
Defending against Eclipse attacks on overlay networks

Atul Singh1∗ Miguel Castro2 Peter Druschel1 Antony Rowstron2

1Rice University, Houston, TX, USA.†

2Microsoft Research, Cambridge, UK.

Abstract

Overlay networks are widely used to deploy functionality
at edge nodes without changing network routers. Each
node in an overlay network maintains pointers to a set of
neighbor nodes. These pointers are used both to maintain
the overlay and to implement application functionality,
for example, to locate content stored by overlay nodes. If
an attacker controls a large fraction of the neighbors of
correct nodes, it can “eclipse” correct nodes and pre-
vent correct overlay operation. This Eclipse attack is
more general than the Sybil attack. Attackers can use
a Sybil attack to launch an Eclipse attack by inventing a
large number of seemingly distinct overlay nodes. How-
ever, defenses against Sybil attacks do not prevent Eclipse
attacks because attackers may manipulate the overlay
maintenance algorithm to mount an Eclipse attack. This
paper discusses the impact of the Eclipse attack on sev-
eral types of overlay and it proposes a novel defense that
prevents the attack by bounding the degree of overlay
nodes. Our defense can be applied to any overlay and it
enables secure implementations of overlay optimizations
that choose neighbors according to metrics like proxim-
ity. We present preliminary results that demonstrate the
importance of defending against the Eclipse attack and
show that our defense is effective.

1 Introduction

Overlay networks are widely used to deploy functionality
at edge nodes without changing network routers. Many
popular applications are deployed as overlay networks,
for example, BitTorrent [2], Gnutella [8], Kazaa [13],
Overnet and eDonkey [16]. There is also a large amount
of research on using overlays to implement application
level multicast[12, 11, 1] and distributed hash tables[17,
22, 20, 24]. This paper discusses a general attack on over-
lay networks that we call theEclipse attack.

Each node in an overlay network maintains overlay

∗Work started during a summer internship at Microsoft Research,
Cambridge.

†This research was supported by Texas ATP (003604-0079-2001),
by NSF (ANI-0225660),http://project-iris.net and a gift
from Microsoft Research.

links to a set of neighbor nodes. These links are used
both to maintain the overlay and to implement applica-
tion functionality, for example, to locate content stored
by overlay nodes or to multicast messages. Correct over-
lay operation requires that correct nodes be able to com-
municate by forwarding messages along overlay links. If
an attacker controls a large fraction of the neighbor sets
of correct nodes, it can “eclipse” correct nodes by drop-
ping or rerouting messages that attempt to reach them. In
the extreme, the Eclipse attack provides the attacker with
full control over all overlay traffic.

The Eclipse attack is more general than the well-
known Sybil attack [6]. An attacker can use a Sybil attack
to launch an Eclipse attack by creating a large number of
seemingly distinct overlay nodes to populate the neigh-
bor sets of correct nodes. However, a defense against
the Sybil attack may be insufficient to defend against the
Eclipse attack. Even if attackers control only a small
fraction of overlay nodes, they may be able to launch an
Eclipse attack by exploiting the overlay maintenance al-
gorithm. For example, in an overlay like Gnutella, nodes
replace faulty neighbors with nodes obtained by travers-
ing neighbor links. If the attacker controls a fractionf
of the nodes in the overlay, attacker nodes can return
other compromised nodes whenever they are asked to for
a neighbor and correct nodes may still return a compro-
mised node with probability at leastf . Therefore, the
fraction of neighbors of correct nodes that is controlled
by the attacker tends to grow until the attacker has full
control over all overlay traffic. We will present results
of simulations that demonstrate the effectiveness of this
attack.

Castro et. al identify the Eclipse attack as one of
the security problems in structured overlays [3]. They
use strong structural constraints on the overlay to de-
fend against this attack. Nodes are assigned identifiers
and each node’s overlay neighbors are the overlay nodes
with identifiers closest to particular points in the identifier
space. This defense is effective but it removes the flexi-
bility necessary to implement optimizations like proxim-
ity neighbor selection [4, 18, 9] and works only for struc-
tured overlays. More recent work [10, 21] proposes de-
fenses to the Eclipse attack that allow proximity neighbor
selection. They assume that it is hard for the attacker to
pretend to be close to all nodes in the network when only

a small fraction of overlay nodes is compromised. These
defenses apply only to specific structured overlays and
rely on the ability to measure network delays securely.
This may be difficult because attacker nodes can interfere
with delay measurements by causing artificial congestion
in the network. Moreover, many nodes tend to appear
equidistant in real networks [9].

This paper proposes a new defense that prevents
Eclipse attacks by bounding the degree of overlay nodes.
The idea is simple: the indegree of attacker nodes is likely
to be higher than the average indegree of correct nodes
when the attacker launches an Eclipse attack. Therefore,
correct nodes choose their neighbors from the subset of
overlay nodes whose indegree is below a threshold. This
defense introduces a new attack because attacker nodes
can consume the indegree of correct nodes and prevent
other correct nodes from pointing to them. Thus, it is also
necessary to bound the outdegree so correct nodes choose
neighbors from the subset of overlay nodes whose inde-
gree and outdegree are below a threshold. We describe
an efficient auditing technique to prevent attacker nodes
from lying about their indegree and outdegree.

Our defense can be applied both to structured and un-
structured overlays because it does not rely on any spe-
cific structure. Moreover, it allows overlay optimizations
that choose neighbors according to metrics like proxim-
ity, which are important for overlay efficiency.

In the following section, we discuss different overlays
designs and their vulnerability to the Eclipse attack. Sec-
tion 3 describes our defense against the Eclipse attack
and Section 4 provides a preliminary evaluation of our
defense. Section 5 presents conclusions and a discussion
of future work.

2 Vulnerability to Eclipse attacks

Different overlays impose different constraints on the
members of a given node’s neighbor set. Such con-
straints affect the resilience of an overlay to the Eclipse
attack and they also determine the effectiveness of op-
timizations that choose overlay neighbors based on per-
formance metrics like network proximity. This section
discusses the impact of structure and performance opti-
mizations on the effectiveness of the Eclipse attack. We
assume that these systems implement a defense against
Sybil attacks that bounds the fraction of overlay nodes
controlled by the attacker tof .

2.1 Unstructured overlays

Unstructured overlays like Gnutella [8] do not impose
any constraints on the members of a node’s neighbor set.
They are the most vulnerable to the Eclipse attack.

These overlays use floods or random walks to find
overlay neighbors. For example, nodes can use a random
walk through the overlay graph to select a node uniformly

at random from the set of overlay nodes if the length of
the walk is greater than the diameter of the graph. How-
ever, an attacker can bias the selection to nodes that it
controls. If the random walk visits a node controlled by
the attacker, it returns another compromised node as the
result of the search. The probability of visiting a node
controlled by the attacker during a walk of lengthl is at
least1 − (1 − f)l, which is greater thanf . Thus, the av-
erage fraction of neighbor set members controlled by the
attacker increases, which results in an increased proba-
bility of visiting an attacker node during a future random
walk. The fraction of attacker nodes in the neighbor sets
of correct nodes keeps increasing until the attacker has
full control over all overlay traffic.

2.2 Structured overlays

Structured overlays (e.g., [17, 22, 20, 24]) impose con-
straints on a node’s neighbors. Each node has a unique
identifier and selects its neighbors from the set of nodes
whose node identifiers satisfy certain constraints relative
to its own identifier. For example, the neighbor sets in
Tapestry and Pastry are organized as a matrix; a nodex
can be a neighbor in slot(i, j) of y’s neighbor matrix if
the firsti digits inx’ andy’s identifiers are the same and
the(i + 1)th digit in x’s identifier isj.

These constraints limit the expected fraction of at-
tacker nodes in a node’s neighbor set, assuming a defense
against Sybil attacks that prevents attackers from obtain-
ing many node identifiers or choosing their node iden-
tifiers. For example, unless the attacker controls a very
large fraction of the overlay, she won’t be able to supply
neighbors that can fit in the bottom rows of the neighbor
matrices. Unfortunately, the Eclipse attack is still very ef-
fective because the attacker can easily supply neighbors
to fit in the top rows, as shown in Section 4.

It is possible to strengthen these structural constraints
to prevent the Eclipse attack. For example, in overlay
networks like CAN [17], the original Chord [22] and
Pastry with a constrained routing table [3] each node’s
overlay neighbors are the overlay nodes with identifiers
closest to particular points in the identifier space. For
example, the neighbors of a node with identifieri in
Chord are the nodes whose identifiers are the succes-
sors of(i + 2i−1) mod 2160 for positive integersi. Since
the identifiers of attacker nodes are uniformly distributed
throughout the identifier space, the attacker has probabil-
ity f of controlling the node with identifier closest to a
particular point in the identifier space. So it can control
only an expected fractionf of the neighbor set members
of correct nodes.

In addition to enforcing strong structural constraints,
a secure mechanism is needed to locate the nodes with
identifiers closest to particular points in the identifier
space. Techniques to achieve this are described in [3].

2.3 Overlay optimizations

Strong structural constraints can prevent Eclipse attacks
but they also prevent important performance optimiza-
tions that exploit flexibility in the choice of overlay
neighbors. For example, proximity neighbor selection
(PNS) [4, 9] enables low delay routing in structured over-
lays by selecting neighbor nodes that are nearby in the
physical network from among all candidate nodes that
satisfy the structural constraints. Unfortunately, strong
structural constraints prevent PNS because they leave no
flexibility to choose neighbors.

Recent work [10] proposed an interesting defense
against the Eclipse attack that does not prevent proxim-
ity neighbor selection. This defense is based on the idea
that it is difficult for the attacker to pretend to be close
to all good nodes in the network. It relies on a mecha-
nism that exploits the Tapestry overlay structure to locate
nearby nodes. This mechanism is secure under certain
assumptions about the distribution of network delays and
the accuracy of delay measurements.

However, it is unclear to what extent these assumptions
hold in real networks. Recent results suggest [9] that the
distribution of delays from a node to other nodes in the
Internet is such that a large number of nodes lie within a
fairly narrow delay band. Therefore, it may be hard to use
delay as a constraint to prevent an attacker from biasing
neighbor selection. Additionally, the defense relies on
the ability to securely measure network distances, which
may be difficult because the attacker can cause artificial
congestion in the network to increase measured delays to
good nodes.

There are also important optimizations that exploit het-
erogeneity. For example, Kazaa [13] and the latest ver-
sions of Gnutella [8] select some high capacity nodes
as super-peers and ordinary nodes attach only to super-
peers. Similarly, nodes in GIA [5] have a capacity value
and the overlay is built such that indegree is proportional
to capacity. These optimizations are important to achieve
high performance in these unstructured overlays but they
make them even more vulnerable to the Eclipse attack;
the attacker can simply pretend to be a high capacity
node to increase the fraction of members it controls in
the neighbor sets of correct nodes. It is hard to prevent
the Eclipse attack in these systems without controlling
the capacity that each node is allowed to advertise.

3 Defense: degree bounding

We describe a new defense against the Eclipse attack that
relies neither on structural constraints nor accurate prox-
imity measurements. The defense can be applied to both
structured and unstructured overlays and it permits per-
formance optimizations like proximity neighbor selection
(PNS).

The basic idea behind our defense is simple: the inde-
gree of attacker nodes must be higher than the average

indegree of nodes in the overlay during an Eclipse attack.
Therefore, correct nodes can bound the indegree of at-
tacker nodes by choosing their neighbors from the subset
of overlay nodes whose indegree is below a threshold.
Unfortunately, this defense introduces a new attack be-
cause attacker nodes can consume the indegree of correct
nodes and prevent other correct nodes from pointing to
them. Therefore, it is necessary to bound both the inde-
gree and the outdegree of attacker nodes. Correct nodes
choose neighbors from the subset of overlay nodes whose
indegree and outdegree are below a threshold. One of the
difficulties is how to enforce the indegree and outdegree
bounds. We outline a technique to securely enforce these
bounds.

3.1 Auditing to enforce degree bounds

We use auditing to enforce degree bounds. We rely on
certified node identifiers [3] to defend against Sybil at-
tacks and to bootstrap authentication. A node generates
a public-private key pair that can be used to encrypt and
sign messages. The node identifier certificate binds the
node’s random identifier with the public key. It is diffi-
cult for attackers to obtain many certified identifiers or to
choose the identifiers that they obtain.

Each nodex in the overlay is required to maintain a
list with all the nodes that havex in their neighbor set.
We refer to this as the back pointer list ofx. Periodi-
cally, x challenges each member of its neighbor set by
asking it for its back pointer list. If the number of entries
in the returned back pointer list is greater than the inde-
gree bound orx is not present in the back pointer list,x
removes that member from its neighbor set. Nodex only
forwards traffic from nodes in its backpointer list.

To prevent an attacker from consuming the indegree of
correct nodes, each nodex periodically challenges each
member of its back pointer list by asking it for its neigh-
bor set. Ifx is not in the returned neighbor set or the size
of the returned neighbor set is greater than the outdegree
bound,x removes the node from its back pointer list.

To ensure that replies are fresh and authentic,x in-
cludes a random nonce in the challenge. The node be-
ing challenged includes the nonce in its reply and signs
it. Whenx receives the reply, it checks the signature and
the nonce before accepting the reply.

When the neighbor set has structure, it may be neces-
sary to enforce bounds on specific neighbor set compo-
nents. For example, Tapestry and Pastry routing tables
have rows. If an attacker controls a large fraction of en-
tries in the top rows of routing tables, it will be able to
control most communication. With a bound on the total
number of backpointers, attackers can choose to attract
only pointers from top level entries to cause the most
damage.

We prevented this problem by enforcing a bound on
the number of backpointers for each row number, for ex-
ample, a nodex can appear in at most2b

− 1 entries in

row i of the routing tables of other nodes (where2b
− 1

is the number of entries per routing table row in Pastry).
We also enforced the same outdegree bounds per row. A
bound of2b

− 1 ensures that the fraction of entries con-
trolled by the attacker in each row is bound tof/(1− f)
when the attacker controls a fractionf of the overlay.

3.2 Anonymous auditing

In order for the auditing to work, we need to ensure that
the node being challenged does not know the identity of
the challenger. Otherwise, the node being challenged can
easily produce a back pointer list (or neighbor set) with
the correct size that includes the challenger. We need an
anonymous channel between the challenger and the node
being challenged.

We could use existing implementations of anonymous
channels [19, 7, 14] but the anonymity requirements of
our auditing mechanism are weaker than those provided
by off-the-shelf techniques. We only require sender
anonymity for auditing and a node should receive chal-
lenges from all of its overlay neighbors and only from
them. Therefore, it is sufficient to ensure that the chal-
lenge is equally likely to come from any neighbor, which
is easier than providing anonymity with general commu-
nication patterns. Additionally, it is sufficient to ensure
that the identity of the challenger is obscured most of the
time. An occasional failure of sender anonymity merely
increases the time to detect malicious behavior. We im-
plemented an anonymous channel on Pastry that exploits
the weaker requirements to improve performance.

Our anonymous auditing process involves two steps:
(1) discovery of intermediate nodes and (2) relaying of
challenges through intermediate nodes. It is important to
ensure that the first step does not expose the challenger.
For example, if the attacker observes the traffic issued
by a challenger to discover an intermediate node, it may
be able to use this information while responding to chal-
lenges forwarded by that intermediate node. We avoid
this problem by ensuring that all nodes auditing a nodex
relay their challenges tox through the same set of inter-
mediate nodes. This is a general solution to prevent at-
tacks that correlate the identity of the intermediate node
with the identity of the challenger.

In our current implementation, the intermediate nodes
used to audit nodex are thea nodes with identifiers clos-
est tox’s identifier. We call these nodes the anonymizer
nodes forx. Each node that wants to auditx uses the
redundant routing technique described in [3] to discover
the set of anonymizer nodes forx.

To auditx, a node picks a random node from the set of
anonymizers and relays the challenge through that node.
If the anonymizer is correct, it will forward the request to
x without revealing the identity of the challenger. Ifx is
correct, it will reply to the challenge but if it is compro-
mised, it may choose not to reply because it would risk
exposure by responding with a back pointer list or neigh-

bor set without the challenger. On the other hand if the
anonymizer andx are both compromised, the anonymizer
may reveal the identity of the challenger to allowx to re-
spond correctly. Conversely, a compromised anonymizer
may drop the challenge ifx is honest. So it is important to
repeat the challenge through different anonymizer nodes
before dropping neighbors.

We challenge each node multiple (a) times through dif-
ferent anonymizer nodes. If the number of correct replies
to the challenges is below a thresholdt, the node being
audited is classified compromised and dropped from the
neighbor set or back pointer set as appropriate. We can
choosea andt to achieve a desired tradeoff between over-
head and accuracy for a given bound on the fraction of
malicious nodes in the overlay.

We randomize the period between challenges from the
same node to prevent an attacker from correlating the ar-
rival time of the challenge with the identity of the chal-
lenger. Similarly, a node waits for a random delay after
discovering the anonymizer nodes and before issuing a
challenge.

4 Preliminary evaluation

In this section, we present preliminary results on the im-
pact of Eclipse attacks and evaluate the effectiveness of
bounding node degrees to defend against this attack.

4.1 Experimental setup

We used MSPastry [15] and a packet-level discrete-
event simulator with a transit-stub network topology
model [23]. This model has 5050 routers arranged hi-
erarchically. There are 10 transit domains at the top level
with an average of 5 routers in each. Each transit router
has an average of 10 stub domains attached, and each
stub has an average of 10 routers. Routing is performed
using the routing policy weights of the topology genera-
tor [23]. The simulator models the propagation delay on
the physical links. The average delay of core links was
40.7ms. Each end system was attached to a randomly
selected stub router with a link delay of 1ms.

We created Pastry overlays with different sizes. These
overlays were created by having all nodes join at the same
time and there were no failures or additional node arrivals
in the experiments. For all the experiments Pastry was
configured withb = 4, l = 16, and nodes join from16
distinct bootstrap nodes [3].

The fraction of malicious nodes wasf = 0.2 and they
all collude to maximize the fraction of malicious nodes in
the neighbor set of correct nodes; they misroute join mes-
sages to other malicious nodes and always supply mali-
cious neighbor set entries.

4.2 Eclipse attacks with no defense

The first set of experiments evaluates the impact of
Eclipse attacks without our defense. Figure 1 shows the
fraction of Pastry routing table entries that point to ma-
licious nodes for different overlay sizes with and with-
out proximity neighbor selection (PNS). It also shows the
fraction of malicious entries in the top level of the rout-
ing tables. Even if the fraction of all routing table entries
controlled by the attacker is low, the attacker can control
most overlay communication if the fraction of top level
routing table entries that point to malicious nodes is high.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 5000 10000 20000F
ra

ct
io

n
of

 r
ou

tin
g

ta
bl

e
co

m
pr

om
is

ed

Network Size (#nodes)

No PNS(Overall)
No PNS(Top Level)

PNS(Overall)
PNS(Top Level)

Figure 1: Fraction of malicious nodes in correct routing
tables and in top row of routing table for different net-
work sizes with and without PNS

The results show that the Eclipse attack is more effec-
tive without PNS. Since we did not model attacks on de-
lay measurements, PNS replaces malicious neighbors by
correct nodes that are closer in the network. However,
the Eclipse attack is extremely effective for large over-
lays even when using PNS. Since the attacker controls
about 80% of the neighbors in the top levels of routing
tables, it will be able to intercept more than 80% of the
communication. This happens because the delay distri-
bution changes when the overlay size increases: the num-
ber of nodes that are equidistant from a target increases.
Therefore, it is less likely for malicious neighbors to be
replaced by closer correct nodes.

4.3 Defending against Eclipse attacks

Our previous results show that it is important to defend
against Eclipse attacks. We ran experiments to evaluate
the effectiveness of enforcing degree bounds to defend
against the Eclipse attack. We enforce indegree and out-
degree bounds per routing table row (as discussed in Sec-
tion 3.1).

Auditing oracle The first set of experiments uses an
oracle to determine if nodes exceed the per row degree

bounds. They provide an evaluation of our defense that
is independent from any particular implementation of
anonymous auditing. We experimented with bounds of
16, 32, 48, and 64 (2b = 16 is the routing table row size).
Table 1 presents results with PNS. It shows the average
fraction of malicious routing table entries in the whole
routing table. The fraction of malicious routing table en-
tries for each row number was very similar.

bound 1000 5000 10000 20,000
16 0.24 0.24 0.24 0.24
32 0.24 0.29 0.31 0.37
48 0.24 0.31 0.35 0.45
64 0.24 0.33 0.38 0.48

no defense 0.24 0.35 0.42 0.5

Table 1: Fraction of malicious nodes in correct routing
tables with different degree bounds per row.

The results show that bounding degrees is effective at
maintaining the fraction of malicious routing table en-
tries low. As expected, this fraction is approximately
f/(1−f) = 0.25 when the bound is equal to the average
number of entries per row. However, the effectiveness
of our defense decreases significantly when the bound is
higher than the average number of entries per row.

We also evaluated the impact of our defense technique
on routing delays. Since our technique constrains the
choice of neighbors, it may increase delays in the absence
of attacks. We observed a delay penalty of approximately
25% in the overlay with 20,000 nodes withf = 0 and a
degree bound of 16 per row. The penalty decreases to
about 8% for a bound of 32.

Auditing implementation We implemented the anony-
mous auditing technique described in Section 3.2 in
MSPastry and ran a simulation experiment to evaluate
its effectiveness. The experiment started by creating an
overlay with 1020 correct nodes using PNS. We added
244 malicious nodes to the overlay 20 minutes into the
simulation (settingf = 0.19). Then, we measured the
fraction of malicious routing table entries over time with-
out additional changes in overlay membership. We used
a per-row degree bound of 16 and an average auditing
period of 1 minute.

We experimented with agreedy attackwhere malicious
nodes attempt to get added to as many routing tables as
possible but when audited through a correct anonymizer
node do not reply to prevent exposure. This is a good
strategy in the current implementation because neighbors
are only marked malicious when they send bad replies.
Neighbors that do not reply to challenges are marked sus-
picious and are replaced only if there is another node with
enough indegree budget that is not suspicious or mali-
cious.

The results of the experiment indicate that our anony-
mous auditing technique is an effective defense against
the Eclipse attack. The attacker starts by controling 35%
of the routing table entries and auditing brings this frac-
tion down to 20% within five hours with an overhead of
approximately 4 messages per second per node. We are
currently experimenting with marking suspicious nodes
malicious if they are replying to routing table liveness
probes. This should bring the fraction of malicious en-
tries down in less than 30 minutes.

5 Conclusion

This paper has shown that Eclipse attacks are effective:
attackers can disrupt overlay communication by control-
ling a large fraction of the neighbors of correct nodes
even when they control only a small fraction of over-
lay nodes. It is important to defend against Eclipse at-
tacks. We have proposed a novel defense that prevents
Eclipse attacks by using anonymous auditing to bound
the degree of overlay nodes. This defense can be used
both in structured and unstructured overlays and it allows
optimizations like proximity neighbor selection that bias
the choice of neighbor based on some application metric.
The results of preliminary experiments show that a pro-
totype of our defense can prevent attacks effectively in a
structured overlay.

The work presented in this paper is promising but it
is not complete. There are several important issues that
we have not addressed yet. We are still studying the
ideal attacker strategy and evolving our anonymous au-
diting mechanism. The experiments we presented were
run on static overlays. It is important to evaluate both the
overhead and effectiveness of our technique with constant
churn as well as large, sudden changes in overlay mem-
bership. We suspect that this will prompt changes to our
prototype to optimize discovery of anonymizer nodes. Fi-
nally, our anonymous auditing prototype relies on over-
lay structure. It would be interesting to design an efficient
auditing mechanism for unstructured overlays.

References

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able Application Layer Multicast. InProceedings of ACM
SIGCOMM, Aug. 2002.

[2] Bittorrent, 2004. http://bitconjurer.org/BitTorrent/.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer over-
lay networks. InProc. OSDI 2002, Boston, MA, Dec.
2002.

[4] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Ex-
ploiting network proximity in peer-to-peer overlay net-
works. Technical Report MSR-TR-2002-82, Microsoft
Research, May 2002.

[5] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P systems scalable.
In ACM SIGCOMM, Aug. 2003.

[6] J. R. Douceur. The Sybil Attack. InProceedings for
the 1st International Workshop on Peer-to-Peer Systems
(IPTPS ’02), Cambridge, Massachusetts, Mar. 2002.

[7] M. J. Freedman, E. Sit, J. Cates, and R. Morris. Tarzan:
A Peer-to-Peer Anonymizing Network Layer. InProceed-
ings of IPTPS ’02, Cambridge, Massachusetts, Mar. 2002.

[8] The Gnutella protocol specification, 2000.
http://dss.clip2.com/GnutellaProtocol04.pdf.

[9] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Rat-
nasamy, S. Shenker, and I. Stoica. The impact of DHT
routing geometry on resilience and proximity. InACM
SIGCOMM, Aug. 2003.

[10] K. Hildrum and J. Kubiatowicz. Asymptotically Efficient
Approaches to Fault-Tolerance in Peer-to-Peer Networks.
In 17th International Symposium on Distributed Comput-
ing, Oct. 2003.

[11] Y. hua Chu, S. G. Rao, and H. Zhang. A Case For End
System Multicast. InProc. of ACM Sigmetrics, pages 1–
12, Santa Clara, CA, June 2000.

[12] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole. Overcast: Reliable multicasting with
an overlay network. InProc. OSDI 2000, San Diego, Cal-
ifornia, 2000.

[13] KaZaa. http://www.kazaa.com/.

[14] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and
D. S. Wallach. AP3: Anonymization of Group Communi-
cation. InACM SIGOPS European Workshop, Sept. 2004.

[15] MSPastry. http://research.microsoft.com/˜antr/Pastry.

[16] OverNet, 2004. http://www.overnet.com/.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
SIGCOMM, Aug. 2001.

[18] S. Ratnasamy, S. Shenker, , and I. Stoica. Routing algo-
rithms for DHTs: Some open questions. InIPTPS, Mar.
2002.

[19] M. K. Reiter and A. D. Rubin. Anonymous Web trans-
actions with Crowds . Communications of the ACM,
42(2):32–48, Feb. 1999.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. InIFIP/ACM Middleware, Nov. 2001.

[21] A. Singh. Secure proximity aware routing. In1st IRIS
Workshop, Aug. 2003.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. InACM SIGCOMM,
Aug. 2001.

[23] E. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. InINFOCOM96, San Francisco,
California, 1996.

[24] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An Infrastructure for Fault-Resilient Wide-area Location
and Routing. Technical Report UCB-CSD-01-1141, U. C.
Berkeley, Apr. 2001.

