
Progress & Preservation Considered Boring!
A Paean to Parametricity

Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

PLMW 2014
San Diego

Parametricity at POPL 2014

≥ 5 talks this week related to parametricity and
logical relations:

Birkedal: Modular reasoning about concurrent
higher-order imperative programs

Brookes, O’Hearn, Reddy: The Essence of Reynolds

Atkey: From parametricity to conservation laws, via
Noether’s theorem

Atkey, Ghani, Johann: A relationally parametric model
of dependent type theory

Benton, Hofmann, Nigam: Abstract effects and
proof-relevant logical relations

Parametricity: who needs it?

What are type systems good for?

What are type systems good for?

(1) Detecting a certain class of runtime errors
e.g., cannot apply an integer as if it were a function

“Well-typed programs don’t get stuck”

This is what syntactic type safety is all about.

Progress: If e : A, then e ; e ′ or e is a value.
Preservation: If e : A and e ; e ′, then e ′ : A.

What are type systems good for?

(2) Data abstraction: modules, ADTs, classes, etc.
Enforcing invariants on a module’s private data structures

Representation independence: should be able to change
private data representation without affecting clients

Together, these properties are often called
abstraction safety.

Points of this talk

1 Type safety does not imply abstraction safety!

2 Parametricity = Type safety + Abstraction safety

3 Logical relations
= How we formally reason about parametricity

Why do we teach our students progress & preservation
rather than parametricity?

Until recently, parametricity was not developed
enough to be able to account for ML-like languages,
whereas P&P scales easily. . .

. . . but this is no longer the case.

Parametricity is often presented using “scary”
denotational semantics:

It’s not necessary; one can build logical relations directly
over operational semantics

So there are no more excuses!

Why do we teach our students progress & preservation
rather than parametricity?

Until recently, parametricity was not developed
enough to be able to account for ML-like languages,
whereas P&P scales easily. . .

. . . but this is no longer the case.

Parametricity is often presented using “scary”
denotational semantics:

It’s not necessary; one can build logical relations directly
over operational semantics

So there are no more excuses!

A simple motivating example

A simple motivating example: Enumeration types

Interface:

COLOR = ∃α. { red : α,
blue : α,
print : α→ String }

Intended behavior:

print red ; "red"

print blue ; "blue"

A simple motivating example: Enumeration types

One implementation, with α = Nat:

ColorNat = pack Nat, {
red = 0,
blue = 1,
print = λx . match x with

| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

} as COLOR

Goal #1: Enforcing Invariants

Prove that argument to print must be 0 or 1,
and thus it will never return "FAIL".

A simple motivating example: Enumeration types

One implementation, with α = Nat:

ColorNat = pack Nat, {
red = 0,
blue = 1,
print = λx . match x with

| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

} as COLOR

Goal #1: Enforcing Invariants

Prove that argument to print must be 0 or 1,
and thus it will never return "FAIL".

A simple motivating example: Enumeration types

One implementation, with α = Nat:

ColorNat = pack Nat, {
red = 0,
blue = 1,
print = λx . match x with

| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

} as COLOR

Goal #1: Enforcing Invariants

Prove that argument to print must be 0 or 1,
and thus it will never return "FAIL".

A simple motivating example: Enumeration types

Another implementation, with α = Bool:

ColorBool = pack Bool, {
red = true,
blue = false,
print = λx . match x with

| true ⇒ "red"

| false ⇒ "blue"

} as COLOR

Goal #2: Representation Independence

Prove that the two implementations of Color
are contextually equivalent.

A simple motivating example: Enumeration types

Another implementation, with α = Bool:

ColorBool = pack Bool, {
red = true,
blue = false,
print = λx . match x with

| true ⇒ "red"

| false ⇒ "blue"

} as COLOR

Goal #2: Representation Independence

Prove that the two implementations of Color
are contextually equivalent.

Representation independence subsumes invariants

If we can prove

ColorNat ≡ctx ColorBool : COLOR,

then since ColorBool’s print function never returns "FAIL",
that means ColorNat’s print function never returns "FAIL".

More generally, Goal #2 subsumes Goal #1.

The trouble with type safety

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : ∀α. α→ Bool

with the semantics:

eqZero v ;

{
true if v = 0

false otherwise

Observation:

eqZero IS type-safe but NOT abstraction-safe!

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : ∀α. α→ Bool

with the semantics:

eqZero v ;

{
true if v = 0

false otherwise

Observation:

eqZero IS type-safe

but NOT abstraction-safe!

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : ∀α. α→ Bool

with the semantics:

eqZero v ;

{
true if v = 0

false otherwise

Observation:

eqZero IS type-safe but NOT abstraction-safe!

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ??????? as [α,{red,blue,print}] in
eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorNat as [α,{red,blue,print}] in
eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorNat as [α,{red,blue,print}] in
eqZero 0

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorNat as [α,{red,blue,print}] in
true

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [α,{red,blue,print}] in
eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [α,{red,blue,print}] in
eqZero true

Bottom Line

Type safety does not guarantee abstraction safety.

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [α,{red,blue,print}] in
false

Bottom Line

Type safety does not guarantee abstraction safety.

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [α,{red,blue,print}] inBottom Line

Type safety does not guarantee abstraction safety.

Logical relations to the rescue!

Logical relations and representation independence

We say e1 and e2 are logically related at ∃α.A
(written e1 ≈ e2 : ∃α.A) if:

There exists a “simulation relation” R between their
private representations of α that is preserved by their
operations (of type A)

Intuition: (v1, v2) ∈ R means that v1 and v2 are two
different representations of the same “abstract value”

Theorem (Representation Independence)

If ` e1 ≈ e2 : A, then ` e1 ≡ctx e2 : A.

Logical relations and representation independence

We say e1 and e2 are logically related at ∃α.A
(written e1 ≈ e2 : ∃α.A) if:

There exists a “simulation relation” R between their
private representations of α that is preserved by their
operations (of type A)

Intuition: (v1, v2) ∈ R means that v1 and v2 are two
different representations of the same “abstract value”

Theorem (Representation Independence)

If ` e1 ≈ e2 : A, then ` e1 ≡ctx e2 : A.

Proof that ColorNat and ColorBool are logically related

Returning to our motivating example, let’s show:

` ColorNat ≈ ColorBool : COLOR

Proof that ColorNat and ColorBool are logically related

`

pack Nat, {
red = 0,
blue = 1,
print = λx
} as COLOR

≈

pack Bool, {
red = true,
blue = false,
print = λx
} as COLOR

:
∃α. { red : α,

blue : α,
print : α→ String }

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

{
red = 0,

blue = 1,

print = λx

}

≈

{
red = true,

blue = false,

print = λx

}

:

{ red : α,

blue : α,

print : α→ String }

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

{
red = 0,

blue = 1,

print = λx

}

≈

{
red = true,

blue = false,

print = λx

}

:

{ red : α,

blue : α,

print : α→ String }

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

{
red = 0,

blue = 1,

print = λx

}

≈

{
red = true,

blue = false,

print = λx

}

:

{ red : α,

blue : α,

print : α→ String }

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

{
red = 0,

blue = 1,

print = λx

}

≈

{
red = true,

blue = false,

print = λx

}

:

{ red : α,

blue : α,

print : α→ String }

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

λx . match x with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

λx . match x with
| true ⇒ "red"

| false ⇒ "blue"

: α→ String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Suppose α 7→R ` v1 ≈ v2 : α.

α 7→R `

match v1 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match v2 with
| true ⇒ "red"

| false ⇒ "blue"

: String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Suppose (v1, v2) ∈ R .

α 7→R `

match v1 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match v2 with
| true ⇒ "red"

| false ⇒ "blue"

: String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Case: v1 = 0 and v2 = true.

α 7→R `

match 0 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match true with
| true ⇒ "red"

| false ⇒ "blue"

: String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Case: v1 = 1 and v2 = false.

α 7→R `

match 1 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match false with
| true ⇒ "red"

| false ⇒ "blue"

: String

QED!
OK, that was pretty trivial, let’s not get too excited. . .

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Case: v1 = 1 and v2 = false.

α 7→R `

match 1 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match false with
| true ⇒ "red"

| false ⇒ "blue"

: String

QED!
OK, that was pretty trivial, let’s not get too excited. . .

The flip side: Client-side abstraction

In order for representation independence to work,
clients must behave “parametrically”.

We must rule out non-parametric functions like eqZero.

Theorem (Abstraction)

If ` e : A, then ` e ≈ e : A.

This theorem looks weirdly trivial, but it is not!
The logical relation only relates “well-behaved” terms,
i.e., terms that are parametric and don’t get stuck.

Type safety falls out as an easy corollary.

The flip side: Client-side abstraction

In order for representation independence to work,
clients must behave “parametrically”.

We must rule out non-parametric functions like eqZero.

Theorem (Abstraction)

If ` e : A, then ` e ≈ e : A.

This theorem looks weirdly trivial, but it is not!
The logical relation only relates “well-behaved” terms,
i.e., terms that are parametric and don’t get stuck.

Type safety falls out as an easy corollary.

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose ` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Summary

Theorem (Representation Independence)

If ` e1 ≈ e2 : A, then ` e1 ≡ctx e2 : A.

Theorem (Abstraction)

If ` e : A, then ` e ≈ e : A.

“Type structure is a syntactic discipline
for enforcing levels of abstraction.”

– John Reynolds

Summary

Theorem (Representation Independence)

If ` e1 ≈ e2 : A, then ` e1 ≡ctx e2 : A.

Theorem (Abstraction)

If ` e : A, then ` e ≈ e : A.

“Type structure is a syntactic discipline
for enforcing levels of abstraction.”

– John Reynolds

Classic papers on parametricity

Reynolds (1983):
Types, abstraction and parametric polymorphism

Introduces parametricity and the abstraction theorem:
one of the most important papers in PL history

Mitchell (1986):
Representation independence and data abstraction

Applies parametricity in order to prove representation
independence for existential types

Wadler (1989):
Theorems for free!

Applies parametricity in order to prove many interesting
“free theorems” about universal types

Research on parametricity (a very rough picture)

Going beyond System F
Expanding the theory of parametricity to encompass
more sophisticated and/or realistic language features

Universalism
Exploring properties that hold of all terms of a certain
(usually universal) type, cf. Wadler’s free theorems

Do these theorems still hold in languages with effects?

What interesting free theorems do “sexy” types have?

Existentialism
Exploring the theory of representation independence in
languages with state, continuations, concurrency, etc.

Applications to verification (e.g., certified compilers)

Recommended universalist reading

Kennedy (1997):
Relational parametricity and units of measure

Presents types for units of measure (now in F]),
and explains their benefits in terms of free theorems

Johann, Voigtländer (2004):
Free theorems in the presence of seq

Shows that free theorems are not so free, even in a pure
language like Haskell, due to the strictness operator seq

Atkey (2012):
Relational parametricity for higher kinds

Extends parametricity to higher kinds using
“reflexive graphs”, but without explicit category theory

Recommended existentialist reading (if you tire of Camus)

Pitts, Stark (1998):
Operational reasoning for functions with local state

Presents “Kripke logical relation” for representation
independence in simplified ML-like language

Appel, McAllester (2001):
An indexed model of recursive types for
foundational proof-carrying code

Proposes the “step-indexed” logical-relations model, now
an essential tool in scaling parametricity to real languages

Ahmed, Dreyer, Rossberg (2009):
State-dependent representation independence

First paper to scale parametricity & rep. ind. to
a full-blown ML-like language (µ, ∀, ∃, higher-order state)

A little advice. . .

Don’t be afraid of working on an “old, hard” problem!

The problem may not be as hard as it seems
Just because famous researchers X, Y and Z couldn’t
solve it doesn’t mean you can’t!

It might not require superhuman technical abilities to
make progress, just a fresh perspective and the “right” set
of abstractions.

It can be a gold mine
Deep problems lead to other deep problems, thus
guaranteeing you won’t run out of things to work on.

e.g., I would never have guessed when we wrote our
POPL’09 paper that our ideas would be relevant to
verifying lock-free concurrent data structures,
or compiler correctness, or security, or. . .

The Parametric Facebook

Many of the world’s experts on parametricity are
here. Talk to them!

Here’s a starting point:

http://www.mpi-sws.org/~dreyer/parametric

http://www.mpi-sws.org/~dreyer/parametric

