Progress \& Preservation Considered Boring! A Paean to Parametricity

Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS) Kaiserslautern and Saarbrücken, Germany

PLMW 2014
San Diego
≥ 5 talks this week related to parametricity and logical relations:

- Birkedal: Modular reasoning about concurrent higher-order imperative programs
- Brookes, O'Hearn, Reddy: The Essence of Reynolds
- Atkey: From parametricity to conservation laws, via Noether's theorem
- Atkey, Ghani, Johann: A relationally parametric model of dependent type theory
- Benton, Hofmann, Nigam: Abstract effects and proof-relevant logical relations

Parametricity: who needs it?

What are type systems good for?

torial

Types and
 Programming

Languages

Benjamin C. Pierce
(1) Detecting a certain class of runtime errors

- e.g., cannot apply an integer as if it were a function
- "Well-typed programs don't get stuck"

This is what syntactic type safety is all about.

Progress: If $e: A$, then $e \leadsto e^{\prime}$ or e is a value.
Preservation: If $e: A$ and $e \leadsto e^{\prime}$, then $e^{\prime}: A$.
(2) Data abstraction: modules, ADTs, classes, etc.

- Enforcing invariants on a module's private data structures
- Representation independence: should be able to change private data representation without affecting clients

Together, these properties are often called abstraction safety.

- Type safety does not imply abstraction safety!
(2) Parametricity $=$ Type safety + Abstraction safety
- Logical relations
= How we formally reason about parametricity

Why do we teach our students progress \& preservation rather than parametricity?

Until recently, parametricity was not developed enough to be able to account for ML-like languages, whereas P\&P scales easily...

- ... but this is no longer the case.

Parametricity is often presented using "scary" denotational semantics:

- It's not necessary; one can build logical relations directly over operational semantics

Why do we teach our students progress \& preservation rather than parametricity?

Until recently, parametricity was not developed

So there are no more excuses!

- It's not necessary; one can build logical relations directly over operational semantics

A simple motivating example

A simple motivating example: Enumeration types

Interface:

$$
\begin{aligned}
\mathrm{COLOR}=\exists \alpha .\{ & \text { red }: \alpha \\
& \text { blue }: \alpha \\
& \text { print }: \alpha \rightarrow \text { String }\}
\end{aligned}
$$

Intended behavior:
print red ~ "red" print blue ~ "blue"

A simple motivating example: Enumeration types

One implementation, with $\alpha=$ Nat:
ColorNat $=$ pack Nat, $\{$

$$
\text { red }=0,
$$

$$
\text { blue }=1 \text {, }
$$

print $=\lambda x$. match x with

$$
\begin{aligned}
0 & \Rightarrow \text { "red" } \\
1 & \Rightarrow \text { "blue" } \\
\left.\right|_{-} & \Rightarrow \text { "FAIL" }
\end{aligned}
$$

$$
\} \text { as COLOR }
$$

A simple motivating example: Enumeration types

One implementation, with $\alpha=$ Nat:
ColorNat $=$ pack Nat, $\{$

$$
\text { red }=0,
$$

$$
\text { blue }=1 \text {, }
$$

print $=\lambda x$. match x with

$$
\begin{aligned}
0 & \Rightarrow \text { "red" } \\
1 & \Rightarrow \text { "blue" } \\
\left.\right|_{-} & \Rightarrow \text { "FAIL" }
\end{aligned}
$$

$$
\text { \} as COLOR }
$$

A simple motivating example: Enumeration types

One implementation, with $\alpha=$ Nat:

Goal \#1: Enforcing Invariants

Prove that argument to print must be 0 or 1 , and thus it will never return "FAIL".

$$
\text { \} as COLOR }
$$

A simple motivating example: Enumeration types

Another implementation, with $\alpha=$ Bool:
ColorBool = pack Bool, \{

$$
\begin{aligned}
& \text { red = true, } \\
& \text { blue }=\text { false, }
\end{aligned}
$$

$$
\text { print }=\lambda x . \text { match } x \text { with }
$$

$$
\begin{gathered}
\text { true } \Rightarrow \text { "red" } \\
\text { | false } \Rightarrow \text { "blue" }
\end{gathered}
$$

\} as COLOR

A simple motivating example: Enumeration types

Another implementation, with $\alpha=$ Bool:

Goal \#2: Representation Independence

Prove that the two implementations of Color are contextually equivalent.

$$
\} \text { as COLOR }
$$

If we can prove

ColorNat $\equiv_{\text {ctx }}$ ColorBool: COLOR,

then since ColorBool's print function never returns "FAIL", that means ColorNat's print function never returns "FAIL".

More generally, Goal \#2 subsumes Goal \#1.

The trouble with type safety

Suppose our language had the following operator:

$$
\text { eqZero : } \forall \alpha . \alpha \rightarrow \text { Bool }
$$

with the semantics:

$$
\text { eqZero } v \leadsto \begin{cases}\text { true } & \text { if } v=0 \\ \text { false } & \text { otherwise }\end{cases}
$$

Suppose our language had the following operator:

$$
\text { eqZero : } \forall \alpha . \alpha \rightarrow \text { Bool }
$$

with the semantics:

$$
\text { eqZero } v \leadsto \begin{cases}\text { true } & \text { if } v=0 \\ \text { false } & \text { otherwise }\end{cases}
$$

Observation:

- eqZero IS type-safe

Suppose our language had the following operator:

$$
\text { eqZero : } \forall \alpha . \alpha \rightarrow \text { Bool }
$$

with the semantics:

$$
\text { eqZero } v \leadsto \begin{cases}\text { true } & \text { if } v=0 \\ \text { false } & \text { otherwise }\end{cases}
$$

Observation:

- eqZero IS type-safe but NOT abstraction-safe!

Consider a client that simply applies eqZero to red: unpack ??????? as $[\alpha,\{r e d, b l u e, p r i n t ~\}]$ in eqZero red

Consider a client that simply applies eqZero to red: unpack ColorNat as $[\alpha,\{$ red,blue, print $\}]$ in eqZero red

Consider a client that simply applies eqZero to red:
eqZero 0

Consider a client that simply applies eqZero to red:
true

Consider a client that simply applies eqZero to red: unpack ColorBool as $[\alpha,\{$ red,blue, print $\}]$ in eqZero red

Consider a client that simply applies eqZero to red:
eqZero true

Consider a client that simply applies eqZero to red:
false

Bottom Line

Type safety does not guarantee abstraction safety.

Logical relations to the rescue!

We say e_{1} and e_{2} are logically related at $\exists \alpha$.A (written $\mathrm{e}_{1} \approx \mathrm{e}_{2}: \exists \alpha$.A) if:

- There exists a "simulation relation" R between their private representations of α that is preserved by their operations (of type A)
- Intuition: $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in R$ means that v_{1} and v_{2} are two different representations of the same "abstract value"

We say e_{1} and e_{2} are logically related at $\exists \alpha$.A (written $\mathrm{e}_{1} \approx \mathrm{e}_{2}: \exists \alpha$.A) if:

- There exists a "simulation relation" R between their private representations of α that is preserved by their operations (of type A)
- Intuition: $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in R$ means that v_{1} and v_{2} are two different representations of the same "abstract value"

Theorem (Representation Independence)

If $\vdash \mathrm{e}_{1} \approx \mathrm{e}_{2}: A$, then $\vdash \mathrm{e}_{1} \equiv{ }_{\text {ctx }} \mathrm{e}_{2}: A$.

Returning to our motivating example, let's show:

\vdash ColorNat \approx ColorBool : COLOR

Proof that ColorNat and ColorBool are logically related

$$
\begin{aligned}
& \text { pack } N a t,\{ \\
& \text { red }=0, \\
& \text { blue }=1, \\
& \text { print }=\lambda x \ldots \\
& \} \text { as COLOR }
\end{aligned}
$$

$\left.\approx \begin{array}{|l}\text { pack Bool, }\{ \\ \text { red }=\text { true, } \\ \text { blue }=\text { false, } \\ \text { print }=\lambda x \ldots \\ \} \text { as COLOR }\end{array}\right]$
$\exists \alpha$. \{ red : α,
blue: α, print : $\alpha \rightarrow$ String $\}$

Proof that ColorNat and ColorBool are logically related

$$
\begin{aligned}
& \text { Pick } R=\{(0, \text { true }),(1, \text { false })\} \\
& \text { as our simulation relation for } \alpha \text {. }
\end{aligned}
$$

$\{$ red: α,
blue: α,
print : $\alpha \rightarrow$ String \}

Proof that ColorNat and ColorBool are logically related

$$
\begin{gathered}
\text { Pick } R=\{(0, \text { true }),(1, \text { false })\} \\
\text { as our simulation relation for } \alpha \text {. }
\end{gathered}
$$

$\{$ red : α,
blue: α,
print : $\alpha \rightarrow$ String $\}$

Proof that ColorNat and ColorBool are logically related

$$
\begin{gathered}
\text { Pick } R=\{(0, \text { true }),(1, \text { false })\} \\
\text { as our simulation relation for } \alpha \text {. }
\end{gathered}
$$

$\{$ red: α,
blue: α, print : $\alpha \rightarrow$ String $\}$

Proof that ColorNat and ColorBool are logically related

$$
\text { Pick } R=\{(0, \text { true }),(1, \text { false })\}
$$

as our simulation relation for α.

\{ red: α,
blue: α, print : $\alpha \rightarrow$ String $\}$

$$
\begin{gathered}
\text { Pick } R=\{(0, \text { true }),(1, \text { false })\} \\
\text { as our simulation relation for } \alpha \text {. }
\end{gathered}
$$

: $\alpha \rightarrow$ String

Pick $R=\{(0$, true $),(1$, false $)\}$
as our simulation relation for α.
Suppose $\alpha \mapsto R \vdash \mathrm{v}_{1} \approx \mathrm{v}_{2}: \alpha$.

: String

$$
\text { Pick } R=\{(0, \text { true }),(1, \text { false })\}
$$

as our simulation relation for α.

$$
\text { Suppose }\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in R
$$

: String

$$
\text { Pick } R=\{(0, \text { true }),(1, \text { false })\}
$$

as our simulation relation for α.

$$
\text { Case: } \mathrm{v}_{1}=0 \text { and } \mathrm{v}_{2}=\text { true. }
$$

: String

$$
\text { Pick } R=\{(0, \text { true }),(1, \text { false })\}
$$

as our simulation relation for α.

$$
\text { Case: } \mathrm{v}_{1}=1 \text { and } \mathrm{v}_{2}=\text { false. }
$$

: String

> Pick $R=\{(0$, true $),(1$, false $)\}$
> as our simulation relation for α.

QED!

OK, that was pretty trivial, let's not get too excited...
: String

The flip side: Client-side abstraction

In order for representation independence to work, clients must behave "parametrically".

- We must rule out non-parametric functions like eqZero.

In order for representation independence to work, clients must behave "parametrically".

- We must rule out non-parametric functions like eqZero.

Theorem (Abstraction)
 If $\vdash e: A$, then $\vdash e \approx e: A$.

This theorem looks weirdly trivial, but it is not!

- The logical relation only relates "well-behaved" terms, i.e., terms that are parametric and don't get stuck.
- Type safety falls out as an easy corollary.

Suppose $\vdash \mathrm{f}: \forall \alpha . \alpha \rightarrow$ Bool
$\vdash \mathrm{f}: \forall \alpha . \alpha \rightarrow$ Bool
$\vdash \mathrm{f} \approx \mathrm{f}: \forall \alpha . \alpha \rightarrow$ Bool

$$
\text { Pick } R=\mathrm{Val} \times \mathrm{Val}
$$

as our simulation relation for α.

$$
\begin{aligned}
& \vdash \mathrm{f}: \forall \alpha \cdot \alpha \rightarrow \text { Bool } \\
& \vdash \mathrm{f}
\end{aligned}
$$

$$
\text { Pick } R=\mathrm{Val} \times \mathrm{Val}
$$

as our simulation relation for α.

$$
\begin{aligned}
& \vdash \mathrm{f}: \forall \alpha . \alpha \rightarrow \text { Bool } \\
& \vdash \mathrm{f} \approx \mathrm{f}: \forall \alpha . \alpha \rightarrow \text { Bool } \\
& \alpha \mapsto R \vdash \mathrm{f} \approx \mathrm{f}: \alpha \rightarrow \mathrm{Bool} \\
& \forall \mathrm{v}_{1}, \mathrm{v}_{2} . \alpha \mapsto R \vdash \mathrm{f}\left(\mathrm{v}_{1}\right) \approx \mathrm{f}\left(\mathrm{v}_{2}\right) \text { : Bool }
\end{aligned}
$$

$$
\text { Pick } R=\mathrm{Val} \times \mathrm{Val}
$$

as our simulation relation for α.

$$
\begin{aligned}
& \vdash \mathrm{f}: \forall \alpha . \alpha \rightarrow \text { Bool } \\
& \vdash \mathrm{f} \approx \mathrm{f}: \forall \alpha . \alpha \rightarrow \text { Bool } \\
& \alpha \mapsto R \vdash \mathrm{f} \approx \mathrm{f}: \alpha \rightarrow \text { Bool } \\
& \forall \mathrm{v}_{1}, \mathrm{v}_{2} . \alpha \mapsto R \vdash \mathrm{f}\left(\mathrm{v}_{1}\right) \approx \mathrm{f}\left(\mathrm{v}_{2}\right) \text { : Bool }
\end{aligned}
$$

So f is a constant function, and cannot be eqZero!

$$
\text { Pick } R=\mathrm{Val} \times \mathrm{Val}
$$

as our simulation relation for α.

> This is an example of a free theorem (Wadler, 1989).

So f is a constant function, and cannot be eqZero!

Theorem (Representation Independence) If $\vdash \mathrm{e}_{1} \approx \mathrm{e}_{2}: A$, then $\vdash \mathrm{e}_{1} \equiv{ }_{c t x} \mathrm{e}_{2}: A$.

Theorem (Abstraction)
If $\vdash \mathrm{e}: A$, then $\vdash \mathrm{e} \approx \mathrm{e}: \mathrm{A}$.

Summary

"Type structure is a syntactic discipline for enforcing levels of abstraction."

- John Reynolds

Classic papers on parametricity

Reynolds (1983):

- Types, abstraction and parametric polymorphism
- Introduces parametricity and the abstraction theorem: one of the most important papers in PL history

Mitchell (1986):

- Representation independence and data abstraction
- Applies parametricity in order to prove representation independence for existential types

Wadler (1989):

- Theorems for free!
- Applies parametricity in order to prove many interesting "free theorems" about universal types

Research on parametricity (a very rough picture)

Going beyond System F

- Expanding the theory of parametricity to encompass more sophisticated and/or realistic language features

Universalism

- Exploring properties that hold of all terms of a certain (usually universal) type, cf. Wadler's free theorems
- Do these theorems still hold in languages with effects?
- What interesting free theorems do "sexy" types have?

Existentialism

- Exploring the theory of representation independence in languages with state, continuations, concurrency, etc.
- Applications to verification (e.g., certified compilers)

Kennedy (1997):

- Relational parametricity and units of measure
- Presents types for units of measure (now in $F \sharp$), and explains their benefits in terms of free theorems

Johann, Voigtländer (2004):

- Free theorems in the presence of seq
- Shows that free theorems are not so free, even in a pure language like Haskell, due to the strictness operator seq

Atkey (2012):

- Relational parametricity for higher kinds
- Extends parametricity to higher kinds using "reflexive graphs", but without explicit category theory

Recommended existentialist reading (if you tire of Camus)

Pitts, Stark (1998):

- Operational reasoning for functions with local state
- Presents "Kripke logical relation" for representation independence in simplified ML-like language

Appel, McAllester (2001):

- An indexed model of recursive types for foundational proof-carrying code
- Proposes the "step-indexed" logical-relations model, now an essential tool in scaling parametricity to real languages

Ahmed, Dreyer, Rossberg (2009):

- State-dependent representation independence
- First paper to scale parametricity \& rep. ind. to a full-blown ML-like language (μ, \forall, \exists, higher-order state)

A little advice...

Don't be afraid of working on an "old, hard" problem!

The problem may not be as hard as it seems

- Just because famous researchers X, Y and Z couldn't solve it doesn't mean you can't!
- It might not require superhuman technical abilities to make progress, just a fresh perspective and the "right" set of abstractions.

It can be a gold mine

- Deep problems lead to other deep problems, thus guaranteeing you won't run out of things to work on.
- e.g., I would never have guessed when we wrote our POPL'09 paper that our ideas would be relevant to verifying lock-free concurrent data structures, or compiler correctness, or security, or...

Many of the world's experts on parametricity are here. Talk to them!

Here's a starting point:
http://www.mpi-sws.org/~dreyer/parametric

