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ABSTRACT
We describe a novel approach to log-based reconciliation
called IceCube. It is general and is parameterised by appli-
cation and object semantics. IceCube considers more flex-
ible orderings and is designed to ease the burden of recon-
ciliation on the application programmers. IceCube captures
the static and dynamic reconciliation constraints between all
pairs of actions, proposes schedules that satisfy the static
constraints, and validates them against the dynamic con-
straints.

Preliminary experience indicates that strong static constraints
successfully contain the potential combinatorial explosion of
the simulation stage. With weaker static constraints, the
system still finds good solutions in a reasonable time.

1. INTRODUCTION
Data replication is widely used in distributed systems for
performance, availability and isolation. It enables access to
shared information while disconnected (mobile computing)
and to work independently (groupware). However, replica-
tion of mutable shared data inevitably raises the issue of
consistency. Pessimistic consistency techniques require re-
mote synchronisation upon each modification. This is detri-
mental in mobile systems, and is undesirable in groupware.

1.1 Reconciliation of diverging replicas
Alternatively a system may allow replicas to be updated in-
dependently and in a conflicting manner, and to diverge.
Reconciliation is the activity of detecting, managing and re-
solving conflicts, in order to produce a new consistent value.

What constitutes a conflict and how to resolve it depends
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on semantics and on user intent. (One example is CVS [3],
where non-overlapping writes conflict if and only if they oc-
cur in the same line of the same text file.) Accordingly, many
existing reconcilers are restricted to a single data type, such
source files [3], a file system [1, 8] or calendars. In contrast,
IceCube aims to provide a general framework for reconcili-
cation, parameterized to observe the specific semantics of a
given shared data type, application, or user.

IceCube is log-based: the input to the reconciler is a com-
mon initial state and logs of actions that were performed on
each replica. The reconciler merges the logs in some fash-
ion, and replays the operations in the merged log against
the initial state, yielding a reconciled, common final state.
Logs provide the reconciler with the history of user actions;
thus it can infer information about the users’ intents and is
therefore potentially more powerful.

In previous systems [4, 5, 10] the logs are merged accord-
ing to some predetermined order, such as temporal order.
These systems cannot exploit cases where a reordering of
operations would avoid a conflict. IceCube attempts to find
an ordering that minimizes conflicts, while observing object
and application semantics and user intent. However, naively
exploring all possible orderings suffers from a combinatorial
explosion. Effectively pruning the space of orderings is one
of the key design issues in IceCube.

1.2 Contributions
IceCube provides developers with a general but parameter-
isable framework for reconciliation. IceCube explicitly cap-
tures constraints between actions. A central feature is the
distinction between static and dynamic constraints.1 Ice-
Cube exploits static constraints in order to reduce the search
space. A scheduling stage produces schedules that satisfy
the static constraints. These schedules are then verified in
a simulation stage, where actions are executed against a
shadow copy of the state, to check for dynamic conflicts. Fi-
nally, a selection stage chooses among those schedules that
did not exhibit dynamic conflicts.

1Informally, a static constraint does not depend on the state
of shared objects, whereas a dynamic constraint cannot be
detected statically, i.e., without attempting to execute the
actions.



Developers can influence the outcome of reconciliation, ei-
ther by providing local semantic information (in the form
of pre- and post-conditions and the order method), or using
local and global policy hooks.

This paper focuses on our approach to reconciliation at a
single site, and we ignore the distributed aspects of the sys-
tem.

The paper proceeds as follows. Section 2 presents the main
concepts of IceCube and the system overview. Section 3 de-
tails the reconciliation process. We report on experiments
with a collaborative jigsaw application in Section 4. We
compare IceCube with related work in Section 5 before con-
cluding.

2. ICECUBE OVERVIEW
One of the main powers of IceCube is the ability to use some
predetermined order for the updated. This distinguishes
IceCube from several other distributed systems. In order to
demonstrate why this flexibility is important, let us consider
two motivating examples.

As the first motivating example, consider two users A and B
who collaboratively administer a computer system through
two shared objects: the operating system, initially at Ver-
sion 4, and the expense budget, initially containing £1000.
User A upgrades the operating system, which automatically
upgrades all installed drivers; realises that the new OS needs
a new tape drive; and obtains a budget increase to cover the
cost. User B buys and installs a printer and its driver within
Version 4 of the operating system.

User A User B
A1 Upgrade OS and drivers

from v4 to v5.
B1 Buy printer, cost £400.

A2 Buy tape drive, £800. B2 Install printer driver, OS
v4.

A3 Obtain £1500 budget in-
crease.

Many collaborative tasks such as this one combine several
applications and data types, which motivates a general-purpose
system. However the system must take into account the se-
mantics of objects; for instance the budget may not go neg-
ative. It is obvious that state-based reconciliation will not
work with this example. Even a log-based system will fail if
it tries to combine the logs in a pre-established order. For
instance running log A before log B will fail because action
B2 will find the OS in the wrong version. Running B before
A will fail because the budget goes negative. Interleaving log
A and B fails similarly. Instead the system should recognise
both dependencies across logs (B2 must run before A1) and
independencies inside a log (A3 may run before A1 and A2).
Our IceCube implementation proposes solution A3, B1, B2,
A1, A2, and recognises that other solutions (for instance B1,
B2, A3, A2, A1) are statically equivalent and do not need
to be evaluated.

As a second motivating example, consider a calendar appli-
cation, with users A, B and C. As of Friday evening, A has
no appointments on Monday morning, B has two free slots

at 9:00 and 10:00, and C has appointments that fill all Mon-
day morning. During the weekend the three users attempt
to make appointments in their off-line calendars, such that
A requests a one-hour appointment with B for as close to
9:00 as possible on Monday morning (appAB), B requests a
one-hour appointment with C for as close to 9:00 as possi-
ble on Monday morning (appBC), and User C cancels their
appointment at 9:00 on Monday morning (freeC).

The order in which these updates are applied is important.
Assuming the users arrive at work at 8:55 Monday, there
is only one ordering in which they can all be successfully
applied: freeC , appBC and then appAB . Clearly, there is
a dependency between freeC and appBC , since a free slot
must be created for C if B is to make an appointment with C.
If appAB is performed before appBC then B will be booked
at 9:00, and C will be free only at 9:00, hence appBC will
fail.

In IceCube, the correct ordering will be determined, and
the updates will be applied without generating any rejected
appointments. However, in general the problem is that the
number of potential orderings can be very large, and there-
fore it is essential to capture static conflicts that reduce the
size of the search space.

2.1 System model
With IceCube, an application is either in the isolated ex-
ecution phase or in the reconciliation phase. During iso-
lated execution, a site executes its applications against a lo-
cal replica of the shared objects, called the object universe.
This brings the local object universe from some initial state
to some tentative final state. Actions are recorded in a local
log.

A log is an ordered set of actions. Although an isolated
log is tentative, it has been successfully performed against
the local object universe. Furthermore it satisfies some user
intent, as well as correctness invariants. In that sense, an
action log is correct. On the other hand, these constraints
generally only impose a partial order on the actions in the
log. In other words, some of the actions in the log can be
reordered without violating correctness.

During the reconciliation phase, the logs of two or more
replicas are merged to bring the replicas to a consistent
state. In IceCube, reconciliation proceeds in three stages:

• When combining two logs, the scheduling stage consid-
ers all possible combinations of their actions, to gen-
erate replay schedules.2 A schedule is a sequence of
actions that satisfies the static constraints and is pro-
posed to the next stage.

• The simulation stage then plays schedules against scratch
replicas of the shared objects. A schedule that does not
satisfy a dynamic constraint is aborted.

• The selection stage ranks and chooses among outcomes
from the simulation.

2Actions are assumed deterministic. Replaying a log against
the initial state results in the same final state.



Figure 1 depicts the architecture of the IceCube framework.
To simplify exposition we present the stages as if they exe-
cute sequentially. In fact they run in a pipeline with various
feedback loops, in order to provide better interactivity and
faster response.

2.2 Actions
An action is the basic unit recorded in the log. We think of
an action as an object composed of four parts:

• A target, identifying the shared object(s) that this ac-
tion accesses.

• A precondition, a method with no side effects that re-
turns a boolean.3 If true, the operation proceeds, oth-
erwise execution fails. A precondition is a dynamic
constraint, often used to check that the state of the
object universe at simulation time is compatible with
the one observed during isolated execution (similarly
to, but more flexibly than, a database lock).

• An operation, a method that may have side effects on
the object universe. It returns a boolean to indicate
post-condition success or failure, another dynamic con-
straint.

• Any amount of private data, collectively called a tag.
The tag stores all the information about this action
that will be used to evaluate static constraints involv-
ing this action. A tag often records the type of opera-
tion and its parameters.

Codes of the precondition and operation methods are opaque
to IceCube. The tag is also opaque but will be accessed by
the order method described later (in Section 2.4).

2.3 Constraints
Reconciliation should combine the initial logs in some way to
produce a new log, which can be replayed to bring the object
universe from its last common state to a new common state.
Ideally, the reconciled log would contain all actions and sat-
isfy object invariants and user intents. Instead of combining
logs in some predetermined order, IceCube allows the appli-
cation programmer to expose constraints between actions,
and explores orderings that satisfy these constraints.

IceCube distinguishes between static and dynamic constraints.
A static constraint can be evaluated without reference to
the state of the object universe, i.e., is intrinsic to the na-
ture and/or the tags of the two actions being compared.
Static constraints restrict the search space of schedules in
the scheduling stage. A dynamic constraint is checked both
during the isolated execution stage and the simulation stage.
It may refer to the current state of the object universe. A
dynamic constraint is the return value either of the precon-
dition or of the operation method (i.e., a post-condition) of
an action; if either is false, execution is aborted.

A static constraint restricts a priori the possible orderings
between two actions. The constraint relation between two

3In object-oriented programming terms, a method is a pro-
cedure in an object’s interface.

b
a write read

write maybe unsafe
read safe safe

Figure 2: Read-write integer order (a, b), across logs

b
a increment decrement
increment safe safe
decrement maybe safe

Figure 3: Counter integer order (a, b), across logs

arbitrary actions a and b has one of the values safe, maybe
or unsafe, meaning a schedule containing a before b is re-
spectively allowed, possible (modulo dynamic conflicts), or
disallowed. In particular, if both constraint (a, b) = safe
and constraint (b, a) = safe then a and b commute, and the
scheduler is free to pick some arbitrary order. If two or more
actions forms a cycle of unsafe constraints, they conflict stat-
ically, i.e., they can never all appear in the same schedule.
In particular two mutually unsafe actions conflict with each
other.

The scheduler compares every pair of actions, both across
logs and within each log. The scheduler builds the static
constraint relation from several sources: (i) the order of the
logs, (ii) the identities of the target objects, and (iii) the
order method (defined in the next section). If the actions’
targets differ, they are assumed independent and commuta-
tive. If the actions come from different logs, IceCube con-
strains them according to the return value of each common
target’s order method. If both actions are from the same log,
the order in which they appear in the log is safe (to reflect
the end user’s intent); the reverse order is constrained by
order.4 In summary:

constraint(a,b) =

 safe if a.target 6= b.target
safe if a appears before b in the same log
a.target.order(a,b) otherwise

2.4 The “order” method
For some object x, method x.order(a,b) compares two actions
a and b that have x as a common target, returning safe,
maybe or unsafe to signify that according to the semantics
of x, ordering action a before b in a reconciled schedule is
respectively allowed, possible (modulo dynamic conflicts), or
disallowed. This provides the bridge between semantics and
static constraints. Only local knowledge is needed, viz., a
specification of the interactions between two given actions at
object x. Accordingly, writing an order method is a relatively
intuitive task.

Let us proceed by example. If some action u uses object
x and action d deletes x, then u must appear before d.
Accordingly we expect that for any shared object type T,
T.order (u, d) = safe and T.order (d, u) = unsafe.

4When an action targets multiple objects, the system calls
each of their order in turn and returns the most constraining
value.
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Figure 4: Read-write integer order (a, b), within log
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increment safe safe
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Figure 5: Counter integer order (a, b), within log

Consider now a shared integer variable R with the usual
read-write semantics. When considering actions from differ-
ent logs (i.e., independent work), the order values of Figure 2
avoid losing writes, but allow a read to be ordered before an
unrelated write.

An integer representing a bank account or a budget has a
different semantics: it may not become negative, and its
methods are increment and decrement rather than read and
write. The order method of Figure 3 orders increments be-
fore decrements; increments commute with one another, and
decrements commute with one another subject to the dy-
namic constraint that the budget not become negative.

The result of the order method also depends on whether ac-
tions come from the same log or different logs. For instance,
multiple reads of the same variable may be reordered within
a log if they are not separated by a write to the variable;
similarly, multiple writes to the same variable if they are not
separated by a read of the variable. However, it is not safe
to reorder a read with respect to a write of the same log,
because that would change the value returned.

Figures 4 and 5 present the result of order for actions of the
same log. Recall that the order provided by a log is safe
by default; an in-log order method answers the following
question: “given that the log contains action b before a, is
it safe to swap them and execute a before b?”

An ordering is classified as safe (resp. unsafe) either because
it is provably safe (resp. unsafe), or because application se-
mantics make it desirable (resp. undesirable). Consider for

instance two isolated users sharing files; one writes a file,
while the other deletes that same file’s parent directory. For-
mally it is safe to write then delete (the write does not influ-
ence the outcome of the delete), but not to delete then write
(the write will fail). However the former ordering causes the
first user’s work to be lost. To avoid this, and contrary
to mathematical intuition, the file system’s order method
marks the order write before delete as unsafe, and delete be-
fore write as maybe. This will trigger a dynamic failure and
the user will be notified.

An order method can also support application-specific poli-
cies, as we will see in Section 4.

3. CONTROLLING THE RECONCILIATION
ALGORITHMS

A key objective of the application programmer is to limit
the space of possible schedules, in order to keep the simu-
lation tractable. This is accomplished through static con-
straints, and through application-specific policies to dynam-
ically truncate redundant portions of the search space. This
section describes the algorithms used in the scheduling and
simulation stages, and shows how the application program-
mer can control them.

3.1 Inputs to the scheduling and simulation
stage

The inputs to scheduling and simulation consist of a set of
actions A, relations D (dependence) and I (independence)
on A, a starting state Ss, and a parameter H.

A is the set of actions to be reconciled. The dependence
relation D is defined as follows. For actions a, b ∈ A, if aDb
then action a must appear before (not necessarily immedi-
ately before) action b in any schedule that contains both a
and b. D is reflexive and transitive.

The independence relation I is defined as follows. For ac-
tions a, b ∈ A, if aIb then the order a followed immediately
by b is known (or highly likely) not to create precondition or
execution failures in a schedule. I is not necessarily reflexive
or transitive.

I and D are both empty by default. The constraint relation
described in Section 2.3 maps to I and D as follows:



constraint(a, b) I D
safe aIb -

maybe - -
unsafe - bDa

The parameter H controls how the I relation affects the
scheduling of actions for the simulation and allows applica-
tion programmers to guide the scheduler into exploring those
portions of the space of allowed sequences (according to the
D relation) that are most likely to produce good solutions.

3.2 Dependence cycle analysis
Relation D may contain cycles, i.e. a set of actions Cyc =
c1, c2, ..., cn, such that c1Dc2, c2Dc3, ..., cnDc1. A schedule
cannot both satisfy D and contain all actions of a cycle. We
define a cutset S to be a subset of A, such that the removal
of the actions in S and the associated edges from D leaves
no cycles in D. A proper cutset S is a cutset such that no
proper subset of S is also a cutset.

The first step of the scheduler is to detect cycles in D and
to generate all proper cutsets. The application then accepts
one or more cutsets. For each one, the system then generates
and simulates sequences, as described in the next section.

3.3 Scheduling
Now, we define how the D and I relations, and the param-
eter H, affect the scheduling of actions.

Consider an ordered prefix of already chosen actions P =
a1, a2, ..., an. S is the set of actions that can extend P by
one action, according to D. Recall that if both a and b
appear in a schedule, and aDb, then a must appear before
b. Accordingly, an action b may be in S iff, either it does
not depend by D on any other action, or that other action
is already in P . Formally: ∀b ∈ S, aDb⇒ a ∈ P .

The scheduling of the next action to follow P then depends
on the value of parameter H, which controls which heuristic
is used to limit the size of the search space. Informally,
when H = All, the scheduler generates all sequences that
are consistent with the partial order defined by D. When
H = Safe, the scheduler generates sequences that use only
safe orderings when choosing the next action to follow a
given prefix, whenever such safe orderings exist. When H =
Strict, the scheduler generates sequences that use only one of
potentially multiple possible safe orderings, when choosing
the next action to follow a given prefix.

A formal definition of H follows. Let C be a subset of S,
such that ∀c ∈ C, anIc. That is, actions in C are known or
highly likely not to cause a precondition or execution failure
when immediately following P . Lastly, let B be a subset of
S, such that ∀b ∈ B,∃c ∈ C, cIb.

H = All: The scheduler tries all actions in S as immediate
successors to P . That is, I is ignored.

H = Safe ∧ C 6= ∅: The scheduler only tries actions in C as
immediate successors to P . That is, if “safe” next
actions exist, only those actions are tried.

H = Safe ∧ C = ∅: The scheduler tries all actions in S as
immediate successors to P .

H = Strict ∧ C 6= ∅: The scheduler picks one action in C ar-
bitrarily and tries only this action as a successor to P .

H = Strict ∧ C = ∅: The scheduler only tries actions in S−
B as immediate successors to P . This choice maxi-
mizes opportunities for the use of safe orderings when
choosing subsequent actions.

3.4 Simulation
Simulation is interleaved with scheduling. The scheduler
and simulator recursively explore all schedules that are con-
sistent with D and I, as described in the previous section.

A simulation step has the following inputs: (i) a prefix of
already chosen and executed actions, (ii) the current state
of the object universe (resulting from execution of the pre-
fix from initial state Ss), and (iii) the next action to be
simulated.

The action’s precondition is evaluated within the current
state. If true, the action is executed on a shadow copy of
the state. If execution succeeds (i.e., there were no runtime
errors and the postcondition is true), then the new action is
appended to the current prefix. The resulting state becomes
the input state for a recursive simulation of all sequences
starting with the current prefix.

If the precondition fails, the application is notified and this
branch of simulations aborts. If the execution fails, the ap-
plication is notified, the shadow copy of the state is discarded
and the current branch aborts.

3.5 Application policy hooks
For IceCube to be flexible and generic, application specific
policies can be applied in various forms during the schedul-
ing and simulation stage, as described in this section. First
of all, applications may define an order function that en-
forces a particular heuristic. For example, keeping the log
ordering for a given type of action as we’ll see in Section 4.

Second, the application can influence the selection of cutsets.
This can be used, for instance, to prioritise an action by not
allowing it to be excluded from the reconciled log. For a
given cutset, the application controls the order in which the
schedules are explored.

During sequence generation and scheduling, the application
can apply policies in several ways. Based on an intermediate
state, the application may decide to abort the simulation
of a prefix that is deemed not sufficiently promising, or it
may inject additional static dependencies, conditional on the
current prefix. If a precondition or execution failure occurs,
the application is provided with the prefix and state causing
the failure. The application may analyse the state and derive
additional information about the causes of the failure.

Finally, the application is called whenever a complete sched-
ule that include all actions in A minus the cutset is found.
The application selects among multiple successful outcomes
e.g. using an application-specific cost function.



4. APPLICATION EXPERIENCE: COLLAB-
ORATIVE JIGSAW

This section reports on our experience with a multi-user
jigsaw puzzle.5 This application (Figure 6) was chosen as
representative of a collaborative workload.
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7-Remove(B)
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Available
Pieces

Machine A Machine  B

Figure 6: Two users’ view of Jigsaw

4.1 Application description and semantics
A game state, Jigsaw, is composed a fixed set of pieces, some
on the board, the others available. A state is correct if every
piece on the board so far matches its correct position in the
final picture. Every participant starts with an empty board.

A completed board contains n×m pieces P0...Pn×m−1. Each
piece has a square shape with 4 edges: bottom, top, left and
right. Once the board has been initialised with a single
insert, a participant plays in isolation, executing a series of
join and remove actions:

join(Pi, ei, Pj , ej)
Target : Pi, Pj
Precondition: (i) The board is not empty, and (ii) ei-
ther Pi or Pj is available (but not both), and (iii) edge
ei of Pi and edge ej of Pj are not already taken.
Operation: Move the available piece onto the board,
join edges ei and ej of pieces Pi and Pj .
Tag : records operation type and parameters: join;
Pi, ei;Pj , ej .

remove (Pi)
Target : Pi
Precondition: Pi is on the board.
Operation: Moves Pi from the board, make it avail-
able.
Tag : remove; Pi.

4.2 Experiments
We considered four different cases, varying the nature of
the static constraints. In the first case we used “seman-
tic” constraints, i.e., an order method designed to reflect the
semantics of the objects involved (similarly to Section 2.4).
For reasons that will become apparent, the three other cases
use “application policy” constraints that do not reflect the
semantics directly but are designed to orient the simulation
towards promising schedules.

5A game where players are presented with pieces of a picture
and reconstitute the whole picture.

join (Pi, ei, Pj , ej) remove (Pf )
join
(Pk, ek,
Pl, el)

maybe if physically
possible; unsafe oth-
erwise

maybe

remove
(Pm)

unsafe if m = i or
m = j; maybe other-
wise

maybe if m 6= f ;
unsafe otherwise

Figure 7: Jigsaw game order: same log, semantic
constraints

join (Pi, ei, Pj , ej) remove (Pf )
join
(Pk, ek,
Pl, el)

maybe if physically
possible; unsafe oth-
erwise

unsafe if k = f or l =
f ; maybe otherwise

remove
(Pm)

unsafe if m = i or
m = j; maybe other-
wise

maybe if m 6= f ;
unsafe otherwise

Figure 8: Jigsaw game order: across logs, semantic
constraints

Case 1: The semantic constraints represent the rules of the
game, and laws of physics such as “two different pieces
can’t join the same edge of the same other piece”. The
corresponding order method is given in Figures 7 and 8.

Case 2 uses a policy constraint that preserves each player’s
log order. Thus: for two actions a and b, order(b, a)=
unsafe if a precedes b in the same log.

Case 3 keeps the log ordering for join actions only. This
policy weakens the previous one, allowing removes to
be scheduled at any place. For two actions a and b,
order(b, a)= unsafe if a precedes b in the same log, and
a and b are joins.

Case 4 applies the preference order aIb between join ac-
tions a and b having one piece in common. This policy
favours uninterrupted strings of adjacent joins.

Within each case, several user scenarios are available. In
scenario U1 a participant joins correct pieces, left to right,
row by row downwards, starting from square 0. U2 is sym-
metric to U1: right to left and upwards, starting from the
last square. In scenario U3 a participant executes a random
sequence of correct and incorrect joins and removes (strongly
biased towards correct moves) starting from square 0. We
experimented two variants: (i) one user plays U1 and the
other U2, (ii) one user plays U1 and the other U3.

Furthermore we varied the size of the board (up to 10 ×
10) and the number of actions in each scenario (up to the
maximum number of pieces).

Finally we varied the heuristics parameter H.

For space reasons, we provide only a limited number of rep-
resentative measurements here.

4.3 Observations
We compared the reconciliation results according to differ-
ent criteria: (i) the number of actions in the schedule, (ii)
the number of pieces in the reconciled state, and (iii) the
number of correct pieces.



Case 1 is based on the semantic constraints. With a board
size of 4 × 4, reconciliation and simulation of a 20-actions
game produces the best solution with respect to all the com-
parison criteria.

In this example, semantic constraints ensure immediate con-
vergence. This is the preferred approach when logs are
“clean,” i.e., contain no redundant actions. If not spuri-
ous conflicts appear; consider for instance the case where
one player adds then removes some piece, while another user
concurrently inserts the same piece: this is flagged as a static
conflict, even though the piece is dynamically available. Im-
posing a clean log either imposes unnatural restrictions on
the interactive user, who is not allowed to change his mind,
or assumes a mechanism to clean the log after the fact.

Cases 2 to 4 Because of the questions around semantic con-
straints, we tried weaker static constraints. We observe that,
in the absence of any static constraints, simulation runs into
combinatorial explosion and does not terminate in a reason-
able time. Therefore the following experiments explored the
application policy constraints, as described in Section 4.2.
They are found to partially solve the problem.

Consider for instance a game where the first player puts 7
pieces in scenario U1, and the second puts down 12 pieces
in scenario U2, on the 4× 4 board.

For Case 2, when H = Strict, reconciliation provides two
solutions, which are equivalent to log 1 and log 2 alone, re-
spectively. When H = Safe the result is the same; Cases 3
and 4 also give the same result, independently of the value of
H. For Case 2, when H = All the reconciler finds the opti-
mal solution, i.e., where all 16 pieces are correctly placed. In
this case, the simulator finds the optimal solution after two
sequences, in 0,11 s, after which it continues to run through
all possible 38,102 schedules. This would be appropriate if
the user has immediate interactive feedback.

In a game where the second player follows scenario U3, we
observe in Cases 3 and 4 occasional reorderings that provide
better solutions than in Case 2 (which disallows reorder-
ings).

Policy constraints do not always ensure convergence. As the
size of the input logs increases, the stronger policies tend
to over-constrain the system and no solution is found; the
weaker policies do not terminate within the (arbitrary) limit
of 100,000 simulations.

Finally we measure the overhead of static constraints. In the
absence of static constraints, a simulation of 10,000 sched-
ules is 0.781s. In Case 2 the same number of schedules is
simulated in 2.294s, three times longer. Simulation times
are proportional to the number of simulated schedules. For
instance 100,000 simulations without static constraints ter-
minate in in 7.7s.

4.4 Discussion
The experiments confirm that strong static constraints are
necessary to limit combinatorial explosion in the simulation
stage, but the results are very sensitive to the choice of con-
straints. Both semantic constraints and policy constraints

were considered.

Semantic constraints are desirable but impose “clean” logs.
If more than one action in the same log updates the same
object, spurious conflicts may occur. For instance, consider
some action A that semantically conflicts with B. The in-
teractive user will expect that cancelling out A with some
compensating action Ã will remove the conflict. On the
contrary, the A− B and the Ã− B pairs both flag a static
conflict.

If the application is not going to impose unreasonable con-
straints on the interactive user, one possible solution is log
cleaning [2, 4], i.e., to combine several actions from a same
log targetting a same object into a single one. For instance
in the jigsaw game, the sequence join (P1, top, P2, bottom),
remove (P2), join (P1, top, P2, bottom) would be reduced
to join (P1, top, P2, bottom).

5. RELATED WORK
Isolated execution is related to optimistic concurrency con-
trol [9], which allows concurrent transactions to access shared
data, checking for dependencies only when transactions com-
mit. In particular Herlihy [7] defines precisely what it means
for a schedule to be correct in the context of a semantic con-
currency relation similar to our order. In contrast, the focus
of this paper is reconciliation, i.e., finding alternatives when
a schedule fails.

The work of Phatak and Badrinath [11] presents similarities
with IceCube although our ideas were developed indepen-
dently. They present an incremental algorithm, based on
optimistic concurrency control in a multi-version database,
for incorporating disconnected transactions into a schedule.
It inserts each such transaction into the schedule at an op-
timal position, such that the combined schedule respects a
weakened snapshot isolation condition. One key difference is
that their preconditions are based purely on read-sets and
write-sets, whereas in IceCube preconditions take into ac-
count data semantics. Another is that they assume trans-
actions are independent, whereas IceCube supports depen-
dencies between actions. Finally, Phatak and Badrinath’s
algorithm lacks a scheduling phase, which we found essen-
tial to fight combinatorial explosion. It is not clear whether
their algorithm has been implemented.

Recent work by Ramsey and Csirmaz [12] proposes an alge-
braic approach to file synchronisation, a restricted instance
of the general reconciliation problem. Operations on files
are carefully crafted to make them almost entirely indepen-
dent and idempotent. The only dependencies are between
an object (file or directory) and the existence of its ances-
tor directories. A log is assumed clean, i.e., it contains no
more than one operation affecting a given object. This al-
lows them to define a canonical ordering between operations
such that reconciliation has a unique, static solution: non-
commutative operations appear in their natural order, and
commutative operations are ordered arbitrarily but consis-
tently. This is a very elegant approach, but it is not clear
how it will fare in practice.

Schwarz et al. [13] describe lock compatibility tables that
capture interactions between concurrent transactions, in or-



der to increase concurrency. A compatibility table captures
static conflicts, similarly to our order method. However,
order captures not just compatibility but also ordering in-
formation. Moreover, IceCube’s maybe points to possible
conflicts to be checked at simulation time using the dynamic
preconditions. IceCube is designed to facilitate reconcilia-
tion, not to increase transaction throughput.

IceCube’s logs are modeled after Bayou [10], where a logged
action contains a precondition (called a dependency check)
and code that performs the operation. Bayou also provides
for an alternative code path called mergeproc, invoked when
the precondition fails (i.e. in case of a conflict), which is
supposed to resolve the conflict. Bayou may reorder ac-
tions several times; the committed order is consistent with
the real times at actions were accepted at their respective
“home” servers; this ordering is arbitrary from a client’s
perspective. IceCube extends these ideas, and attempts to
provide a best ordering. IceCube also captures more static
information, using the order method. IceCube would be able
to schedule actions automatically without conflict in some
cases where Bayou spuriously invokes mergeproc. Thus Ice-
Cube arguably reduces the burden on the application pro-
grammer.

Reconciliation needs to compensate for the difference be-
tween an operation performed by an isolated user in the con-
text of its local view of the shared object universe, and per-
forming the same operation in the context of the reconciled
state of the object universe, in a manner that preserves the
user’s intent. For instance, a text editing application might
designate edits by the position of the affected characters in
the text—but concurrent edits scheduled earlier by reconcil-
iation might change that numbering, or even invalidate or
obviate the need for the edit. Accordingly, arguments need
to be translated to make sense in the new context, viz.,
character numbers remapped. This translation, called Op-
erational Transformation, is surprisingly complex [14]. In
general, performing such transformations correctly requires
that the system capture and observe as much information
about the users’ intent as possible and is arguably the key
problem in reconcilation.

6. CONCLUSION
We presented IceCube, a general-purpose log-based recon-
ciliation system parameterised by object and application se-
mantics. It differs from previous work in that the ordering
of the reconciled log is computed flexibly, and that the pro-
grammer’s contribution to reconciliation is relatively simple.
Although two actions from different logs are causally inde-
pendent, IceCube discovers implicit (data and semantic) de-
pendencies and constrains schedules accordingly. Although
two actions from a same log have been executed in sequence,
IceCube discovers when they are independent and relaxies
schedules accordingly. Static constraints are crucial to con-
trolling combinatorial explosion.

We have reported on preliminary experiments, which are
promising where there are strong static constraints. Other-
wise, appropriate policies help find good-quality answers in
an acceptable amount of time.

The current status suggests several lines of future work. We

need to experiment with larger and more realistic examples,
based on real-life situations. Although the scheduling stage
and the application policies reduce the search space consid-
erably, additional techniques to further focus and narrow
the search may be necessary. In particular, we are currently
investigating the use of constraint programming methods in
IceCube [6]. Also, we envisage to use the causality informa-
tion encoded in the order method to identify schedules that
will fail identically. Finally, the action-based style of pro-
gramming is unfamiliar, but could probably be made easier
with appropriate programming language support.
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