
Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility

Antony Rowstron
Microsoft Research

St. George House, 1 Guildhall Street
Cambridge, CB2 3NH, United Kingdom.

antr@microsoft.com

Peter Druschel
Rice University

6100 Main Street, MS 132
Houston, TX 77005-1892, USA.

druschel@cs.rice.edu

ABSTRACT
This paper presents and evaluates the storage management
and caching in PAST, a large-scale peer-to-peer persistent
storage utility. PAST is based on a self-organizing, Internet-
based overlay network of storage nodes that cooperatively
route file queries, store multiple replicas of files, and cache
additional copies of popular files.

In the PAST system, storage nodes and files are each as-
signed uniformly distributed identifiers, and replicas of a file
are stored at nodes whose identifier matches most closely the
file’s identifier. This statistical assignment of files to storage
nodes approximately balances the number of files stored on
each node. However, non-uniform storage node capacities
and file sizes require more explicit storage load balancing
to permit graceful behavior under high global storage uti-
lization; likewise, non-uniform popularity of files requires
caching to minimize fetch distance and to balance the query
load.

We present and evaluate PAST, with an emphasis on its
storage management and caching system. Extensive trace-
driven experiments show that the system minimizes fetch
distance, that it balances the query load for popular files,
and that it displays graceful degradation of performance as
the global storage utilization increases beyond 95%.

1. INTRODUCTION
Peer-to-peer Internet applications have recently been pop-
ularized through file sharing applications such as Napster,
Gnutella and FreeNet [1, 2, 13]. While much of the atten-
tion has been focused on the copyright issues raised by these
particular applications, peer-to-peer systems have many in-
teresting technical aspects like decentralized control, self-
organization, adaptation and scalability. Peer-to-peer sys-
tems can be characterized as distributed systems in which
all nodes have identical capabilities and responsibilities and

all communication is symmetric.

There are currently many projects aimed at constructing
peer-to-peer applications and understanding more of the is-
sues and requirements of such applications and systems [1, 2,
8, 13, 15, 20]. We are developing PAST, an Internet-based,
peer-to-peer global storage utility, which aims to provide
strong persistence, high availability, scalability and security.

The PAST system is composed of nodes connected to the
Internet, where each node is capable of initiating and rout-
ing client requests to insert or retrieve files. Optionally,
nodes may also contribute storage to the system. The PAST
nodes form a self-organizing overlay network. Inserted files
are replicated across multiple nodes for availability. With
high probability, the set of nodes over which a file is repli-
cated is diverse in terms of geographic location, ownership,
administration, network connectivity, rule of law, etc.

A storage utility like PAST is attractive for several reasons.
First, it exploits the multitude and diversity (in geography,
ownership, administration, jurisdiction, etc.) of nodes in the
Internet to achieve strong persistence and high availability.
This obviates the need for physical transport of storage me-
dia to protect backup and archival data; likewise, it obviates
the need for explicit mirroring to ensure high availability
and throughput for shared data. A global storage utility
also facilitates the sharing of storage and bandwidth, thus
permitting a group of nodes to jointly store or publish con-
tent that would exceed the capacity or bandwidth of any
individual node.

While PAST offers persistent storage services, its semantics
differ from that of a conventional filesystem. Files stored in
PAST are associated with a quasi-unique fileId that is gener-
ated at the time of the file’s insertion into PAST. Therefore,
files stored in PAST are immutable since a file cannot be
inserted multiple times with the same fileId. Files can be
shared at the owner’s discretion by distributing the fileId
(potentially anonymously) and, if necessary, a decryption
key.

An efficient routing scheme called Pastry [27] ensures that
client requests are reliably routed to the appropriate nodes.
Client requests to retrieve a file are routed, with high prob-
ability, to a node that is “close in the network” to the client



that issued the request1, among the live nodes that store
the requested file. The number of PAST nodes traversed, as
well as the number of messages exchanged while routing a
client request, is logarithmic in the total number of PAST
nodes in the system under normal operation.

To retrieve a file in PAST, a client must know its fileId
and, if necessary, its decryption key. PAST does not pro-
vide facilities for searching, directory lookup, or key distri-
bution. Layering such facilities on top of Pastry, the same
peer-to-peer substrate that PAST is based on, is the sub-
ject of current research. Finally, PAST is intended as an
archival storage and content distribution utility and not as
a general-purpose filesystem. It is assumed that users inter-
act primarily with a conventional filesystem, which acts as
a local cache for files stored in PAST.

In this paper, we focus on the storage management and
caching in PAST. In Section 2, an overview of the PAST
architecture is given and we briefly describe Pastry, PAST’s
content location and routing scheme. Section 3 describes
the storage management and Section 4 the mechanisms and
policies for caching in PAST. Results of an experimental
evaluation of PAST are presented in Section 5. Related
work is discussed in Section 6 and we conclude in Section 7.

2. PAST OVERVIEW
Any host connected to the Internet can act as a PAST node
by installing the appropriate software. The collection of
PAST nodes forms an overlay network in the Internet. Min-
imally, a PAST node acts as an access point for a user. Op-
tionally, a PAST node may also contribute storage to PAST
and participate in the routing of requests within the PAST
network.

The PAST system exports the following set of operations to
its clients:

• fileId = Insert(name, owner-credentials, k, file)

stores a file at a user-specified number k of diverse nodes
within the PAST network. The operation produces a 160-bit
identifier (fileId) that can be used subsequently to identify
the file. The fileId is computed as the secure hash (SHA-1)
of the file’s name, the owner’s public key, and a randomly
chosen salt. This choice ensures (with very high probabil-
ity) that fileIds are unique. Rare fileId collisions are detected
and lead to the rejection of the later inserted file.

• file = Lookup(fileId) reliably retrieves a copy of the
file identified by fileId if it exists in PAST and if one of the
k nodes that store the file is reachable via the Internet. The
file is normally retrieved from a live node “near” the PAST
node issuing the lookup (in terms of the proximity metric),
among the nodes that store the file.

• Reclaim(fileId, owner-credentials) reclaims the stor-
age occupied by the k copies of the file identified by fileId.
Once the operation completes, PAST no longer guarantees
that a lookup operation will produce the file. Unlike a delete
operation, reclaim does not guarantee that the file is no

1Network proximity is based on a scalar metric such as the
number of IP routing hops, bandwidth, geographic distance,
etc.

longer available after it was reclaimed. These weaker seman-
tics avoid complex agreement protocols among the nodes
storing the file.

Each PAST node is assigned a 128-bit node identifier, called
a nodeId. The nodeId indicates a node’s position in a circu-
lar namespace, which ranges from 0 to 2128 −1. The nodeId
assignment is quasi-random (e.g., SHA-1 hash of the node’s
public key) and cannot be biased by a malicious node op-
erator. This process ensures that there is no correlation
between the value of the nodeId and the node’s geographic
location, network connectivity, ownership, or jurisdiction. It
follows then that a set of nodes with adjacent nodeIds are
highly likely to be diverse in all these aspects. Such a set
is therefore an excellent candidate for storing the replicas of
a file, as the nodes in the set are unlikely to conspire or be
subject to correlated failures or threats.

During an insert operation, PAST stores the file on the k
PAST nodes whose nodeIds are numerically closest to the
128 most significant bits (msb) of the file’s fileId. This in-
variant is maintained over the lifetime of a file, despite the
arrival, failure and recovery of PAST nodes. For the rea-
sons outlined above, with high probability, the k replicas
are stored on a diverse set of PAST nodes.

Another invariant is that both the set of existing nodeId
values as well as the set of existing fileId values are uni-
formly distributed in their respective domains. This prop-
erty follows from the quasi-random assignment of nodeIds
and fileIds; it ensures that the number of files stored by
each PAST node is roughly balanced. This fact provides
only an initial approximation to balancing the storage uti-
lization among the PAST nodes. Since files differ in size and
PAST nodes differ in the amount of storage they provide,
additional, explicit means of load balancing are required;
they are described in Section 3.

The number k is chosen to meet the availability needs of
a file, relative to the expected failure rates of individual
nodes. However, popular files may need to be maintained
at many more nodes in order to meet and balance the query
load for the file and to minimize latency and network traffic.
PAST adapts to query load by caching additional copies
of files in the unused portions of PAST node’s local disks.
Unlike the k primary replicas of a file, such cached copies
may be discarded by a node at any time. Caching in PAST
is discussed in Section 4.

PAST is layered on top of Pastry, a peer-to-peer request
routing and content location scheme. Pastry is fully de-
scribed and evaluated in [27]. To make this paper self-
contained, we give a brief overview of Pastry.

2.1 Pastry
Pastry is a peer-to-peer routing substrate that is efficient,
scalable, fault resilient and self-organizing. Given a fileId,
Pastry routes an associated message towards the node whose
nodeId is numerically closest to the 128 msbs of the fileId,
among all live nodes. Given the PAST invariant that a file is
stored on the k nodes whose nodeIds are numerically closest
to the 128 msbs of the fileId, it follows that a file can be
located unless all k nodes have failed simultaneously (i.e.,



within a recovery period).

Assuming a PAST network consisting of N nodes, Pastry
can route to the numerically closest node for a given fileId
in less than �log2bN� steps under normal operation (b is a
configuration parameter with typical value 4). Despite con-
current node failures, eventual delivery is guaranteed unless
�l/2� nodes with adjacent nodeIds fail simultaneously (l is
a configuration parameter with typical value 32).

The tables required in each PAST node have only (2b − 1) ∗
�log2bN�+2l entries, where each entry maps a nodeId to the
associated node’s IP address. Moreover, after a node failure
or the arrival of a new node, the invariants can be restored by
exchanging O(log2bN) messages among the affected nodes.
In the following, we briefly sketch the Pastry routing scheme.

For the purpose of routing, nodeIds and fileIds are thought
of as a sequence of digits with base 2b. A node’s routing
table is organized into �log2bN� levels with 2b − 1 entries
each. The 2b − 1 entries at level n of the routing table
each refer to a node whose nodeId shares the present node’s
nodeId in the first n digits, but whose n + 1th digit has
one of the 2b − 1 possible values other than the n + 1th
digit in the present node’s id. Each entry in the routing
table points to one of potentially many nodes whose nodeId
have the appropriate prefix; in practice, a node is chosen
that is close to the present node, according to the proximity
metric. If no node is known with a suitable nodeId, then the
routing table entry is left empty. The uniform distribution
of nodeIds ensures an even population of the nodeId space;
thus, only �log2bN� levels are populated in the routing table.

In addition to the routing table, each node maintains IP ad-
dresses for the nodes in its leaf set and its neighborhood set.
The leaf set is the set of nodes with the l/2 numerically clos-
est larger nodeIds, and the l/2 nodes with numerically clos-
est smaller nodeIds, relative to the present node’s nodeId.
The neighborhood set is a set of l nodes that are near the
present node, according to the proximity metric. It is not
used in routing, but is useful during node addition/recovery.
Figure 1 depicts the state of a PAST node with the nodeId
10233102 (base 4), in a hypothetical system that uses 16 bit
nodeIds and values of b = 2 and l = 8.

In each routing step, a node normally forwards the message
to a node whose nodeId shares with the fileId a prefix that
is at least one digit (or b bits) longer than the prefix that
the fileId shares with the present node’s id. If no such node
is known, the message is forwarded to a node whose nodeId
shares a prefix with the fileId as long as the current node, but
is numerically closer to the fileId than the present node’s id.
Such a node must be in the leaf set unless the message has
already arrived at the node with numerically closest nodeId.
And, unless �l/2� adjacent nodes in the leaf set have failed
simultaneously, at least one of those nodes must be live.

Locality Next, we briefly discuss Pastry’s properties with
respect to the network proximity metric. Recall that the
entries in the node routing tables are chosen to refer to a
nearby node, in terms of the proximity metric, with the ap-
propriate nodeId prefix. As a result, in each step a message
is routed to a “nearby” node with a longer prefix match

NodeId 10233102

-0-2212102 1 -2-2301203 -3-1203203
0 1-1-301233 1-2-230203 1-3-021022

Routing table

10-0-31203 10-1-32102 2 10-3-23302
102-0-0230 102-1-1302 102-2-2302 3
1023-0-322 1023-1-000 1023-2-121 3
10233-0-01 1 10233-2-32

0 102331-2-0
2

Neighborhood set
13021022 10200230 11301233 31301233
02212102 22301203 31203203 33213321

Leaf set
10233033 10233021 10233120 10233122
10233001 10233000 10233230 10233232

LARGERSMALLER

Figure 1: State of a hypothetical Pastry node with
nodeId 10233102, b = 2, and l = 8. All numbers
are in base 4. The top row of the routing table
represents level zero. The shaded cell at each level
of the routing table shows the corresponding digit
of the present node’s nodeId. The nodeIds in each
entry have been split to show the common prefix with
10233102 - next digit - rest of nodeId. The associated IP
addresses are not shown.

(by one digit). This local heuristic obviously cannot achieve
globally shortest routes, but simulations have shown that
the average distance traveled by a message, in terms of the
proximity metric, is only 50% higher than the corresponding
“distance” of the source and destination in the underlying
network [27].

Moreover, since Pastry repeatedly takes a locally “short”
routing step towards a node that shares a longer prefix with
the fileId, messages have a tendency to first reach a node,
among the k nodes that store the requested file, that is near
the client, according to the proximity metric. One exper-
iment shows that among 5 replicated copies of a file, Pas-
try is able to find the “nearest” copy in 76% of all lookups
and it finds one of the two “nearest” copies in 92% of all
lookups [27].

Node addition and failure A key design issue in Pastry is
how to efficiently and dynamically maintain the node state,
i.e., the routing table, leaf set and neighborhood sets, in
the presence of node failures, node recoveries, and new node
arrivals. The protocol is described and evaluated in full
detail in [27].

Briefly, an arriving node with the newly chosen nodeId X
can initialize its state by contacting a “nearby” node A (ac-
cording to the proximity metric) and asking A to route a
special message with the destination set to X. This mes-
sage is routed to the existing node Z with nodeId numer-
ically closest to X2. X then obtains the leaf set from Z,
the neighborhood set from A, and the ith row of the routing

2In the exceedingly unlikely event that X and Z are equal,
the new node must obtain a new nodeId.



table from the ith node encountered along the route from
A to Z. One can show that using this information, X can
correctly initialize its state and notify all nodes that need to
know of its arrival, thereby restoring all of Pastry’s invari-
ants.

To handle node failures, neighboring nodes in the nodeId
space (which are aware of each other by virtue of being in
each other’s leaf set) periodically exchange keep-alive mes-
sages. If a node is unresponsive for a period T , it is presumed
failed. All members of the failed node’s leaf set are then no-
tified and they update their leaf sets to restore the invariant.
Since the leaf sets of nodes with adjacent nodeIds overlap,
this update is trivial. A recovering node contacts the nodes
in its last known leaf set, obtains their current leafs sets,
updates its own leaf set and then notifies the members of
its new leaf set of its presence. Routing table entries that
refer to failed nodes are repaired lazily; the details are not
relevant to the subject of this paper [27].

Pastry, as described so far, is deterministic and thus vulner-
able to malicious or failed nodes along the route that ac-
cept messages but do not correctly forward them. Repeated
queries could thus fail each time, since they are likely to take
the same route. To overcome this problem, the routing is ac-
tually randomized. To avoid routing loops, a message must
always be forwarded to a node that shares at least as long a
prefix with, but is numerically closer to the destination node
in the namespace than the current node. The choice among
multiple such nodes is random. In practice, the probabil-
ity distribution is heavily biased towards the best choice to
ensure low average route delay. In the event of a malicious
or failed node along the path, the client may have to issue
several requests, until a route is chosen that avoids the bad
node.

A full description and evaluation of Pastry can be found
in [27]. In principle, it should be possible to layer PAST
on top of one of the other peer-to-peer routing schemes de-
scribed in the literature, such as Tapestry [31], Chord [30] or
CAN [25]. However, some of PAST’s properties with respect
to network locality and fault resilience may change in this
case, depending on the properties of the underlying routing
scheme.

2.2 PAST operations
Next, we briefly describe how PAST implements the insert,
lookup and reclaim operations.

In response to an insert request, a fileId is computed as the
SHA-1 hashcode of the file’s textual name, the client’s public
key, and a random salt. The required storage (file size times
k) is debited against the client’s storage quota, and a file
certificate is issued and signed with the owner’s private key.
The certificate contains the fileId, a SHA-1 hash of the file’s
content, the replication factor k, the salt, a creation date
and other optional file metadata.

The file certificate and the associated file are then routed
via Pastry, using the fileId as the destination. When the
message reaches the first among the k nodes closest to the
fileId, that node verifies the file certificate, recomputes the
content hashcode and compares it with the content hashcode

in the file certificate. If everything checks out, then the node
accepts responsibility for a replica of the file and forwards
the insert request to the other k − 1 nodes with nodeIds
numerically closest to the fileId.

Once all k nodes have accepted a replica, an acknowledg-
ment is passed back to the client, to which each of the k
replica storing nodes attach a store receipt. The client veri-
fies the store receipts to confirm that the requested number
of copies have been created. If something goes wrong at any
point during the insertion process, such as an illegitimate
file certificate, corrupted content, or a failure to locate suf-
ficient storage to store the k copies, an appropriate error
indication is returned to the client.

In response to a lookup request, the client node sends an
appropriate request message, using the requested fileId as
the destination. As soon as the request message reaches a
node that stores the file, that node responds with the content
and the stored file certificate; the request message is not
routed further. Due to the locality properties of the Pastry
routing scheme and the fact that file replicas are stored on
k nodes with adjacent nodeIds, a lookup is likely to find a
replica that is near the client, according to the proximity
metric.

A reclaim request proceeds analogous to an insert request.
The client’s node issues a reclaim certificate, which allows
the replica storing nodes to verify that the file’s legitimate
owner is requesting the operation. The storing nodes each
issue and return a reclaim receipt, which the client node
verifies for a credit against the user’s storage quota. More
detail about quota management can be found in [16].

2.3 Security
While the details of security in PAST are beyond the scope
of this paper, we give here a brief overview. More detail can
be found in [16] and in a forthcoming paper.

Each PAST node and each user of the system hold a smart-
card (read-only clients don’t need a card). A private/public
key pair is associated with each card. Each smartcard’s pub-
lic key is signed with the smartcard issuer’s private key for
certification purposes. The smartcards generate and verify
the various certificates and they maintain storage quotas. It
is possible to operate PAST without smartcards; however,
providing comparable security and a quota system without
smartcards complicates the system [16].

The following assumptions underly PAST’s security model:
(1) It is computationally infeasible to break the public-key
cryptosystem and the cryptographic hash function used in
PAST; (2) while clients, node operators and node software
are not trusted and attackers may control the behavior of
individual PAST nodes, it is assumed that most nodes in
the overlay network are well-behaved; and, (3) an attacker
cannot control the behavior of the smartcards.

The smartcards ensure the integrity of nodeId and fileId
assignments, thus preventing an attacker from controlling
adjacent nodes in the nodeId space, or directing file inser-
tions to a specific portion of the fileId space. Store receipts
prevent a malicious node from causing the system to create



fewer than k diverse replicas of a file without the client notic-
ing it. The file certificates allow storage nodes and clients to
verify the integrity and authenticity of stored content. File
and reclaim certificates help enforce client storage quotas.
If desired, a client can ensure file privacy by encrypting the
content before inserting the file into PAST.

The Pastry routing scheme can be randomized, thus pre-
venting a malicious node along the path from repeatedly
intercepting a request message and causing a denial of ser-
vice. All routing table entries (i.e. nodeId to IP address
mappings) are signed by the associated node and can be
verified by other nodes. Therefore, a malicious node may
at worst suppress valid entries, but it cannot forge entries.
Also, routing information in Pastry is inherently redundant
and not globally disseminated. Owing to all these factors,
Pastry is highly resilient to malicious nodes, and limits their
impact to a degradation in routing performance as long as
most nodes are well-behaved. In the worst case, widespread
corruption of nodes could cause routing failures and thus
denial of service.

In the following sections, we describe the storage manage-
ment and the caching in PAST. The primary goal of storage
management is to ensure the availability of files while bal-
ancing the storage load as the system approaches its maxi-
mal storage utilization. The goal of caching is to minimize
client access latencies, to maximize the query throughput
and to balance the query load in the system.

3. STORAGE MANAGEMENT
PAST’s storage management aims at allowing high global
storage utilization and graceful degradation as the system
approaches its maximal utilization. The aggregate size of
file replicas stored in PAST should be able to grow to a
large fraction of the aggregate storage capacity of all PAST
nodes before a large fraction of insert requests are rejected
or suffer from decreased performance. While it is difficult to
predict if systems such as PAST will be typically operated
at high levels of storage utilization, it is our contention that
any highly efficient and reliable system must remain robust
in the event of extreme operating conditions.

In line with the overall decentralized architecture of PAST,
an important design goal for the storage management is to
rely only on local coordination among nodes with nearby
nodeIds, to fully integrate storage management with file in-
sertion, and to incur only modest performance overheads
related to storage management.

The responsibilities of the storage management are to (1)
balance the remaining free storage space among nodes in
the PAST network as the system-wide storage utilization
is approaching 100%; and, (2) to maintain the invariant
that copies of each file are maintained by the k nodes with
nodeIds closest to the fileId. Goals (1) and (2) appear to be
conflicting, since requiring that a file is stored on k nodes
closest to its fileId leaves no room for any explicit load bal-
ancing. PAST resolves this conflict in two ways.

First, PAST allows a node that is not one of the k numeri-
cally closest nodes to the fileId to alternatively store the file,
if it is in the leaf set of one of those k nodes. This process is

called replica diversion and its purpose is to accommodate
differences in the storage capacity and utilization of nodes
within a leaf set. Replica diversion must be done with care,
to ensure that the file availability is not degraded.

Second, file diversion is performed when a node’s entire leaf
set is reaching capacity. Its purpose is to achieve more global
load balancing across large portions of the nodeId space. A
file is diverted to a different part of the nodeId space by
choosing a different salt in the generation of its fileId.

In the rest of this section, we discuss causes of storage im-
balance, state assumptions about per-node storage and then
present the algorithms for replica and file diversion. Finally,
we describe how the storage invariant is maintained in the
presence of new node addition, node failure and recovery.
An experimental evaluation of PAST’s storage management
follows in Section 5.

3.1 Causes of storage load imbalance
Recall that each PAST node maintains a leaf set, which
contains the l nodes with nodeIds numerically closest to the
given node (l/2 with larger and l/2 with smaller nodeIds).
Normally, the replicas of a file are stored on the k nodes that
are numerically closest to the fileId (k can be no larger than
(l/2) + 1).

Consider the case where not all of the k closest nodes can ac-
commodate a replica due to insufficient storage, but k nodes
exist within the leaf sets of the k nodes that can accommo-
date the file. Such an imbalance in the available storage
among the l + k nodes in the intersection of the k leaf sets
can arise for several reasons:

• Due to statistical variation in the assignment of nodeIds
and fileIds, the number of files assigned to each node may
differ.

• The size distribution of inserted files may have high vari-
ance and may be heavy tailed.

• The storage capacity of individual PAST nodes differs.

Replica diversion aims at balancing the remaining free stor-
age space among the nodes in each leaf set. In addition, as
the global storage utilization of a PAST system increases, file
diversion may also become necessary to balance the storage
load among different portions of the nodeId space.

3.2 Per-node storage
We assume that the storage capacities of individual PAST
nodes differ by no more than two orders of magnitude at a
given time. The following discussion provides some justifi-
cation for this assumption.

PAST nodes are likely to use the most cost effective hard-
ware available at the time of their installation. At the time
of this writing, this might be a PC with a small number
of 60GB disk drives. Given that the size of the most cost
effective disk size can be expected to double in no less than
one year, a node with a typical, low-cost configuration at
the time of its installation should remain viable for many



years, i.e., its capacity should not drop below two orders of
magnitude of the largest newly installed node.

Our assumption does not prevent the construction of sites
that provide large-scale storage. Such a site would be con-
figured as a cluster of logically separate PAST nodes with
separate nodeIds. Whether the associated hardware is cen-
tralized (large multiprocessor node with RAID storage sub-
system or cluster of PCs, each with a small number of at-
tached disks) is irrelevant, although considerations of cost
and fault resilience normally favor clusters of PCs. Even
though the multiple nodes of a site are not administratively
independent and may have correlated failures, the use of
such sites does not significantly affect the average diversity
of the nodes selected to store replicas of a given file, as long
as the number of nodes in a site is very small compared to
the total number of nodes in a PAST system.

PAST controls the distribution of per-node storage capaci-
ties by comparing the advertised storage capacity of a newly
joining node with the average storage capacity of nodes in
its leaf set. If the node is too large, it is asked to split and
join under multiple nodeIds. If a node is too small, it is
rejected. A node is free to advertise only a fraction of its
actual disk space for use by PAST. The advertised capacity
is used as the basis for the admission decision.

3.3 Replica diversion
The purpose of replica diversion is to balance the remaining
free storage space among the nodes in a leaf set. Replica
diversion is accomplished as follows.

When an insert request message first reaches a node with
a nodeId among the k numerically closest to the fileId, the
node checks to see if it can accommodate a copy of the file in
its local disk. If so, it stores the file, issues a store receipt,
and forwards the message to the other k − 1 nodes with
nodeIds closest to the fileId. (Since these nodes must exist in
the node’s leaf set, the message can be forwarded directly).
Each of these nodes in turn attempts to store a replica of
the file and returns a store receipt.

If a node A cannot accommodate a copy locally, it considers
replica diversion. For this purpose, A chooses a node B in
its leaf set that is not among the k closest and does not
already hold a diverted replica of the file. A asks B to store
a copy on its behalf, then enters an entry for the file in its
table with a pointer to B, and issues a store receipt as usual.
We say that A has diverted a copy of the file to node B.

Care must be taken to ensure that a diverted replica con-
tributes as much towards the overall availability of the file
as a locally stored replica. In particular, we must ensure
that (1) failure of node B causes the creation of a replace-
ment replica, and that (2) the failure of node A does not
render the replica stored on B inaccessible. If it did, then
every diverted replica would double the probability that all
k replicas might be inaccessible. The node failure recovery
procedure described in Section 3.5 ensures condition (1).
Condition (2) can be achieved by entering a pointer to the
replica stored on B into the file table of the node C with
the k + 1th closest nodeId to the fileId.

If node A fails then node C still maintains a pointer to the
replica stored on B, maintaining the invariant that the k
closest nodes maintain either a replica or a reference to a
distinct diverted replica. If node C fails then node A installs
a reference on the now k + 1th closest node.

Results presented in Section 5 show that replica diversion
achieves local storage space balancing and is necessary to
achieve high overall storage utilization and graceful degra-
dation as the PAST system reaches its storage capacity. The
overhead of diverting a replica is an additional entry in the
file tables of two nodes (A and C, both entries pointing to
B), two additional RPCs during insert and one additional
RPC during a lookup that reaches the diverted copy. To
minimize the impact of replica diversion on PAST’s perfor-
mance, appropriate policies must be used to avoid unneces-
sary replica diversion.

3.3.1 Policies
We next describe the policies used in PAST to control replica
diversion. There are three relevant policies, namely (1) ac-
ceptance of replicas into a node’s local store, (2) selecting a
node to store a diverted replica, and (3) deciding when to
divert a file to a different part of the nodeId space. In choos-
ing appropriate policies for replica diversion, the following
considerations are relevant.

First, it is not necessary to balance the remaining free stor-
age space among nodes as long as the utilization of all nodes
is low. Doing so would have no advantage but incur the cost
of replica diversion. Second, it is preferable to divert a large
file rather than multiple small ones. Diverting large files
not only reduces the insertion overhead of replica diversion
for a given amount of free space that needs to be balanced;
taking into account that workloads are often biased towards
lookups of small files, it can also minimize the impact of the
lookup overhead of replica diversion.

Third, a replica should always be diverted from a node whose
remaining free space is significantly below average to a node
whose free space is significantly above average; when the
free space gets uniformly low in a leaf set, it is better to
divert the file into another part of the nodeId space than
to attempt to divert replicas at the risk of spreading locally
high utilization to neighboring parts of the nodeId space.

The policy for accepting a replica by a node is based on the
metric SD/FN , where SD is the size of a file D and FN is
the remaining free storage space of a node N . In particu-
lar, a node N rejects a file D if SD/FN > t, i.e., D would
consume more than a given fraction t of N ’s remaining free
space. Nodes that are among the k numerically closest to
a fileId (primary replica stores) as well as nodes not among
the k closest (diverted replica stores) use the same criterion,
however, the former use a threshold tpri while the latter use
tdiv, where tpri > tdiv.

There are several things to note about this policy. First,
assuming that the average file size is much smaller than a
node’s average storage size, a PAST node accepts all but
oversized files as long as its utilization is low. This prop-
erty avoids unnecessary diversion while the node still has
plenty of space. Second, the policy discriminates against



large files, and decreases the size threshold above which files
get rejected as the node’s utilization increases. This bias
minimizes the number of diverted replicas and tends to di-
vert large files first, while leaving room for small files. Third,
the criterion for accepting diverted replicas is more restric-
tive than that for accepting primary replicas; this ensures
that a node leaves some of its space for primary replicas,
and that replicas are diverted to a node with significantly
more free space.

A primary store node N that rejects a replica needs to select
another node to hold the diverted replica. The policy is to
choose the node with maximal remaining free space, among
the nodes that are (a) in the leaf set of N , (b) have a nodeId
that is not also one of the k nodes closest to the fileId, and
(c) do not already hold a diverted replica of the same file.
This policy ensures that replicas are diverted to the node
with the most free space, among the eligible nodes. Note
that a selected node may reject the diverted replica based
on the above mentioned policy for accepting replicas.

Finally, the policy for diverting an entire file into another
part of the nodeId space is as follows. When one of the k
nodes with nodeIds closest to the fileId declines to store its
replica, and the node it then chooses to hold the diverted
replica also declines, then the entire file is diverted. In this
case, the nodes that have already stored a replica discard the
replica, and a negative acknowledgment message is returned
to the client node, causing a file diversion.

3.4 File diversion
The purpose of file diversion is to balance the remaining free
storage space among different portions of the nodeId space
in PAST. When a file insert operation fails because the k
nodes closest to the chosen fileId could not accommodate
the file nor divert the replicas locally within their leaf set, a
negative acknowledgment is returned to the client node. The
client node in turn generates a new fileId using a different
salt value and retries the insert operation.

A client node then repeats this process for up to three times.
If, after four attempts the insert operation still fails, the
operation is aborted and an insert failure is reported to the
application. Such a failure indicates that the system was
not able to locate the necessary space to store k copies of
the file. In such cases, an application may choose to retry
the operation with a smaller file size (e.g. by fragmenting
the file) and/or a smaller number of replicas.

3.5 Maintaining replicas
PAST maintains the invariant that k copies of each inserted
file are maintained on different nodes within a leaf set. This
is accomplished as follows.

First, recall that as part of the Pastry protocol, neighboring
nodes in the nodeId space periodically exchange keep-alive
messages. If a node is unresponsive for a period T , it is
presumed failed and Pastry triggers an adjustment of the
leaf sets in all affected nodes. Specifically, each of the l
nodes in the leaf set of the failed node removes the failed
node from its leaf set and includes instead the live node
with the next closest nodeId.

Second, when a new node joins the system or a previously
failed node gets back on-line, a similar adjustment of the
leaf set occurs in the l nodes that constitute the leaf set of
the joining node. Here, the joining node is included and
another node is dropped from each of the previous leaf sets.

As part of these adjustments, a node may become one of
the k closest nodes for certain files; the storage invariant
requires such a node to acquire a replica of each such file,
thus re-creating replicas that were previously held by the
failed node. Similarly, a node may cease to be one of the k
nodes for certain files; the invariant allows a node to discard
such copies.

Given the current ratio of disk storage versus wide-area In-
ternet bandwidth, it is time-consuming and inefficient for
a node to request replicas of all files for which it has just
become one of the k numerically closest nodes. This is par-
ticularly obvious in the case of a new node or a recovering
node whose disk contents were lost as part of the failure. To
solve this problem, the joining node may instead install a
pointer in its file table, referring to the node that has just
ceased to be one of the k numerically closest to the fileId,
and requiring that node to keep the replica. This process
is semantically identical to replica diversion, and the exist-
ing mechanisms to ensure availability are reused (see Sec-
tion 3.3). The affected files can then be gradually migrated
to the joining node as part of a background operation.

When a PAST network is growing, node additions may cre-
ate the situation where a node that holds a diverted replica
and the node that refers to that replica are no longer part of
the same leaf set. Because such nodes are not automatically
notified of each other’s failure, they must explicitly exchange
keep-alive messages to maintain the invariants. To minimize
the associated overhead, affected replicas are gradually mi-
grated to a node within the referring node’s leaf set whenever
possible.

Consider the case when a node fails and the storage uti-
lization is so high that the remaining nodes in the leaf set
are unable to store additional replicas. To allow PAST to
maintain its storage invariants under these circumstances, a
node asks the two most distant members of its leaf set (in
the nodeId space) to locate a node in their respective leaf
sets that can store the file. Since exactly half of the node’s
leaf set overlaps with each of these two nodes’ leaf sets, a
total of 2l nodes can be reached in this way. Should none
of these nodes be able to accommodate the file, then it is
unlikely that space can be found anywhere in the system,
and the number of replicas may temporarily drop below k
until more nodes or disk space become available.

The observant reader may have noticed at this point that
maintaining k copies of a file in a PAST system with high
utilization is only possible if the total amount of disk stor-
age in the system does not decrease. If total disk storage
were to decrease due to node and disk failures that were not
eventually balanced by node and disk additions, then the
system would eventually exhaust all of its storage. Beyond
a certain point, the system would be unable to re-replicate
files to make up for replicas lost due to node failures.



Maintaining adequate resources and utilization is a prob-
lem in systems like PAST that are not centrally managed.
Any solution must provide strong incentives for users to
balance their resource consumption with the resources they
contribute to the system. PAST addresses this problem by
maintaining storage quotas, thus ensuring that demand for
storage cannot exceed the supply. A full discussion of these
management and security aspects of PAST is beyond the
scope of this paper.

3.6 File encoding
Storing k complete copies of a file is not the most storage-
efficient method to achieve high availability. With Reed-
Solomon encoding, for instance, adding m additional check-
sum blocks to n original data blocks (all of equal size) allows
recovery from up to m losses of data or checksum blocks [23].
This reduces the storage overhead required to tolerate m
failures from m to (m + n)/n times the file size. By frag-
menting a file into a large number of data blocks, the storage
overhead for availability can be made very small.

Independent of the encoding, storing fragments of a file at
separate nodes (and thereby striping the file over several
disks) can also improve bandwidth. However, these poten-
tial benefits must be weighed against the cost (in terms of
latency, aggregate query and network load, and availability)
of contacting several nodes to retrieve a file. This cost may
outweigh the benefits for all but large files; exploring this
option is future work. The storage management issues dis-
cussed in this paper, however, are largely orthogonal to the
choice of file encoding and striping.

4. CACHING
In this section, we describe cache management in PAST. The
goal of cache management is to minimize client access laten-
cies (fetch distance), to maximize the query throughput and
to balance the query load in the system. Note that because
PAST is running on an overlay network, fetch distance is
measured in terms of Pastry routing hops.

The k replicas of a file are maintained by PAST primarily for
reasons of availability, although some degree of query load
balancing and latency reduction results. To see this, recall
that the k nodes with adjacent nodeIds that store copies of
a file are likely to be widely dispersed and that Pastry is
likely to route client lookup request to the replica closest to
the client.

However, a highly popular file may demand many more than
k replicas in order to sustain its lookup load while minimiz-
ing client latency and network traffic. Furthermore, if a file
is popular among one or more local clusters of clients, it is
advantageous to store a copy near each cluster. Creating
and maintaining such additional copies is the task of cache
management in PAST.

PAST nodes use the “unused” portion of their advertised
disk space to cache files. Cached copies can be evicted and
discarded at any time. In particular, when a node stores
a new primary or redirected replica of a file, it typically
evicts one or more cached files to make room for the replica.
This approach has the advantage that unused disk space in
PAST is used to improve performance; on the other hand,

as the storage utilization of the system increases, cache per-
formance degrades gracefully.

The cache insertion policy in PAST is as follows. A file
that is routed through a node as part of a lookup or insert
operation is inserted into the local disk cache if its size is
less than a fraction c of the node’s current cache size, i.e.,
the portion of the node’s storage not currently used to store
primary or diverted replicas.

The cache replacement policy used in PAST is based on
the GreedyDual-Size (GD-S) policy, which was originally
developed for caching Web proxies [11]. GD-S maintains
a weight for each cached file. Upon insertion or use (cache
hit), the weight Hd associated with a file d is set to c(d)/s(d),
where c(d) represents a cost associated with d, and s(d) is
the size of the file d. When a file needs to be replaced, the
file v is evicted whose Hv is minimal among all cached files.
Then, Hv is subtracted from the H values of all remaining
cached files. If the value of c(d) is set to one, the policy
maximizes the cache hit rate. Results presented in Section 5
demonstrate the effectiveness of caching in PAST.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results obtained
with a prototype implementation of PAST. The PAST node
software was implemented in Java. To be able to perform
experiments with large networks of Pastry nodes, we also im-
plemented a network emulation environment, through which
the instances of the node software communicate.

In all experiments reported in this paper, the Pastry nodes
were configured to run in a single Java VM. This is largely
transparent to the Pastry implementation—the Java run-
time system automatically reduces communication among
the Pastry nodes to local object invocations.

All experiments were performed on a quad-processor Com-
paq AlphaServer ES40 (500MHz 21264 Alpha CPUs) with
6 GBytes of main memory, running True64 UNIX, version
4.0F. The Pastry node software was implemented in Java
and executed using Compaq’s Java 2 SDK, version 1.2.2-6
and the Compaq FastVM, version 1.2.2-4.

It was verified that the storage invariants are maintained
properly despite random node failures and recoveries. PAST
is able to maintain these invariants as long as Pastry is able
to maintain proper leaf sets, which is the case unless �l/2�
nodes with adjacent nodeIds fail within a recovery period.
The remaining experimental results are divided into those
analyzing the effectiveness of the PAST storage manage-
ment, and those examining the effectiveness of the caching
used in PAST.

5.1 Storage
For the experiments exploring the storage management, two
different workloads were used. The first consists of a set
of 8 web proxy logs from NLANR3 for 5th March 2001,
which were truncated to contain 4,000,000 entries, referenc-

3National Laboratory for Applied Network Research,
ftp://ircache.nlanr.net/Traces. National Science Founda-
tion (grants NCR-9616602 and NCR-9521745).



ing 1,863,055 unique URLs, totaling 18.7 GBytes of con-
tent, with a mean file size of 10,517 bytes, a median file
size of 1,312 bytes, and a largest/smallest file size of 138
MBytes and 0 bytes, respectively. The second of the work-
loads was generated by combining file name and file size
information from several file systems at the authors’ home
institutions. The files were sorted alphabetically by filename
to provide an ordering. The trace contained 2,027,908 files
with a combined file size of 166.6 GBytes, with a mean file
size of 88,233 bytes, a median file size of 4,578 bytes, and a
largest/smallest file size of 2.7 GBytes and 0 bytes, respec-
tively.

Selecting an appropriate workload to evaluate a system like
PAST is difficult, since workload traces for existing peer-to-
peer systems are not available and relatively little is known
about their characteristics [28]. We chose to use web proxy
and filesystems workloads to evaluate storage management
and caching in PAST. The file-size distributions in the two
workloads are very different and should bracket the range
of size distributions likely to be encountered by PAST. For
the purposes of evaluating caching, the locality properties
in the web proxy log should give a rough idea of the locality
one would expect of a PAST workload.

In all experiments, the number of replicas k for each file
was fixed at 5, b was fixed at 4, and the number of PAST
nodes was fixed at 2250. The number of replicas was chosen
based on the measurements and analysis in [8], which consid-
ers availability of desktop computers in a corporate network
environment. The storage space contributed by each PAST
node was chosen from a truncated normal distribution with
mean m, standard deviation σ, and with upper and lower
limits at m + xσ and m − xσ, respectively.

Table 1 shows the values of m and σ for four distributions
used in the first set of experiments. The lower and upper
bounds indicate where the tails of the normal distribution
were cut. In the case of d1 and d2, the lower and upper
bound was defined as m − 2.3σ and m + 2.3σ, respectively.
For d3 and d4, the lower and upper bound was fixed arbi-
trarily, and a large σ was used. We have also experimented
with uniform distributions, and found that the results were
not significantly affected.

The mean storage capacities of these distributions are ap-
proximately a factor of 1000 below what one might expect in
practice. This scaling was necessary to experiment with high
storage utilization and a substantial number of nodes, given
that the workload traces available to us have only limited
storage requirements. Notice that reducing the node stor-
age capacity in this way makes storage management more
difficult, so our results are conservative.

The first set of experiments use the NLANR traces. The
eight separate web traces were combined, preserving the
temporal ordering of the entries in each log to create a sin-
gle log. The first 4,000,000 entries of that log were used in
sequence, with the first appearance of a URL being used to
insert the file into PAST, and with subsequent references to
the same URL ignored. Unless otherwise stated, the node
storage sizes were chosen from distribution d1.

Dist. m σ Lower Upper Total
name bound bound capacity
d1 27 10.8 2 51 61,009
d2 27 9.6 4 49 61,154
d3 27 54.0 6 48 61,493
d4 27 54.0 1 53 59,595

Table 1: The parameters of four normal distribu-
tions of node storage sizes used in the experiments.
All figures in MBytes.

In the first experiment, both replica diversion and file di-
version were disabled by setting the threshold4 for primary
replica stores to tpri = 1, setting the threshold for the di-
verted replica stores to tdiv = 0 and by declaring a file inser-
tion rejected upon the first insert failure (i.e., no re-salting).
The purpose of this experiment is to demonstrate the need
for explicit storage load balancing in PAST.

The entire web log trace was played against the PAST sys-
tem. With no replica and file diversion, 51.1% of the file in-
sertions failed and the global storage utilization of the PAST
system at the end of the trace was only 60.8%. This clearly
demonstrates the need for storage management in a system
like PAST.

In Table 2 shows the results of the same experiment with
file and replica diversion enabled, tpri = 0.1, tdiv = 0.05,
for the various distributions of storage node sizes, and for
two settings of the leaf set size l, 16 and 32. The table
shows the percentage of successful and unsuccessful inserts,
“Success” and “Fail” respectively. The “File diversion” col-
umn shows the percentage of successful inserts that involved
file diversion (possibly multiple times), and “Replica diver-
sion” shows the fraction of stored replicas that were diverted.
“Util” shows the global storage utilization of the PAST sys-
tem at the end of the trace.

Dist. Succeed Fail File Replica Util.
Name diversion diversion

l = 16
d1 97.6% 2.4% 8.4% 14.8% 94.9%
d2 97.8% 2.2% 8.0% 13.7% 94.8%
d3 96.9% 3.1% 8.2% 17.7% 94.0%
d4 94.5% 5.5% 10.2% 22.2% 94.1%

l = 32
d1 99.3% 0.7% 3.5% 16.1% 98.2%
d2 99.4% 0.6% 3.3% 15.0% 98.1%
d3 99.4% 0.6% 3.1% 18.5% 98.1%
d4 97.9% 2.1% 4.1% 23.3% 99.3%

Table 2: Effects of varying the storage distribution
and leaf set size, when tpri = 0.1 and tdiv = 0.05.

The results in Table 2 show that the storage management in
PAST is highly effective. Compared to the results with no
replica or file diversion, the utilization has risen from 60.8%
to > 94% and > 98% with l = 16 and l = 32, respectively.
Furthermore, the distribution of node storage sizes has only

4Recall that file size/free storage space > threshold t for a
file to be stored on a node.



a minor impact on the performance of PAST, for the set
of distributions used in this experiment. As the number of
small nodes increases in d3 and d4, the number of replica di-
versions and, to a lesser degree, the number of file diversions
increases, which is expected.

There is a noticeable increase in the performance when the
leaf set size is increased from 16 to 32. This is because a
larger leaf set increases the scope for local load balancing.
With the storage size distributions used in our experiments,
increasing the leaf set size beyond 32 yields no further in-
crease in performance, but does increase the cost of PAST
node arrival and departure. Therefore, for the remainder of
the experiments a leaf set size (l) of 32 is used.

The next set of experiments examines the sensitivity of our
results to the setting of the parameters tpri and tdiv, which
control replica and file diversion. In the first of these ex-
periments, the value of tpri was varied between 0.05 and 0.5
while keeping tdiv constant at 0.05 and using d1 as the node
storage size distribution. Table 3 shows the results.

tpri Succeed Fail File Replica Util.
divers. divers.

0.5 88.02% 11.98% 4.43% 18.80% 99.7%
0.2 96.57% 3.42% 4.41% 18.13% 99.4%
0.1 99.33% 0.66% 3.47% 16.10% 98.2%
0.05 99.30% 0.27% 2.17% 12.86% 97.4%

Table 3: Insertion statistics and utilization of PAST
as tpri is varied and tdiv = 0.05.

Figure 2 shows the cumulative failure ratio versus storage
utilization for the same experiment. The cumulative failure
ratio is defined as the ratio of all failed file insertions over
all file insertions that occurred up to the point where the
given storage utilization was reached. This data, in con-
junction with Table 3, shows that as tpri is increased, fewer
files are successfully inserted, but higher storage utilization
is achieved. This can be explained by considering that, in
general, the lower the value of tpri the less likely it is that
a large file can be stored on a particular PAST node. Many
small files can be stored in place of one large file; therefore,
the number of files stored increases as tpri decreases, but the
utilization drops because large files are being rejected at low
utilization levels. Therefore, when the storage utilization is
low, a higher rate of insertion failure is observed for smaller
values of tpri.

Table 4 shows the effect of varying the tdiv parameter be-
tween 0.1 and 0.005, when tpri = 0.1 and storage size dis-
tribution d1 is used. Figure 3 shows the cumulative failure
ratio versus storage utilization for the same experiments.
As in the experiment varying tpri, as the value of tdiv is in-
creased the storage utilization improves, but fewer insertions
complete successfully, for the same reasons.

We repeated the sensitivity experiments using the filesystem
trace and, despite the different file size distribution in that
trace, the results were similar. Based on these experiments,
we conclude that tpri = 0.1 and tdiv = 0.05 provide a good
balance between maximal storage utilization and a low file
insertion failure rate at low storage utilization.
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Figure 2: Cumulative failure ratio versus storage
utilization achieved by varying the tpri parameter
and tdiv = 0.05.

tdiv Succeed Fail File Replica Util.
divers. divers.

0.1 93.72% 6.28% 5.07% 13.81% 99.8%
0.05 99.33% 0.66% 3.47% 16.10% 98.2%
0.01 99.76% 0.24% 0.53% 15.20% 93.1%
0.005 99.57% 0.43% 0.53% 14.72% 90.5%

Table 4: Insertion statistics and utilization of PAST
as tdiv is varied and tpri = 0.1.

The next set of results explore in more detail at what uti-
lization levels the file diversion and replica diversion begin
to impact on PAST’s performance. Figure 4 shows the per-
centage of inserted files that are diverted once, twice or three
times, and the cumulative failure ratio versus storage utiliza-
tion. The results show that file diversions are negligible as
long as storage utilization is below 83%. A maximum of
three file diversion attempts are made before an insertion is
considered failed.

Figure 5 shows the ratio of replicas that are diverted to the
total replicas stored in PAST, versus storage utilization. As
can be seen, the number of diverted replicas remains small
even at high utilization; at 80% utilization less than 10% of
the replicas stored in PAST are diverted replicas. These last
two sets of results show that the overhead imposed by replica
and file diversion is moderate as long as the utilization is less
than about 95%. Even at higher utilization the overhead
remains acceptable.

The next result shows the size distribution of the files that
could not be inserted into PAST, as a function of utiliza-
tion. Figure 6 shows a scatter plot of insertion failures by
file size (left vertical axis) versus utilization level at which
the failure occurred. Also shown is the fraction of failed in-
sertions versus utilization (right vertical axis). In the graph,
files larger than the lower bound of the storage-capacity dis-
tribution are not shown; in the NLANR trace, 6 files are
larger than the upper storage capacity bound, 20 are larger
than the mean storage capacity, and 964 are larger than the
lower storage capacity bound. The number of files larger
than the lower storage capacity bound that were success-
fully inserted was 9. None of the files larger than the mean
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Figure 3: Cumulative failure ratio versus storage
utilization achieved by varying the tdiv parameter
and tpri = 0.1.
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storage capacity were successfully inserted.

Figure 6 shows that as the storage utilization increases,
smaller files fail to be inserted. However, the utilization
reaches 90.5% before a file of average size (10,517 bytes) is
rejected for the first time. Up until just over 80% utilization
no files smaller than 0.5 MBytes (e.g., 25% of the minimal
node storage capacity) is rejected. Moreover, the total rate
of failed insertions is extremely small at a utilization below
90%, and even at 95% utilization the total rate of failures is
below 0.05, reaching 0.25 at 98%.

Having shown the properties of PAST using the NLANR
traces, we now consider results using the filesystem work-
load. The total size of all the files in that workload is sig-
nificantly larger than in the NLANR web proxy trace. The
same number of PAST nodes (2250) is used in the exper-
iments, therefore the storage capacity contributed by each
node has to be increased. For this experiment, we used d1

to generate the storage capacities, but increased the stor-
age capacity of each node by a factor of 10. The resulting
lower/upper bound on storage capacity is 20 Mbytes and
510 Mbytes, respectively, whilst the mean is 270 Mbytes.
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Figure 5: Cumulative ratio of replica diversions ver-
sus storage utilization, when tpri = 0.1 and tdiv = 0.05.
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Figure 6: File insertion failures versus storage uti-
lization for the NLANR trace, when tpri = 0.1,
tdiv = 0.05.

The total storage capacity of the 2250 nodes is 596 GBytes.

Figure 7 shows results of the same experiment as Figure 6,
but using the filesystem workload. As before, files larger
than the smallest storage capacity are not shown; in the
filesystem load, 3 files are larger than the upper storage
capacity, 11 are larger than the mean storage capacity, and
679 are larger than the lower storage capacity bound. The
number of files larger than the smallest storage capacity that
were successfully inserted was 23, and none of the files larger
than the mean storage capacity were inserted successfully.

5.2 Caching
The results presented in this section demonstrate the impact
of caching in PAST. Our experiment uses the NLANR trace.
The trace contains 775 unique clients, which are mapped
onto PAST nodes such that a request from a client in the
trace is issued from the corresponding PAST node. The
mapping is achieved as follows. There are eight individual
web proxy traces which are combined, preserving temporal
ordering to create the single trace used in the experiment.
These eight traces come from top-level proxy servers dis-
tributed geographically across the USA. When a new client
identifier is found in a trace, a new node is assigned to it in
such a way to ensure that requests from the same trace are
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Figure 7: File insertion failures versus storage uti-
lization for the filesystem workload, when tpri = 0.1,
tdiv = 0.05.

issued from PAST nodes that are close to each other in our
emulated network.

The first time a URL is seen in the trace, the referenced file
is inserted into PAST; subsequent occurrences of the URL
cause a lookup to be performed. Both the insertion and
lookup are performed from the PAST node that matches
the client identifier for the operation in the trace. Files
are cached at PAST nodes during successful insertions and
during successful lookups, on all the nodes through which
the request is routed. The c parameter is set to 1. As before,
the experiment uses 2250 PAST nodes with the d1 storage
capacity distribution, tpri = 0.1 and tdiv = 0.05.
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Figure 8: Global cache hit ratio and average
number of message hops versus utilization using
Least-Recently-Used (LRU), GreedyDual-Size (GD-
S), and no caching, with tpri = 0.1 and tdiv = 0.05.

Figure 8 shows both the number of routing hops required to
perform a successful lookup and the global cache hit ratio
versus utilization. The GreedyDual-Size (GD-S) policy de-
scribed in Section 4 is used. For comparison, we also include
results with the Least-Recently-Used (LRU) policy.

When the caching is disabled, the number of routing hops
on average required is constant to about 70% utilization and
then begins to rise slightly. This is due to replica diversion
occurring; therefore, on a small percentage of the lookups a

diverted replica is retrieved, adding an extra routing hop. It
should be noted that �log162250� = 3. The global cache hit
rate for both the LRU and the GD-S algorithms decreases as
storage utilization increases. Because of the Zipf-like distri-
bution of web requests [10], it is likely that a small number
of files are being requested very often. Therefore, when the
system has low utilization, these files are likely to be widely
cached. As the storage utilization increases, and the num-
ber of files increases, the caches begin to replace some files.
This leads to the global cache hit rate dropping.

The average number of routing hops for both LRU and GD-
S indicates the performance benefits of caching, in terms of
client latency and network traffic. At low storage utiliza-
tion, clearly the files are being cached in the network close
to where they are requested. As the global cache hit ratio
lowers with increasing storage utilization, the average num-
ber of routing hops increases. However, even at a storage
utilization of 99%, the average number of hops is below the
result with no caching. This is likely because the file sizes
in the proxy trace have a median value of only 1,312 bytes;
hence, even at high storage utilization there is capacity to
cache these small files. In terms of global cache hit ratio
and average number of routing hops, GD-S performs better
than LRU.

We have deliberately reported lookup performance in terms
of the number of Pastry routing hops, because actual lookup
delays strongly depend on per-hop network delays. To give
an indication of actual delays cause by PAST itself, retriev-
ing a 1KB file from a node one Pastry hop away on a LAN
takes approximately 25ms. This result can likely be im-
proved substantially with appropriate performance tuning
in our prototype implementation.

6. RELATED WORK
There are currently several peer-to-peer systems in use, and
many more are under development. Among the most promi-
nent are file sharing facilities, such as Gnutella [2] and Free-
net [13]. The Napster [1] music exchange service provided
much of the original motivation for peer-to-peer systems,
but it is not a pure peer-to-peer system because its database
is centralized. All three systems are primarily intended for
the large-scale sharing of data files; persistence and reliable
content location are not guaranteed or necessary in this en-
vironment.

In comparison, PAST aims at combining the scalability and
self-organization of systems like FreeNet with the strong per-
sistence and reliability expected of an archival storage sys-
tem. In this regard, it is more closely related with projects
like OceanStore [20], FarSite [8], FreeHaven [15], and Eter-
nity [5]. FreeNet, FreeHaven and Eternity are more focused
on providing strong anonymity and anti-censorship.

OceanStore provides a global, transactional, persistent stor-
age service that supports serializable updates on widely repli-
cated and nomadic data. In contrast, PAST provides a sim-
ple, lean storage abstraction for persistent, immutable files
with the intention that more sophisticated storage semantics
(e.g., mutable files) be built on top of PAST if needed.

Unlike PAST, FarSite has traditional filesystem semantics.



A distributed directory service is used in FarSite to locate
content; this is different from PAST’s Pastry scheme, which
integrates content location and routing. Currently, there
is no published scalability analysis of FarSite. Every node
maintains a partial list of the live nodes, from which it
chooses nodes that should store replicas. Much of FarSite’s
design is motivated by a feasibility study that measures a
corporate LAN [8]; some of its assumptions may not hold in
a wide-area environment.

Pastry, along with Tapestry [31], Chord [30] and CAN [25],
represent a second generation of peer-to-peer routing and lo-
cation schemes that were inspired by the pioneering work of
systems like FreeNet and Gnutella. Unlike that earlier work,
they guarantee a definite answer to a query in a bounded
number of network hops, while retaining the scalability of
FreeNet and the self-organizing properties of both FreeNet
and Gnutella.

Pastry and Tapestry bear some similarity to the work by
Plaxton et al [24]. The approach of routing based on address
prefixes, which can be viewed as a generalization of hyper-
cube routing, is common to all three schemes. However, in
the Plaxton scheme there is a special node associated with
each file, which forms a single point of failure. Also, Plax-
ton does not handle automatic node integration and failure
recovery, i.e., it is not self-organizing. Pastry and Tapestry
differ in their approach to achieving network locality and to
replicating objects, and Pastry appears to be less complex.

The Chord protocol is closely related to both Pastry and
Tapestry, but instead of routing towards nodes that share
successively longer address prefixes with the destination,
Chord forwards messages based on numerical difference with
the destination address. Unlike Pastry and Tapestry, Chord
makes no explicit effort to achieve good network locality.

CAN routes messages in a d-dimensional space, where each
node maintains a routing table with O(d) entries and any

node can be reached in O(dN1/d) routing hops. Unlike Pas-
try, the routing table does not grow with the network size,
but the number of routing hops grows faster than logN .

CFS [14] is a decentralized, cooperative read-only storage
system. Like PAST, it is built on top of a peer-to-peer rout-
ing and lookup substrate, in this case Chord. Unlike PAST,
it is intended solely as a file sharing medium, and thus pro-
vides only weak persistence. CFS storage is block-oriented
and a conventional UNIX-like filesystem is layered on top
of it. Each block is stored on multiple nodes with adjacent
Chord node ids and popular blocks can be cached at ad-
ditional nodes, similar to the way entire files are stored in
PAST. Compared to PAST, this increases file retrieval over-
head, as each file data and metadata block must be located
using a separate Chord lookup. On the other hand, CFS
permits parallel block retrievals, which benefits large files.

CFS’s design assumes an abundance of free disk space. Com-
bined with its block orientation and weak persistence, this
simplifies its storage management, when compared to a sys-
tem like PAST. To accomodate nodes with more than the
minimal storage size, CFS relies on hosting multiple logi-
cal nodes per physical nodes, each with a separate Chord

id. PAST uses this technique only for nodes whose storage
size exceeds the minimal size by more than two orders of
magnitude. For both Chord and Pastry, the overhead of
maintaining state for multiple logical nodes increases pro-
portionally.

xFS [6] is a serverless filesystem. While it shares its decen-
tralized architecture with peer-to-peer systems like PAST,
it is intended as a general-purpose filesystem serving a sin-
gle organization within a LAN. As such, its design goals
and assumptions with respect to performance, network char-
acteristics, security, and administration are very different
from PAST’s. More loosely related is work on overlay net-
works [17], ad hoc network routing [7, 22], naming [3, 9, 12,
21, 26, 29] and Web content replication [4, 18, 19].

7. CONCLUSION
We presented the design and evaluation of PAST, an In-
ternet based global peer-to-peer storage utility, with a focus
on PAST’s storage management and caching. Storage nodes
and files in PAST are each assigned uniformly distributed
identifiers, and replicas of a files are stored at the k nodes
whose nodeIds are numerically closest to the file’s fileId. Our
results show that the storage load balance provided by this
statistical assignment is insufficient to achieve high global
storage utilization, given typical file size distributions and
non-uniform storage node capacities.

We present a storage management scheme that allows the
PAST system to achieve high utilization while rejecting few
file insert requests. The scheme relies only on local coordi-
nation among the nodes in a leaf set, and imposes little over-
head. Detailed experimental results show that the scheme
allow PAST to achieve global storage utilization in excess
of 98%. Moreover, the rate of failed file insertions remains
below 5% at 95% storage utilization and failed insertions are
heavily biased towards large files. Furthermore, we describe
and evaluate the caching in PAST, which allows any node
to retain an additional copy of a file. We show that caching
is effective in achieving load balancing, and that it reduces
fetch distance and network traffic.
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