

in a large venue with hundreds of devices for the following reasons.

First, each transmission comes with audible sound, and hundreds

of transmissions would become very disruptive to human users.

Second, each transmission takes on the order of seconds, and, since

transmissions need to be sufficiently separated in time for good

signal-to-noise ratio, hundreds of transmissions would lead to very

large delays. Sonoloc instead uses a constant number of transmitters

regardless of the number of devices in the room.

Ping-Pong [13] determines the relative positions of multiple de-

vices based on pairwise distances measured via acoustic ranging.

Like the original BeepBeep, Ping-Pong requiresΘ(n)measurements

to position n devices, but each measurement emits a musical note.

Ayllón et al. [3] combine AR ranging and inertial sensor readings to

estimate the relative position of nearby devices. All devices need to

emit chirps, limiting the method’s scalability. The FAR system [40],

designed for mobile gaming, uses AR to continuously track the

distance between two phones with a median error of 2 cm. Mea-

surements are quick (100ms) but are pairwise only. A protocol to

maintain the relative 3D position of two phones using AR cues and

inertial sensors is described in Qiu et al. [29]. In contrast, Sono-

loc performs a one-time positioning of many devices with a small,

constant number of chirps.

2.2 Infrastructure-based localization
Device localization protocols determine absolute geographic coor-

dinates, and are important indoors where GPS is often unavailable.

Sufficiently accurate indoor localization could be used to create

a relative position map as well. However, existing techniques are

either not accurate enough [8], require changes to deployed in-

frastructure [16, 34, 36], specialized local infrastructure like audio

beacons with known locations [18, 19, 25], access to pre-defined

radiomaps [38], or specialized hardware [34, 36, 1, 2].

Radiomaps measure signal strength from different APs at many

points within indoor locations, and existing techniques [38] can

use such maps to interpolate device locations. Other techniques

can use the angle of arrival information from multiple antennas

at APs to achieve sub-meter resolution [34, 36]. The accuracy of

these methods varies based on density and construction of base

stations (number of stations and antennas per station), changes to

APs (requires re-computation of radiomap), scattering environment,

and may vary with indoor occupancy.

Centaur [26] combines RF and AR based techniques for indoor

localization, using the distances measured using AR as geometric

constraints for Bayesian inference on the RF profiles of the par-

ticipating devices. A similar approach is taken in Liu et al. [24],
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Max. Tested Custom # Meas. Meas.

Protocol Medium Accuracy error Range HW for map speed Notes

PinPoint [39] RF >1m avg. 4.3m 44.5m All Θ(n) fast non-Wi-Fi HW for fine grained timestamps

ArrayTrack [34] RF 0.26m med. – floor All N/A fast 6+ antennas per AP, custom client HW

Synchronicity [35] RF 1.6m med. – floor APs N/A fast Requires SW/HW change at APs

ToneTrack [36] RF 0.9m med. 5m floor All N/A fast Custom devices and APs

Horus [38] RF 0.5m med. 2.9m floor - N/A fast Requires radiomaps

EZ Localization [8] RF 2-6m med. 20m floor - N/A fast Integrates GPS, server support

SpotFi [16] RF 0.4m med. 12m floor - N/A fast AP SW change

Ubicarse [17] RF 0.4m med. – floor - N/A fast localizes non-RF objects via vision

BeepBeep [28] AR 0.02m avg. – 12m - Θ(n) slow pairwise distance only, line-of-sight results

Ping-Pong [13] AR 0.03-0.2m – 2.8m - Θ(n) slow Error device-size dependent

FAR [40] AR 0.02m med. – <2m - Θ(n) fast pairwise distance only, 12Hz updates

Liu et al. [25] AR 0.1-0.2m med. 0.35m 7.3m Beacons Θ(n) slow Requires deploying anchor nodes. Limited

eval. with 1 phone in 2 locations.

Centaur [26] RF+AR 0.6m med. 3.5m floor - Θ(n) slow Combines Wi-Fi and acoustic

ALPS [19] RF+AR 0.1-0.2m med. 3.2m 72m
2

Beacons Θ(n) fast Requires ultrasound HW beacons

Akiyama et al. [2] AR+Light 0.01m – <5m Beacons Θ(n) fast Requires sync. LED beacons

SmartSLAM [12] RF+Inert. 1.6m (66%),

2.7m (95%)

– floor - N/A medium 2Hz updates, sensor fusion incl. radiomaps

Sonoloc AR 0.06m med. 0.5m 17.8m - O(1) slow Position map with up to 15 signals

Table 1: Survey of representative positioning and location protocols using radio frequency (RF) or acoustic ranging (AR). “Fast”
measurements require <100ms, whereas “slow” ones require >1s. For solutions that do not transmit device-to-device signals
(such as infrastructure-based solutions), the number of measurements is not applicable.

where BeepBeep-based AR ranging informs Wi-Fi profile based

localization. Centaur also introduces two new AR measurement

techniques: EchoBeep, which performs well even without a line-

of-sight between two devices, and DeafBeep, which works with

speaker-only devices. Both these techniques can be directly inte-

grated with Sonoloc.

Finally, SmartSLAM [12] performs simultaneous localization and

mapping (SLAM) using Wi-Fi fingerprinting, inertial sensors and

compass on smartphones. The system moves between different

sensor fusion algorithms depending on available prior knowledge,

to minimize CPU load and energy consumption; its accuracy is on

the order of several meters.

Sonoloc instead positions devices relatively and accurately, wit-

hout requiring infrastructure support.

2.3 TOA/TDOA localization algorithms
Devices can be positioned with respect to each other without in-

frastructure support, instead based solely on peer measurements.

Joint speaker and microphone localization based on the measured

distances between speakers and microphones has been studied in

previous work [27, 22, 20, 21]. This problem is known as time-of-
arrival (TOA)-based joint source and sensor localization. The method

from [21] is used in Sonoloc to localize transmitters. A second

type of localization, microphone localization based on distance

differences and known positions of speakers, is referred to as time-
difference-of-arrival (TDOA)-based source localization [33]. Closed

form solutions exist [31, 32, 7, 37, 5]. Sonoloc uses a variant of

the spherical interpolation method [33] to localize passive (non-

transmitting) devices.

3 SONOLOC DESIGN
In this section, we describe Sonoloc’s overall design and its iterative

protocol for computing a relative position map among the set of

participating devices. Since Sonoloc relies on acoustic ranging to

measure distances and distance differences among devices, it needs

to be able to detect its audio signals accurately in noisy environ-

ments. The signal design and processing used by Sonoloc for this

purpose are described in Section 4.

The key challenges in designing a practical system are robustness

to background noise, independence from specialized hardware and

local infrastructure, and scalability to many devices with reasonable

delay and minimal inconvenience to users, e.g., via a small number

of audible signals.

Given a set of transmitters and the measured signal arrival ti-

mes at all devices, Sonoloc computes a relative position map in

three steps. First, from the signal arrival times, Sonoloc computes

the pairwise distances among the transmitters; for each passive

device (i.e., a device not chosen as a transmitter), it computes the

distance difference between that device and each pair of transmit-

ters. Second, Sonoloc computes a map of transmitters consistent

with the measured pairwise transmitter distances. Third, it places

the passive devices into the same map consistent with the measured

distance differences. Section 5 describes the techniques we use to

compute these maps from the signal arrival times, in the presence

of inaccurate measurements.

3.1 Assumptions
Sonoloc makes the following assumptions:

• Participating users carry a smart device that has support

for Bluetooth, a Wi-Fi or cellular network connection, a
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a) b) 

Transmitter 
Passive device 
Direction of motion 
Distance 

Figure 1: Poor transmitter choice examples

microphone and a speaker. All modern smart phones have

these capabilities.

• The distance between the speaker(s) and microphone(s) for

each phone is known. For this purpose, the app provider can

run a simple online database with the measured distances

for all common device models.

• All participating devices are within audible distance from

each other and users place their phones into a relatively

unobstructed position (e.g., by holding them up in the air or

by placing them on the table).

• Phones do not move while Sonoloc performs measurements.

This assumption is consistent with Sonoloc’s intended usage,

where a user initiates the system when participants are sea-

ted in an auditorium or at a table.

• Because Sonoloc computes a two-dimensional position map,

we assume that the vertical (z) offsets among participating

devices are small. We evaluate the impact of larger z-offsets

on Sonoloc’s accuracy in Section 6.

• All participating devices run the Sonoloc app. Any device

running the Sonoloc app can initiate the protocol upon user

request, by contacting nearby devices that also run the app

via Bluetooth Low Energy.

3.2 Strawman Sonoloc protocol
Consider the following strawman protocol:

1. Select t transmitters randomly from the participating devi-

ces.

2. Emit a chirp from each transmitter in sequence while all

devices listen.

3. Determine the chirp arrival times at each device (Section 4).

4. Compute the position map from the chirp arrival times me-

asured at all devices (Section 5).

This protocol produces position maps with good median accu-

racy under reasonable audio conditions. However, occasionally, the

protocol produces high positioning errors due to a poor choice of

transmitters. What is a poor choice of transmitters? Consider the

simple examples depicted in Figure 1. Recall that a passive device

determines its relative position based on the measured difference in
distance from each pair of transmitters.

Example a): Two transmitters and a passive device lie roughly

along a straight line. Although the difference in the distance to

the two transmitters is large, if the passive device moved in any

direction, it would initially observe very small changes to this dif-

ference. Therefore, accurately positioning p based on this distance

difference requires very high precision measurements.

Example b): Two transmitters are very close, relative to the dis-

tance from a passive device. If the passive device moved in any

direction, it would initially observe very little change in the dis-

tance to the transmitters. Again, accurately positioning the passive

device requires very high precision measurements.

The accuracy of distance measurements, however, is limited by

the audio sampling rate (at 48 kHz, sound travels 7.13mm during

one sample, assuming ambient temperature of 20
◦
C), line-of-sight

obstructions that may lead to the detection of a reflected signal,

and z-offsets. Given these limitations, the transmitters must be well

distributed in both dimensions of the space covered by all devices,

so that each passive device finds enough pairs of transmitters with

large angles between them. The challenge is how to choose a good

distribution of transmitters in the absence of a map, which we are

trying to produce as the output of the protocol.

3.3 Iterative Sonoloc protocol
We meet this challenge with an iterative transmitter selection pro-

tocol. We start with a small set of randomly chosen transmitters

and compute a map. This map will not be accurate but provides an

approximation sufficient to choose an additional transmitter strate-

gically. In subsequent iterations, a newly chosen transmitter emits

an audio signal, and we re-run the localization to refine the map.

(We do not re-select the full set of transmitters in each iteration.)

The iteration continues until the desired accuracy is reached.

Choosing the size of the initial transmitter set Tinit involves a
tradeoff between overall protocol delay and the quality of additional

transmitter choices. A smaller Tinit improves our ability to select

more transmitters strategically. A larger Tinit improves the quality

of the initial map (which is the basis for the choice of the next

transmitter), and reduces overall protocol delay, because Tinit can
be selected in one shot. Empirically, we found |Tinit | = 6 to be a

good choice. See [11] for additional details.

The goal of choosing additional transmitters in each iteration

of the protocol is to try and have transmitters along the full range

of x and y coordinates occupied by passive devices. Towards this

end, we tried a number of different heuristics to choose a set of

additional transmitters. The following works well empirically.

In each iteration (other than the first, when transmitters are

chosen randomly), we compute the convex hull of the transmitters

in the current map. Then, we select a passive device outside the

hull that will, if chosen as a transmitter, increase the area covered

by the convex hull the most. This step is illustrated in Figure 2.

Intuitively, by maximizing the area covered by the convex hull of

transmitters, we seek to include most passive devices in the hull.

A passive device inside the hull is “surrounded” by transmitters,

thus avoiding bad transmitter choices like those shown in Figure 1.

If all passive devices lie inside the convex hull already, we choose

additional transmitters from the set of passive devices randomly.

The full Sonoloc protocol is shown in Algorithm 1. We evaluate

the number of transmitters (I ) required for good accuracy empiri-

cally in Section 6.
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Input: D: set of participating devices

Input: I: desired number of transmitters to use

Output: position map

Select 6 initial transmitters randomly from D;

All devices start recording;

Initial transmitters emit chirps sequentially;

while #transmitters < I do
Collect measurements, compute map;

Compute convex hull of transmitters;

if all devices in D inside hull then
Select new transmitter randomly from D;

else
Select new transmitter that maximizes area of

convex hull;

end
New transmitter emits chirp;

end
All devices stop recording;

Algorithm 1: Sonoloc protocol

Transmitter 
Passive device 
Current convex hull of transmitters 
Extension of convex hull by a passive device 

Figure 2: Illustration of transmitter selection based on the
convex hull. In the example, the bottom right passive device
(markedwith an arrow) is selected as an additional transmit-
ter.

3.4 Map ambiguity and orientation
Sonoloc computes a 2D relative position map consistent with ob-

served distances and distance differences. Note that a map corre-

sponding to a view from above the 2D plane and one from below

the 2D plane are both consistent with the observed measurements.

Sonoloc relies on the initiating user to resolve this ambiguity and

“flip” the map if needed.
2
Each user can also rotate the 2D map

around its center to match their current orientation in the plane.

See [11] for a discussion of (semi-)automated ways of resolving the

map-flipping and rotation problems.

2
If the initiator’s location happens to be on a line of symmetry within the map, it may

not be obvious to her if the map is “upside down”. In this case, the initiator can ask

another user to flip the map as needed.

4 SIGNAL DESIGN AND DETECTION
This section describes the audio signal design and detection mecha-

nisms used by Sonoloc.

4.1 Signal design
A suitable audio signal must have three properties: 1) The signal

should be distinguishable from background noise. 2) It should be fea-

sible to transmit and sense the signal using commodity smartphone

hardware. 3) The signal should not be similar to a time-shifted

version of itself. Otherwise, the correlation function used to detect

a received signal would generate multiple peaks, some of which

could obfuscate the true start of the signal.

Following standard practice in radar and sonar applications, we

use a linear chirp [9, 10, 23]. Because of its flat and wide spectrum,

it produces a sharp peak in autocorrelation. We use a linear upward

sweep from 1 kHz to 17 kHz with a length of 500ms.

4.2 Signal detection
Signal detection consists of two stages: (1) computing the corre-

lation of the recorded waveform and the reference signal, and (2)

selecting the “correct” peak in the correlation output to detect the

start of transmission. Unfortunately, simply choosing the highest

peak is not sufficient because peaks can occur due to reflections

and interference. We describe the two stages of signal detection in

turn.

4.2.1 Computing correlation. For computing correlation, we

apply the Generalized Cross-Correlation with Phase Transform

(GCC-PHAT) algorithm [15, 6, 4]. GCC-PHAT is a filtered version

of the usual cross-correlation that includes a frequency-shaping

component to improve performance by making the correlation peak

“sharper”. GCC-PHAT consists of a cross-correlation phase and a

whitening filter that flattens the spectrum.

It is possible to compute the correlation by applying FFT over the

entire received signal. However, applying the whitening filter over

the entire received signal can lead to spurious peaks in the cross-

correlation because the whitening filter has a very long impulse

response. Instead, we apply the whitening filter by using Short-

Time Fourier Transform (STFT) with a bounded frame length of 128

samples. Figure 3 shows an example comparing GCC-PHAT+STFT

to standard correlation and standard GCC-PHAT. The audio wa-

veform is a phone recording of a signal emitted by another phone

in the presence of loud background music. In this example, regular

cross-correlation (or GCC-PHAT with full FFT) does not produce a

clear spike in the time domain, but GCC-PHAT with STFT does.

4.2.2 Signal detector. In real world scenarios, the correlation

signal can have many peaks due to reflections, and we must choose

one as the start of reference. We need to detect the direct (shortest)

path signal, because the time-of-flight of reflected signals does not

match the physical device distance. We expect the corresponding

correlation peak to be the earliest one. Reflected signals appear

after the direct path signal, and, due to direct-path obstructions,

they may correlate with the reference signal more strongly than

the direct path signal. Thus, we cannot simply choose the highest

correlation peak.
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Figure 3: Audio recording of signal and background music,
and different correlation signals. The signal starts at the das-
hed vertical line

Symbol Meaning

dxy Distance from x ’s speaker to y’s microphone

tx Global time at which x transmitted a signal

rxy Global time at which x ’s signal was received at y
f Sampling rate (Hz)

cs Speed of sound (343.2m/s@ 20
◦
C)

Table 2: Notation; times are expressed in terms of a (hypot-
hetical) global clock.

Sonoloc’s detector is based on CFAR [14], with parameters deter-

mined empirically. We estimate the noise levels, during the entire

recording and during the past 1000 samples, and set two thresholds,

global and local, each 15 dB above the corresponding estimated

noise level. Additionally, since correlation peaks come sometimes

in small bursts with a ramp-up and ramp-down, the algorithm tries

to get to the top of the ramp by requiring that the peak is a local

maximum among all samples within +/-60 samples of the peak. We

choose the first peak in the correlation signal that satisfies all 3

conditions (global threshold, local threshold, and local maximum)

as the start of the received signal. It is possible that the correlation

signal does not contain such a prominent peak; in this case, the

detector signals a failure.

5 LOCALIZATION
This section describes how Sonoloc computes a position map from

the measured times of arrival determined by the signal detector

from Section 4. We begin with a description of how Sonoloc de-

termines distances and distance differences from the signal arrival

times. Then, we describe the algorithm for determining transmit-

ter locations from their pairwise differences. We close with the

algorithm for determining the positions of passive devices from

their measured distance differences to the transmitters. We use

the notation in Table 2. The relevant distances are illustrated in

Figure 4.

Speaker 
Microphone 

Device C (passive) 

Device A (transmitter) Device B (transmitter) 

dAB dBA 

dAC dBC 

Figure 4: Distance notation

5.1 Estimating distances and distance
differences

Using the acoustic signal processing techniques described in Section 4,

each device determines the time at which an audio signal (including

its own transmitted signal) captured by its microphone starts. At

first, the arrival time of a received signal is expressed in terms of

the receiver’s local audio sampling clock, i.e., it is an index in a list

of received audio samples. To express it in seconds, as required by

the equations below, the sample index must be divided by the audio

sampling rate in Hz.

Sonoloc uses these independent arrival timestamps to derive two

types of possible observations: (i) distances between the speaker

in one transmitter and the microphone in another transmitter, and

(ii) distance differences given by a triple of two speakers in two

transmitters and a microphone in a passive device. The protocol

only uses arrival time differences of signals captured by the same

device, therefore the audio sample clocks need not be synchronized.

5.1.1 Estimating distances. For notational convenience, we as-
sume a hypothetical global clock for the time equations below.

However, none of the computations at any device require a global

clock. Instead, each device only computes intervals based on their

local recorded timestamps. Assume that a set of transmitters have

emitted sounds. We generalize the algorithm described in Peng et

al. [28] to estimate, for all pairs of transmitters, the distance bet-

ween the speaker in one transmitter and the microphone in another

transmitter.

Given a signal emitted by a speaker in a device A at time tA
according to a global clock, the following two equations hold for

its reception at devices A and B, respectively:

rAA = tA +
dAA
cs

and rAB = tA +
dAB
cs
. (1)

Note that, for convenience, we are defining the time at which

A’s signal is received at B in terms of when A sends its message.

Devices can be localized without knowing the value of tA. (tA − tB ,
used later, can be determined even if tA and tB are unknown.)

Analogous equations hold for a signal emitted by a speaker in a

device B: rBB and rBA. We eliminate tA and tB so that we obtain:

dAB + dBA = dAA + dBB + cs (rBA − rAA + rAB − rBB ) (2)
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If dAA and dBB are small compared to dAB and dBA, we can use

(dAB +dBA)/2 to estimate both dAB and dBA, the distance between
A’s speaker and B’s microphone, and the distance between B’s
speaker and A’s microphone, respectively.

If a signal fails to be detected, the associated pairwise distance

among transmitters will be missing. In this case, we can estimate

the missing value as follows: for all triples of transmitters involving

the pair with the missing distance, compute bounds based on the

triangle inequality. However, signal detection failures did not occur

in our experiments.

5.1.2 Estimating distance differences. SupposeA and B are trans-

mitters (as above) and C is a passive device that locally timestamps

the audio signals from A and B. Our goal is to derive the distance

difference τAB |C = dAC − dBC . Similarly to the equations in (1), it

is clear that

rAC = tA +
dAC
cs

and rBC = tB +
dBC
cs
. (3)

Thus,

τAB |C = dAC − dBC = cs (rAC − rBC − (tA − tB )) (4)

Device C can directly measure the time difference rAC − rBC
locally. The quantity tA − tB can be derived at device B as follows:

tA − tB =
dBB − dAB + cs (rAB − rBB )

cs
(5)

Note that the derivation requires dAB , which we can estimate

using
(dAB+dBA)

2
as long as the distance between devices is much

larger than the distance between speaker and microphone on the

same device.

Finally, in order to reduce the impact of noisy distance dif-

ferences (due to inaccurate signal detection) on the localization

accuracy, Sonoloc filters the estimated distance differences based

on the triangle inequality. According to the triangle inequality,

∀A,B ∈ Transmitters : ∀C ∈ Passive : |τAB |C | < dAB . We com-

pute the set of device triples that violate the triangle inequality by

a given tolerance factor F :

{(A,B,C) | A,B ∈ Transmitters ∧C ∈ Passive

∧ |τAB |C | ≥ F · dAB }
(6)

For each such triple, we ignore the associated distance difference

constraint in the subsequent localization.

In sensitivity experiments, we found that this filtering is required

for good localization accuracy. The value of F needs to be low

enough to filter out high-error distance difference measurements

that negatively affect the results. Empirically, we determined that

F = 1.2 is a good choice. See [11] for details.

5.2 Computing coordinates
Based on the measurements described above, the localization phase

produces coordinates for all participating devices in Sonoloc. We

use two types of localization: (1) transmitter localization via joint

speaker-microphone localization based on the distances estimated

in Section 5.1.1, and (2) passive device localization via microp-

hone localization based on the distance differences estimated in

Section 5.1.2 and the coordinates of the transmitters computed in

(1).

More precisely, for a device A, let sA be the position of A’s spea-
ker, and letmA be the position ofA’s microphone. Since our goal is

to localize devices (and not speakers and microphones), we define

the position of a device A as follows. If A is a transmitter, we define

its position as the average of the coordinates of its speaker and

microphone, i.e.,

posA =
1

2

(sA +mA). (7)

If A is a passive device, we define its position as the coordinates of

its microphone, mC . The first localization estimates sA,mA for all

transmitters A based on estimated distances given for all pairs of

transmitters A,B based on Section 5.1.1:

ˆdAB ≃ dAB = ∥sA −mB ∥ (8)

where ∥ · ∥ is the Euclidean distance. The second localization es-

timatesmC for all passive devices C based on estimated distance

differences given for all pairs of transmitters A,B with respect to C
based on Section 5.1.2:

τ̂AB |C ≃ τAB |C = dAC − dBC = ∥sA −mC ∥ − ∥sB −mC ∥ (9)

(note that τAB |C = −τBA |C ), and the known (estimated) positions

{ŝA | A ∈ Transmitters} (10)

from the first localization.

5.2.1 Localizing transmitters. Given estimated pairwise distan-

ces { ˆdAB | A,B ∈ Transmitters}, we use a least-squares criterion
to choose the estimated speaker and microphone coordinates of

transmitters {ŝA, m̂A | A ∈ Transmitters} so that it minimizes the

following objective function:∑
A,B∈Transmitters

(
ˆdAB − ∥ŝA − m̂B ∥

)
2

. (11)

In general, the objective function of (11) is non-convex over the

coordinates of speakers and microphones; finding the optimal solu-

tion is prohibitively expensive. We use an iterative method based

on existing work; this method is sensitive to the “starting point”

for the optimization — an arbitrary initialization of coordinates

can get “trapped” into a local minimum far from the global one.

Using existing work described in [21], we compute a closed-form

solution for the constraint (8) and use this solution to initialize the

optimization of (11).

Iterative refinement. The closed-form solution for transmitter

positioning assumes that the measured distances are precise, i.e.,

∀A,B ∈ Transmitters : ˆdAB = ∥sA −mB ∥. (12)

In practice, themeasured distances are noisy, leading to inaccuracies

in the computed transmitter coordinates. Fortunately, as long as

the noise is not “too” large and the closed-form solution is near

the global minimum, they can be improved further using existing

work [27].

Given an initial solution, the method iterates using an auxiliary

function for nonlinear least-squares optimization to improve the

solution. The quality of the final solution depends on the initial

solution; fortunately, in our case, the closed-form method gets us

“close”. Our Sonoloc implementation stops the refinement after 10

iterations. Sensitivity experiments suggest that additional iterations

have negligible impact. See [11] for more details.
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Sonoloc transmitter localization algorithm. A summary of the

transmitter localization in Sonoloc is shown in Algorithm 2.

Input: Estimated pairwise distances:

D̂ = {(A,B, ˆdAB ) | A,B ∈ Transmitters}.
∀A ∈ Transmitters : ˆdAA = 0.

Output: Estimated positions: TrPos

= {(A, ŝA, m̂A) | A ∈ Transmitters}.
TrPos = Apply closed-form solution [21] for D̂;

TrPos = Iteratively apply update rule [27] for TrPos and D̂;

Algorithm 2: Sonoloc transmitter localization.

5.2.2 Localizing passive devices. In Sonoloc, N speakers in N
transmitters emit audio chirps, and these sounds are recorded by

the N microphones in N transmitters and the M microphones in

M passive devices. The speaker and microphone coordinates of

transmitters are estimated using the closed-form (+iterative) algo-

rithm described above. Next, we describe how Sonoloc estimates

the coordinates of theM remaining microphones.

Based on the distance difference measurements described in

Section 5.1.2 and the known coordinates of the transmitter spea-

kers, the estimation of the position of a passive device’s microphone

maps precisely to the source localization from range-difference mea-
surements problem studied in [32, 33, 37]. Crucially, the constraints

corresponding to the different microphones are entirely indepen-
dent, in that there is no dependence between microphones, their

locations, recording, or computation. This property allows Sonoloc

to scale. As long as microphones can record the sound samples with

sufficient fidelity and undertake the procedure listed below, the

system scales to an arbitrary number of passive devices, regardless

of location. This property is useful because, e.g., in big lecture halls,

hundreds of devices can be within audio range. In addition, the

computation for each passive device is independent and can be

executed in parallel.

For a passive device C , mC can be estimated as follows. Gi-

ven the estimated speakers positions of all transmitters {ŝA |

A ∈ Transmitters} and the observed distance differences {τ̂AB |C |

A,B ∈ Transmitters}, we choose the estimated position m̂C that

minimizes∑
A,B∈Transmitters

[
τ̂AB |C −

(
∥ŝA − m̂C ∥ − ∥ŝB − m̂C ∥

) ]2
. (13)

The optimization (13) has a non-convex cost function of only

two coordinates of m̂C . Thus, (13) is simpler than (11), and the

existing closed-form solutions work well for the optimization (13).

Sonoloc uses the closed-form solutions described in [33] to solve

the optimization (13). Note that [33] describes localizing speakers
based on known microphone locations, but in Sonoloc, we localize

microphones based on known speaker positions. Our problem is

symmetric in the sense that distance differences can be defined

between pairs of speakers and onemicrophone aswe do, or, between

pairs of microphones and one speaker as described in [33].

Iterative refinement. As before, the closed-form solution assumes

that the measured distance differences are accurate. In practice,

the differences are noisy, leading to inaccurate output. In order

Noise type Lowest robust SNR

Synthetic Gaussian 1.53 dB

Real noise (Cafeteria) −22.6 dB

Real noise (Talk) −24.5 dB

Real noise (Street) −34.1 dB

Real noise (Poster session) −24.2 dB

Table 3: SNR levels for reliable signal detection

to improve the quality of the solution given by the closed-form

method, we use an iterative algorithm based on prior work [27].

Since the work in [27] shows that this solution is never worse than

the closed-form solution, we always use the coordinates provided

by the iteratively refined solution.

Our implementation stops the refinement after a maximum of

2000 iterations or when the improvement in the value of the ob-

jective function falls below a threshold where Sonoloc’s overall

accuracy is not affected anymore. Our sensitivity experiments sug-

gest that the refinement is required for good accuracy; no more than

2000 iterations were needed in any of our experiments. See [11] for

more details.

6 EVALUATION
In this section, we present results of our experimental evaluation

of Sonoloc. The evaluation has three parts. First, we evaluate the

performance of Sonoloc’s signal detection under different types

of noise and signal-to-noise ratios. Second, we present results of

extensive simulations that allow us to explore many more room and

device layouts than we could reasonably cover in real experiments.

It also enables us to explore the impact of factors like the selection

and number of transmitters, inaccuracies in detected signal arrival

timestamps, and z-offsets. Finally, we present real-world experi-

ments in different rooms with a prototype implementation running

on up to 15 Motorola Nexus 6 smartphones and up to 100 Raspberry

Pi 3 Model B units as passive devices.

6.1 Signal detection
Detecting the audio chirp signal in a recorded waveform is essential

for accurate localization. We evaluate the Sonoloc signal detector

under controlled conditions by mixing the clean reference signal

with various types of noise at different signal-to-noise ratios (SNR).

We are using synthetic and recorded noise for our evaluation.

For synthetic noise, we use Gaussian random noise with a zero

mean and unit standard deviation. For real noise evaluations, we

recorded background noise in various environments, including

street noise from an open window, a talk (presentation), a poster

session, and a cafeteria during lunch hour. The recorded noise

recordings are several minutes long; in each experiment, we mix in

the signal at a different random offset within the noise recording.

During mixing, the amplitude of the noise is adjusted to achieve a

desired SNR.

We run the signal detector on the noisy recordings and compare

the detected signal position with the known ground-truth position

of the signal in the recording. Table 3 shows the minimal SNR re-

quired for reliable detection with different types of noise. Detection
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is considered reliable if, during at least 100,000 trials, there were no

detection failures and the signal was detected within three audio

samples of the true position in each trial.

As we can see, Sonoloc’s detector can reliably detect signals in

real noise down to SNRs below −20 dB. This robustness is possible

because the acoustic spectrum of real noise is typically limited. Such

a spectrum contains strong frequencies affected by loud noise, and

some weak frequencies largely unaffected by the noise. Given such

a situation, the whitening filter selectively enhances the weaker

frequency bands that are unaffected by the noise. In contrast to rea-

listic noise, synthetic Gaussian noise is full-band, so the technique

we just described does not help.

6.2 Positioning simulations
Next, we show results of our extensive simulations to explore So-

noloc’s accuracy in positioning devices systematically under many

different device layouts, transmitter selections, various levels of sig-

nal detection inaccuracy, z-offsets, etc. We begin with a description

of the assumptions underlying our simulations.

Device layouts. We simulated a large number of room shapes

and device layouts likely to arise in practice. In all cases, devices

are placed in a plane and minimally 50 cm apart from each other,

reflecting a typical private space people tend to keep.
3

Random: Pick random coordinates for the devices within either

a 20m × 20m quadratic space or a circular space with a 10m radius.

Clustered: Pick a given number (e.g. 5) of cluster centroids at a

random location within a 20m × 20m space at least 1m apart. Then,

populate each cluster with 4-30 additional devices at random loca-

tions with a distance from the centroid exponentially distributed

with a mean of 1m.

In the following regular device layouts, we perturb each device’s

nominal location by choosing a uniformly random 2D position up

to 10cm away from the nominal position to account for typical

variations in device positions relative the users’ nominal position

(e.g. in a given seat).

Concentric circles: 100 devices are laid out in two concentric

circles with radii 9 and 18m, respectively.

Cafeteria: Devices are arranged around 36 rectangular tables

with 8 devices each; table centers are arranged in a grid 3m apart.

Banquet: Devices are arranged around 10 round tables with

12 devices each. Tables are placed at random locations within a

25m × 25m room.

Small restaurant: Devices are arranged around 6 rectangular

tables 2.5 meters from each other with 6 devices each in a small

5m × 10m rectangular room.

Lecture hall: Devices are placed randomly into 20 rows of 20

seats each with a separation of 0.5m between rows and seats.

Conference room: Devices are placed on a long, rectangular

table, where seats are separated by 0.5m and the two long edges

are 2m apart.

The location of a device is considered identical with the position

of its speaker. To simulate the effect of different device orientations,

we obtain a device’s microphone location by adding to the speaker’s

3
People can stand closer in crowded circumstances like a subway train, but it is not

clear if Sonoloc would normally be used in this situation.

location a 3D vector with a random orientation and a magnitude

equivalent to the known speaker-microphone distance of the device.

To simulate the effect of signal detection errors, we perturb the

actual arrival time by a uniform random number of audio samples

in the range [−1, 15].

We evaluate the positioning accuracy in terms of the interpoint
distance error (IDE): for each pair of devices, the absolute difference

between the true distance and the distance based on the estimated

positions between the devices’ centers, in meters. We consider a

device’s center the halfway point between its speaker and microp-

hone.

Figure 5: Max IDE vs. #transmitters; 500 scenarios. Percenti-
les 5, 25, 50, 75, and 95 shown.

Overall positioning accuracy. Figure 5 shows the statistic of the
maximal IDE in each individual experiment as a function of the

number of transmitters used, over a total of 500 simulated sample

runs of the Sonoloc protocol. Each run used a different device layout

chosen in equal proportions from the types described above. The

results show that with 11 or more transmitters, the maximal IDE is

around 0.5m, and, in half of the experiments (see median), the max.

IDE is below 0.3m. This is a very strong result, considering the

conservative assumptions in our simulations (challenging device

layouts, inaccurate signal detection, etc.).

Sensitivity. We have performed extensive simulations to explore

the sensitivity of Sonoloc’s positioning accuracy to various factors.

Due to space limitations, we summarize the results here. More

details are available in [11].

Signal detection inaccuracy: As discussed above, we assume uni-

form random simulated signal detection errors in the range [−1, 15]

samples, as this choice yields the best agreement with our empirical

results. To understand the sensitivity, we also explored other error
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distributions. Assuming perfectly accurate signal detection, the

median and maximal IDE is below 0.06m and 0.33m, respectively.

Assuming large detection errors in the range [−25, 25], on the other

hand, the median and maximal IDE increases to 0.11m and 1.55m,

respectively. We conclude that Sonoloc can tolerate frequent but

modest signal detection errors well.

Z offsets: Sonoloc does 2D localization, but in practice, devices

may have vertical offsets. To explore the impact of such offsets on

Sonoloc’s positioning accuracy, we assigned each device a uniform

random z-offset. For a z-offset in the range [−0.5, 0.5]m, the median

IDE is unaffected and themaximal IDE increases to 0.87m. However,

for z-offsets in the range [−1, 1]m, the median and maximal IDEs

increase to 0.1m and 1.95m. We conclude that Sonoloc can tolerate

z-offsets of up to 0.5m with acceptable accuracy.

Ambient temperature: The speed of sound varies with air tem-

perature. Sonoloc’s calculations assume a temperature of 20
◦
C and

our simulations show that Sonoloc can tolerate temperature devia-

tions of up to 5
◦
C with modest impact on IDEs. However, larger

temperature deviations require compensation. Future smart devices

will likely have thermometers, making it possible to perform this

compensation automatically.

Device layout: Figure 5 includes results with all different device

layout types. We also ran separate simulations with the individual

device layout types described above. In general, device layouts can

be more or less challenging, depending on the extent to which they

constrain transmitter selection. The easiest layouts are the small

random layouts (15 devices), followed by a small clustering layout

(3 clusters, 15 devices), then the conference room (30 devices) and

small restaurant layout (30 devices). The most challenging are the

large random layouts (100 devices), the lecture hall (100 devices),

and the cafeteria layout (288 devices). The latter are responsible for

the largest IDEs shown in Figure 5.

Transmitter selection algorithm: As discussed in Section 3, a

good choice of transmitters is important to achieve high accuracy.

We compared different transmitter selection algorithms on many

device layouts of the types described above. To get a sense of the

best and worst possible algorithm, we also tried a large number

of random transmitter selections on a given device layout and re-

corded the best and worst of N random selections, for N = 100. In

terms of maximal IDE, Sonoloc’s transmitter selection algorithm

achieved 0.57m, while the best of 100 achieved 0.35m. The worst

of N selection has a maximal IDE of almost 11m, underscoring the

importance of transmitter selection. Also, a single random trans-

mitter selection resulted in a maximal IDE of 8.4m, which shows

that intelligent transmitter selection is important.

6.3 Prototype implementation
The Sonoloc prototype app was implemented on Android 7.1.1 and

relies on a JDK 8-based backend localization server; apps installed

on participating devices send their recorded sound samples to the

server, which analyses the signals, computes and disseminates the

devices’ position map. The app communicates with the server over

Wi-Fi, and with other nearby devices running the app over Blue-

tooth. The server performs the signal detection and localization

using MATLAB and Java code. We use MATLAB Compiler SDK

to interface with MATLAB implementations of the localization

algorithms.

We chose a server-based implementation because it allowed

us to conveniently conduct many experiments under controlled

conditions, and to experiment with different algorithms on the same

recorded data. An alternate implementation could process the audio

signals on the mobile devices, sending only the time differences to

the location server.

We use a 48 kHz audio sampling rate for both transmission and

recording. We transmit the chirp on one of the speakers (the top

speaker on the Motorola Nexus 6), and we mute the other speaker.

Sonoloc records signals on all available microphones. However,

combining the signal from multiple microphones is difficult, be-

cause the microphones are in different positions and their relative

distance to a given transmitter depends on the phone’s orientation,

which is unknown. Instead, Sonoloc dynamically chooses to use

the microphone that recorded the “best” signal.

A transmitter A needs to determine the difference in the arrival

times of its own signal and the signal from a transmitterB. It chooses
the microphone that reports the earliest arrival of B’s signal and
then uses the same microphone to detect its own signal. Thereby,

Sonoloc can take advantage of the fact that one microphone may

have an unobstructed path to B while other microphones don’t.

Using different microphones on the same device for estimating

distances to different devices adds noise to distance estimates. We

accept this extra error since using the best microphone for a gi-

ven measurement proves to be necessary in practice. Consider an

alternative where a single microphone, however chosen, is used

on a device. Unfortunately, if this microphone cannot be used for

distance measurements from even a single transmitter (which can

happen due to physical barriers or other environmental factors),

then we receive no distance estimate for this pair. One option is to

ignore this measurement. However, since transmitter localization

requires all pairwise distances, doing so would cause a single poor

measurement to result in the transmitter being discarded by all

devices!

A passive device C instead needs to determine the TDOA of the

signal from two transmittersA and B. Moreover, since it determines

its location based on the TDOA of all transmitter pairs, it needs to

use the same microphone for all transmitter pairs. Therefore, on

a given device, Sonoloc uses the microphone that detects a signal

from the largest number of the transmitters.

In contrast to transmitter localization, passive device localization

can work with any (sufficiently large) number of distance differen-

ces. Thus, it is less risky to choose a single microphone (e.g., the

one that provides the best signal quality for the majority of mea-

surements) and ignore an individual distance difference whenever

this “majority” microphone cannot be used. When a distance dif-

ference is ignored, we still lose some accuracy, but, unlike losing

a transmitter that affects all passive devices, only a single passive

device is affected. Since the associated risk is smaller, Sonoloc uses

the majority microphone approach for passive device localization.

6.4 Live experiments
We conducted live experiments with our Sonoloc prototype run-

ning on Motorola Nexus 6 phones. To enable experiments with
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large numbers of devices at reasonable cost, we also ran Sonoloc

on Raspberry Pi (RPi) single-board computers with Plantronics Au-

dio 300 microphones and Sabrent AU-MMSA USB audio adapters.

We experimented in different rooms and several buildings on our

campus, and under different noise conditions.

The noise conditions were quiet: only background noise from

HVAC and other equipment (38 dB–40 dB); speech: playback of re-

corded speech (49 dB–55 dB); andmusic: playback of recordedmusic

(50 dB–62 dB). (Measured with a PeakTech 5055 sound level meter

with A-weighting.) The phones emitted chirps at the highest possi-

ble volume setting using only one channel. During the experiments,

the phones and RPis were not moved.

Figure 6: Max IDE vs. #transmitters; various rooms; up to 15
phones. Percentiles 5, 25, 50, 75, and 95 shown.

Our first set of experiments were conducted with up to 15 phones

in a small 10-person conference room, a medium-sized 60-seat

classroom, a 100-seat classroom, and a 180-seat classroom. In each

case, we distributed phones throughout the rooms. The phones

were held above the seats and tables using smartphone holders.

There was an unobstructed line-of-sight between most but not all

pairs of phones. Pairwise distances among phones ranged from 0.7

to 2.7m in the small room, from 0.6 to 4.3m in the medium-sized

room, from 0.94 to 9.6m in the 100-seat classrooms, and 0.6 to

13.1m in the 180-seat classroom.

In each case, we conducted experiments with silence, speech,

or music replayed. Figure 6 shows the statistic of the maximal

IDE in each individual experiment as a function of the number of

transmitters used across 36 protocol runs in the different rooms, and

different background noise. The results show that Sonoloc achieves

maximal IDEs of less than 0.5m for 10 or more transmitters. The

presence of background noise did not significantly affect the IDEs

(not shown).

We also conducted experiments in a large, 180-seat lecture hall

with 15 phones and 100 RPis. In the lecture hall, the pairwise dis-

tances between devices range from 0.5 to 17.8m. Since the RPis

have no speakers, they cannot be chosen as transmitters. Therefore,

we conducted the experiment as follows. We randomly chose 115

out of the 180 seats in the large lecture hall to be “occupied”. We

ran a simulation with the exact room layout and seat occupancy

to let Sonoloc choose a set of transmitters from the 115 occupied

seats. Then we placed the phones into the seats that were chosen

as transmitters, we filled the remaining seats with RPis, and ran

the protocol as normal, except that we constrained the transmitter

selection to within the set chosen in the simulation.

Figure 7: Max IDE vs. #transmitters; 180-seat lecture hall;
115 devices. Percentiles 5, 25, 50, 75, and 95 shown.

Figure 7 shows the statistic of maximal IDEs with 115 devices

in the lecture hall, as a function of the number of transmitters

used. The results include seven protocol runs with different types

of background noise. The results show that Sonoloc can position

115 devices to a maximal IDE of 0.5m with only 15 audio chirps

under real-world conditions. Again, the presence of background

noise did not significantly affect the IDEs (not shown).

Compared to the results shown in Figure 6, where only phones

were used, Sonoloc requires 15 transmitters to achieve a maximal

IDE under 0.5m in this experiment, and themedian and average IDE

are higher. Further investigation showed that the higher IDEs are

associated with the position of the RPis and not the phones. These

devices exhibit higher signal detection errors and larger sample

clock drift, most likely due to the lower quality of the microphones

and sound cards we used with these devices. These additional errors

would not occur in practice, where all devices are assumed to be

smartphones.
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# Devices Average Std. Dev. Max.

20 3.2 0.5 3.8

100 10.4 5.7 22.9

500 48.5 13.4 68.6

Table 4: Localization runtimes in seconds.

Operational range: Sonoloc’s range is limited by background

noise, audio signal attenuation, and the properties of speakers and

microphones. In our experiments, Sonoloc worked reliably at dis-

tances of up to 18m.

6.5 Sonoloc runtime overhead
In this section, we evaluate Sonoloc’s runtime overhead. First, we

consider the processing overhead of the signal detector, which in-

cludes the execution times of the correlation and the peak detection

stages. We measured the runtime of the signal detector on 242 re-

corded audio waveforms during one of the live experiments (lecture

hall, background music). Since the detection overhead depends lar-

gely on the length of the recorded audio waveform, we normalized

the runtime to the length of the recordings.

On a Dell Precision T1700 computer with 16 GB of RAM and an

Intel(R) Xeon(R) CPU E3-1246 v3 @ 3.5GHz, the signal detector

took a minimum, median, maximum of 0.16, 0.19, and 0.3 seconds,

respectively, per second of recorded audio waveform.

The runtime of the localization algorithm depends on the num-

ber of transmitters and the number of passive devices. We gene-

rated 10 random device layouts with 20, 100, and 500 devices in

a 20m × 20m square space, and ran the algorithm on each layout

with 15 transmitters. In Table 4, we report average and maximal

runtime, as well as the standard deviation across 10 sequential runs

of the algorithm.

The focus in our prototype implementation so far has been on

accuracy and robustness. There are numerous, unexplored oppor-

tunities for optimizing the localization runtime. In addition, both

the transmitter localization and the passive device localization can

be parallelized. For instance, the localization of different passive

devices is independent and can be trivially executed in parallel.

The end-to-end delay for a complete run of the protocol is ulti-

mately limited by the following requirements: (1) For good SNR,

the chirps emitted by the initial transmitter set must be separated

in time sufficiently so that strong echoes of a transmission do not

overlap with subsequent transmissions; (2) the time between sub-

sequent transmissions must allow for signal analysis, localization,

and selection of an additional transmitter based on the latest map.

6.6 Discussion: Alternative implementations
As mentioned above, the Sonoloc prototype performs signal pro-

cessing and localization on a server for maximal control, repro-

ducibility, and the ability to experiment with different algorithms

and parameters on recorded audio waveforms. Here, we discuss

implementation options for an actual deployment.

A natural choice is to perform the audio signal processing on

the phones and upload only the inter-arrival times between the

recorded signals to a server, which orchestrates the protocol, selects

transmitters and performs localization. This architecture reduces

privacy concerns, because no recorded audio leaves a phone. It

also reduces network traffic at the expense of some additional

computation on the phones.

It is also possible to perform the protocol entirely on the phones.

Here, the initiator’s device orchestrates the protocol and performs

the initial transmitter selection. It collects the signal inter-arrival

times from the participating phones via Bluetooth, performs the

transmitter localization, and broadcasts the results. Each passive

device then localizes itself and send its coordinates to the initiator

devices, which selects an additional transmitter and iterates. Since,

in this case, the compute-intensive localization is performed on the

phones, there will be somewhat longer delays and higher energy

consumption. However, this mode could be used as a fallback in

the case where an Internet connection is unavailable.

7 CONCLUSION
We presented and evaluated Sonoloc, a mobile app and system that

can determine the relative 2D positions of hundreds of mobile de-

vices within audio range with a small, constant number of audio

chirps. The system assumes that devices have a speaker, microp-

hone, and Bluetooth or Wi-Fi capabilities, but does not require

any other local infrastructure. Our experimental evaluation, which

included detailed simulations and live experiments with over one

hundred devices in a large space, shows that, under a wide range

of conditions, Sonoloc can position devices with median/maximal

position errors of around 0.06m and 0.5m, respectively.

We designed and parameterized Sonoloc to have worst-case

accuracy of no more than 0.5m, even under challenging conditions.

In this respect, Sonoloc represents the state-of-the-art in positioning

performance without any sort of additional infrastructure, such as

radiomaps or fixed beacons, or special hardware, such as lasers or

fine-grained timestamping. We believe Sonoloc is accurate enough

to enable new classes of data dissemination, local sharing, and social

applications based on spontaneous position maps obtained using

regular devices in everyday situations.
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