
A Type System for Recursive Modules

Derek Dreyer
Toyota Technological Institute

Chicago, Illinois, USA
dreyer@tti-c.org

Abstract
There has been much work in recent years on extending ML with
recursive modules. One of the most difficult problems in the devel-
opment of such an extension is thedouble visionproblem, which
concerns the interaction of recursion and data abstraction. In pre-
vious work, I defined a type system called RTG, which solves the
double vision problem at the level of a System-F-style core calcu-
lus. In this paper, I scale the ideas and techniques of RTG to the
level of a recursive ML-style module calculus called RMC, thus
establishing that no tradeoff between data abstraction andrecur-
sive modules is necessary. First, I describe RMC’s typing rules
for recursive modules informally and discuss some of the design
questions that arose in developing them. Then, I present thefor-
mal semantics of RMC, which is interesting in its own right. The
formalization synthesizes aspects of both the Definition and the
Harper-Stone interpretation of Standard ML, and includes anovel
two-pass algorithm for recursive module typechecking in which the
coherence of the two passes is emphasized by their representation
in terms of the same set of inference rules.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract data
types, Modules, Recursion; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Type structure

General Terms Design, Languages, Theory

Keywords Type systems, modules, recursion, abstract data types

1. Introduction
The ML module system (MacQueen 1984), while esteemed for its
strong support for data abstraction and code reuse, has alsobeen
criticized for lacking a feature common to less sophisticated mod-
ule systems—namely,recursive modules. The absence of recursive
modules in ML means that programmers are forced to consoli-
date mutually recursive code and type definitions within a single
module, often at the expense of modularity. Consequently, in re-
cent years, language researchers have proposed and implemented
a variety of recursive module extensions to ML in the interest of
remedying this deficiency (Russo 2001; Leroy 2003; Dreyer 2005;
Nakata and Garrigue 2006).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’07, October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

My Ph.D. thesis (Dreyer 2005) examines several problems in
the design of a recursive module construct that all of the aforemen-
tioned proposals have had to deal with in one way or another. By
far the most serious of these problems is one that involves the inter-
action of recursion and data abstraction. Inside a recursive module,
one may wish to define an abstract data type in a context where
a name for the type already exists, and there is no way in tradi-
tional accounts of ML-style type generativity to connect the old
name with the new definition. I call this thedouble visionprob-
lem because it has the effect that the programmer sees two distinct
versions of the same type when they should only see one. (A moti-
vating example of the problem is given in Section 2.1.)

Double vision has proven difficult to cure. To the extent that
existing recursive module proposals address the problem, they do
so either by imposing severe restrictions on the use of data ab-
straction within recursive module definitions (Crary et al.1999;
Russo 2001), or else by implementing tricky typechecking maneu-
vers that are difficult to formalize cleanly and only work in certain
cases (Leroy 2003; Dreyer 2005). Neither of these approaches is
satisfactory. (An overview of existing proposals is given in Sec-
tion 2.2.)

In recent work (Dreyer 2007b), I argued that the reason double
vision is a difficult problem is that the classical type-theoretic inter-
pretation of abstract data types—namely, as packages of existential
type (Mitchell and Plotkin 1988)—is inadequate for expressing the
kinds of recursive abstract data types that arise naturallyin the con-
text of recursive modules. I defined a type system called RTG (for
Recursive Type Generativity) that addresses this deficiency at the
level of a System-F-style core calculus. (The basic idea of RTG is
presented in Section 2.3.) Although I gave several examplesto sug-
gest how recursive modules may be encoded in RTG, I left the de-
velopment of a general recursive module semantics to futurework.

The primary contribution of this paper is to fulfill the promise of
RTG by scaling its ideas and techniques to the level of a recursive
ML-style module calculus, which I call RMC. The semantics of
RMC successfully avoids the double vision problem without plac-
ing any undue restrictions on the use of data abstraction in recur-
sive modules. While RMC’s approach to solving double visionis
based closely on that of RTG, the typechecking of RMC programs
is more complex than that of RTG programs (much as the type-
checking of ML modules is more complex than that of System F).
In Section 3, I describe recursive module typechecking at anin-
formal level, and provide a number of examples and exercisesto
demonstrate its subtleties. I also discuss a number of the techni-
cal issues that arose (aside from the handling of double vision) in
working out a semantics for a general recursive module language.

The formalization of the RMC type system (presented in full
detail in Section 4) is interesting on several levels. First, it exhibits
a hybrid of the two main approaches to defining the semantics of
ML-style modules: namely, the Definition of Standard ML (Milner
et al. 1997) and the type-theoretic interpretation of Harper and

Stone (2000). On one hand, I define the dynamic semantics of
RMC by means of a Harper-Stone-styleelaborationrelation (aka
evidence translation) into an “internal” type system. This internal
type system is just RTG extended with a primitive module system.
The main benefit of this approach is that it enables us to establish
the type soundness of RMC as a corollary of the type soundness
of RTG. In contrast, while Definition-style formalisms typically
employ a “direct” big-step evaluation semantics, type soundness
of these formalisms is more difficult to prove (Tofte 1988).

On the other hand, the interpretations of modules and signa-
tures in RMC are much closer in detail to thesemantic objects
of the Definition than to thetranslucent-sums/manifest-typesfor-
malism (Harper and Lillibridge 1994; Leroy 1994) employed by
Harper and Stone. Moreover, like the Definition’s typing rules, the
RMC typing rules are completely self-contained and can be ex-
plained to the programmer independently of the evidence transla-
tion into the internal RTG type system. In fact, that is precisely how
I will present the rules in this paper, leaving most of the details
of evidence translation to the companion technical report (Dreyer
2007a). Thus, RMC’s formalization combines the benefits of both
definitional approaches.

A second interesting feature of RMC’s static semantics is its
streamlined presentation of recursive module typechecking. The
proper handling of double vision seems to demand the use of a
two-pass algorithm for typechecking certain kinds of modules—
the first (“static”) pass computes only the type components of the
module, while the second pass typechecks the full module. Asa
way of demonstrating the semantic coherence of these passes, I
formalize both of them using a single set of typing rules—theonly
difference is that the static pass omits some of the premisesof the
rules for the full pass. I believe the built-in coherence of these judg-
ments makes the semantics of RMC easier to understand than other
recursive module formalisms that involve multiple typechecking
passes (Nakata and Garrigue 2006; Dreyer 2005, 2006).

A key feature that RMC does not account for in its present form
is the ability to compile mutually recursive modules separately and
link them dynamically. None of the related work on recursiveML-
style modules supports this feature either. In prior work (Dreyer
2007b), I demonstrated that the RTG calculus is capable of encod-
ing separately compiled recursive modules, so I believe it will be
possible in the future to scale RMC to support separate compila-
tion. At the moment, however, it is unclear how best to introduce
this feature syntactically into a programmable module language,
and I consider it separable from the focus of the present work.

Detailed comparisons with related work on recursive modules
appear throughout the paper, particularly in Sections 2.2 and 3.
I conclude in Section 5 with further discussion of related work,
as well as directions for future work.

2. The Double Vision Problem
Crary et al. (1999) were the first to attempt to establish a type-
theoretic foundation for recursive ML-style modules. Perhaps the
most influential aspect of their work is that they set forth the two
main syntactic extensions to the ML module system that appear
(with minor variations) in every subsequent recursive module pro-
posal, including the present one.

The first is the recursive module construct itself, which hasthe
form rec (X : sig)mod . Here,mod is the module being recur-
sively defined,X is the module identifier by whichmod refers to
itself, andsig is the forward declarationsignature, which is used
as the signature ofX during the typechecking ofmod . Mutually
recursive modules are definable as a single recursive modulewith
multiple substructures.

The second extension is therecursively dependent signature(or
rds), which has the formrec (X) sig . The idea is thatX is a vari-

signature SA = sig
type u; type t;
val f : t -> u * t ...

end
signature SB = sig

type t; type u;
val g : t -> u * t ...

end
signature S =

rec (X) sig
structure A : SA where type u = X.B.u
structure B : SB where type t = X.A.t

end

structure AB = rec (X : S) struct
structure A :> (SA where type u = X.B.u) = struct
type u = X.B.u
type t = int
fun f (x:t) : u * t =

let val (y,z) = X.B.g(x+3) (* Error 1 *)

in (y,z+5) end (* Error 2 *)
...

end
structure B :> (SB where type t = X.A.t) = struct
type t = X.A.t
type u = bool
fun g (x:t) : u * t = ...X.A.f(...)...
...

end
end

Figure 1. Motivating Recursive Module Example

able by whichsig can refer recursively to themodulewhose sig-
naturesig is intended to describe. This functionality is critical if
we wish to describe the signatures of mutually recursive modules
with abstract type components, such as those in the motivating ex-
ample (below). Although several authors refer to rds’s as “recursive
signatures”, I concur with Crary et al. that this is misleading, as it
gives one the impression that the signatures can refer recursively to
themselves (rather than to the modules that inhabit them).

2.1 Motivating Example

Figure 1 presents a motivating example of a recursive modulethat
exhibits the double vision problem. So that this motivatingexample
may serve as a running example throughout the paper, it is concise
to the point of being contrived. For more realistically detailed
examples of recursive modules, see Dreyer (2005) and Nakataand
Garrigue (2006).

The recursive module in Figure 1 comprises two mutually re-
cursive substructuresA and B, with A providing an abstract type
componentt and a value componentf, andB providing an abstract
type componentu and a value componentg. In this example, the
types of both value components,A.f andB.g, refer to both type
componentsA.t andB.u. So that we may write down the signa-
ture for each module independently and bind it to a signatureiden-
tifier (SA andSB), each of these signatures includes a specification
of the type component from the other module. This is a standard
technique in ML programming, which Harper and Pierce (2005)
recently dubbedfibration.

When we write down the forward declaration signatureS, we
need a way to connect the two copies of each type component. For
this purpose, we employ a recursively dependent signature.Using
ML’s where type mechanism, we can reify the specification of
A.u so that it is transparently equal toX.B.u (and similarly so that
B.t is transparently equal toX.A.t).

Now we come to the recursive module definition itself. While
typechecking the body of the definition, we assume that the recur-
sive variableX has the forward declaration signatureS. Within the
definition of moduleA, the typet is defined to beint. The func-
tion f takes a valuex of type t as an argument (i.e., an integer)
and callsX.B.g on x+3. Unfortunately, this is not well-typed, be-
causeX.B.g expects a value of typeX.A.t, nott, andX.A.t is not
known to equalint. To the programmer, however, this may seem
bizarre, sinceX.A.t is merely a recursive reference tot, so the
two types should be indiscernible, shouldn’t they? This is the first
instance of the double vision problem. The second instance comes
on the following line of code. The call toX.B.g has returned a
valuez of typeX.A.t, which the functionf then tries to add5 to.
The typechecker will prevent it from doing so, though, for the same
reason as before—X.A.t does not equalint.

Intuitively, the problem here is obvious. The bodies ofA and
B should have access to different privileged information about the
type components ofX. Specifically,A should know thatX.A.t is
int, but it ought not know anything aboutX.B.u. Conversely,B
should know thatX.B.u is bool, but it ought not know anything
aboutX.A.t. However, it is far from obvious how to define a gen-
eral typing rule for recursive modules so thatX has different sig-
natures when typechecking different parts of the recursivemodule
definition.

2.2 Existing Approaches to Double Vision

Under all of the existing recursive module proposals, the program
in Figure 1 is rejected as ill-typed.

Crary et al. (1999) observe the double vision problem in their
original paper, although they do not refer to it as such. (Instead, they
call it the “trouble with opacity”.) Their response to the problem is
simply to restrict the forward declaration signature of a recursive
module to be transparent. In the case of our motivating example,
this means that the definitions ofA.t andB.u would need to be ex-
posed, effectively prohibiting either module from hiding its internal
data representation from the other. Aware of this, Crary et al. dis-
cuss informally several ideas for how this restriction might be lifted
in practice, but to my knowledge none of these ideas has been for-
mally fleshed out.

Russo (2001) defines a recursive module extension to Standard
ML, which he has implemented in the Moscow ML compiler.
Although Russo does not explicitly require forward declarations
to be transparent, other restrictions of his system implicitly do. In
particular, his typing rule forrec (X : sig)mod demands that, if a
type componentt is forward-declared abstractly insig , thenmod
must definet to be equal toX.t (i.e.,by writing type t = X.t).
While this clearly has the effect of avoiding double vision,it also
means thatt never gets defined anywhere!

This restriction makes it essentially impossible to forward-
declare abstract data types. It is worth noting that Russo makes
an exception for types that are defined by an algebraicdatatype
definition. If a type is forward-declared using adatatype spec-
ification, then the body of the recursive module must define the
corresponding type via SML’sdatatype copying construct,e.g.,
datatype t = datatype X.t. In some sense, though, this is the
exception that proves the rule—whilet in this case is technically
an abstract type, thedatatype specification oft in the forward
declaration signature exposes all oft’s data constructors, sot’s
internal representation is all but transparent.

Leroy (2003) describes informally a recursive module extension
that he implemented for OCaml. To permit abstract type specifica-
tions in forward declaration signatures, he sketches a typecheck-
ing algorithm that typechecks different mutually recursive modules
under different typing contexts. However, while his algorithm suc-
cessfully avoids double vision in certain cases, it only works for

type components that are defined internally bydatatype defini-
tions. It does not work for types that are defined internally by trans-
parent bindings (such asA.t andB.u in our motivating example)
or for types that are defined under more than one level of opaque
signature ascription. Moreover, there remains no formal account of
his algorithm.

Nakata and Garrigue (2006) propose a recursive module exten-
sion to ML, calledTraviata, that is significantly different from other
proposals in that it does not require recursive modules to have any
forward declaration at all. Nevertheless, as the authors freely admit,
their approach still suffers from the double vision problem. (In fact,
as I explain in Section 3.4, some of their examples only typecheck
becausetheir type system suffers from the double vision problem.)
The authors mention the existence of a workaround by which the
programmer may manually coerce values from one “double vision”
of a type component to the other (e.g.,fromX.A.t toint), but they
do not describe this workaround in any detail.

In my thesis (Dreyer 2005), I formally defined a recursive mod-
ule extension to ML, which I implemented in the TILT compiler.
My typechecking algorithm was an attempt to generalize the ap-
proach taken by Leroy’s OCaml extension into a more complete
solution to the double vision problem. Figure 1 does not typecheck
under my TILT extension, but only because my semantics for re-
cursively dependent signatures was overly restrictive anddid not
permit one to write the signatureS in its fibered form. A slight
variant of this example—using an unfibered forward declaration
signature—doestypecheck in TILT.

Nevertheless, since my thesis does not contain a clean type-
theoretic account of the double vision problem, the formalization
of my TILT extension is extremely long and complex. It employs a
variety ofad hoctricks, such as “meta-signatures” containing both
“public” and “private” interfaces for subcomponents, and inference
rules that make critical use of graphical boxes drawn aroundchunks
of the typing context. In short, while my TILT extension success-
fully avoids the double vision problem (as far as I know), itsfor-
malization is incomprehensible. The desire for a simpler solution
was the primary motivation for my work on the RTG type system.

2.3 The RTG Type System

In traditional accounts of data abstraction, including both existen-
tial types (Mitchell and Plotkin 1988) and ML-style module sys-
tems (MacQueen 1984), one can only create a new abstract type
name if one supplies a definition along with it. In the contextof
recursive modules, this joining together of type creation and type
definition engenders the double vision problem by preventing one
from providing a definition for a pre-existing type name. Forin-
stance, in the case of our motivating example, double visionarises
because moduleA wants to define an abstract typet in a scope
where a name for that type—X.A.t—already exists. The key idea
of my RTG type system (Dreyer 2007b) is to separate the gener-
ation of the name for an abstract type from the definition of the
type, so that a type name may be created and referred to even ifits
definition is not yet available.

This approach is best illustrated by example. Consider Figure 2,
which demonstrates how the motivating example from Figure 1
would be encoded in RTG. (Actually, the encoding is in a variant
of RTG that includes a primitive module system. This variantis de-
fined formally in the companion technical report (Dreyer 2007a).)

Here,Σ is the RTG representation of the forward declaration
signatureS from Figure 1. The key difference is that the type com-
ponentsA.t andB.u of Σ are not abstract like those ofS—rather,
their specifications, written as[[= α :T]] and[[= β :T]], denote that
they are transparently equal to the free type variablesα and β.
These type variables are created and bound, before the recursive
moduleAB is defined, by invoking anew construct. Since thisnew

new α ↑T, β ↑T in
let AB = rec (X : Σ)
[A = def α := int in

[u = β, t = int, f = ..., ...] : ΣA,
B = def β := bool in

[t = α, u = bool, g = ..., ...] : ΣB]

in (* rest of program *)

where
ΣA

def

= [[u : [[= β :T]], t : [[= α :T]], f : [[α→ β ×α]], . . .]]

ΣB
def

= [[t : [[= α :T]], u : [[= β :T]], g : [[α→ β ×α]], . . .]]

Σ
def

= [[A : ΣA, B : ΣB]]

Figure 2. Encoding of Figure 1 in a Variant of RTG

construct does not actually supply a definition forα andβ, they are
consideredundefined, and are marked as such in the type context
during typechecking using an↑ binding.

In the recursive module body, the uses ofopaque signature
ascription(akasealing) have been replaced by RTG’s own sealing
construct, called thedef construct.1 ForA, what thisdef construct
does is to provide the type nameα with the definitionint, but to
only make that definition visible within the body of thedef. Within
A’s definition,α is considered equivalent toint, and thusX.A.t
is also considered equivalent toint sinceX.A.t is transparently
equal toα. This is the key to solving the double vision problem.
Upon leaving the scope ofA’s definition, however, the identity ofα
is returned to its abstract state, andA is added to the context with
signatureΣA. In addition, so that no subsequent code may attempt
to redefineα—a critical condition for type soundness—the context
binding forα is changed fromα ↑T to α ↓T. The typechecking
of B proceeds similarly.

In short, RTG provides a simple way of typechecking different
parts of the recursive module definition under typing contexts that
expose different privileged information concerning the identities of
X.A.t andX.B.u. This corresponds to the programmer’s natural
intuition about how a recursive module should be typechecked.

3. An Informal Overview of RMC Typechecking
In this section, I explain what is involved in scaling the ideas and
techniques of the RTG type system from the level of a System-
F-style core calculus to the level of an ML-style module system.
I begin in Section 3.1 with a simple informal explanation of how
recursive modules and sealed modules (the two main language
features on display in our running example) are typechecked. Then,
in the following sections, I explore some of the interestingdesign
questions that arise when one goes to work out the details.

Along the way, I test the reader’s understanding of the exposi-
tion by offering some simpleexercises concerning RMC semantics.
I strongly encourage the reader to attempt the exercises—or, fail-
ing that, to cheat by looking ahead to thedetailed solutions given
at the end of the paper—because the exercises (and their solutions)
help to illuminate a number of subtle aspects of RMC semantics.

3.1 Typechecking Recursive and Sealed Modules

Intuitively, the basic goal of the RMC type system is to typecheck
an RMC program such as the example in Figure 1 as if it were the
RTG program in Figure 2. To understand how this is achieved, let
us consider the major ways in which Figure 2 differs from Figure 1.

First of all, the success of RTG is based on its built-in func-
tionality for forward declaration of abstract types. Concretely, the

1 In (Dreyer 2007b) this is called theset construct.

typechecking of an RTG expression is done under the assumption
that the names of the abstract types the expression wants to define
have already been created and are bound as undefined (↑) in the typ-
ing context. The RMC type system relies on a similar functionality.
In the case of our motivating example, we will assume that when
we are typechecking the moduleAB, there exist two type variables
α andβ, which will representAB.A.t andAB.B.u, respectively,
and which are bound in the initial context ofAB as undefined.2

The names of these type variables are arbitrary—they are purely
semanticrepresentations ofAB’s abstract types,i.e., they play an
important role in typechecking but are not visible to the RMCpro-
grammer syntactically.

Second, the forward declaration signatureS in Figure 1 is
opaque, whereas the forward declarationΣ in Figure 2 is trans-
parent. To transformS into Σ, we need to reify the specifications
of S’s opaque type components to be transparently equal to their
definitions in the recursive module body. Under ordinary module
type systems this would be difficult, since the recursive module
body can (and, in the case of moduleAB, does) withhold the def-
initions of those components by defining them abstractly. How-
ever, under the RMC type system this is not an issue, since we
have arranged for those components to be named ahead of time.
For AB, the definitions ofA.t and B.u are simplyα and β (the
undefined type variables bound in the context). Correspondingly,
Σ is morally equivalent3 to S filled in with those definitions,i.e.,
S where type A.t = α and type B.u = β.

* * *
Exercise #1: Suppose that our example were modified so that the
definition of moduleB werenot sealed. What transparent signature
would S be transformed to in that case, and consequently what
effect would this have on the typechecking of the recursive module?

* * *
Third, sealed modules (such asAB.A andAB.B) in Figure 1 be-

comedef expressions in Figure 2. In order to typecheck a sealed
module as if it were adef expression, we first compute a type sub-
stitutionδ, mapping the names of the abstract types that the module
will define to their definitions in the module body (underneath the
sealing). For example, forAB.A, the computedδ would mapα to
int, and forAB.B, the computedδ would mapβ to bool. This
substitution is then applied to the typing context before typecheck-
ing the module body. Thus, when typechecking the body ofAB.A,
all references toα in the signature ofX are replaced byint; when
typechecking the body ofAB.B, all references toβ in the signa-
ture ofX are replaced bybool. In this way, each module’s secret
knowledge of certain type components is reflected in the context
under which it is typechecked.

To summarize, and also to number the steps of typechecking
for convenient reference later in the paper, here is how an RMC
recursive module of the formrec (X : sig)mod is typechecked:

1. AssumingX has signaturesig , compute the type components
of mod , and use these to look up the definitions of the type
components that are specified opaquely insig .

2. Use the information from the previous step to construct a trans-
parent forward declarationΣ, which is justsig with its opaque
type components reified with their definitions frommod .

3. After rebindingX in the context withΣ, typecheckmod .

4. Check thatmod ’s signature matches (is coercible to)Σ.

2 Arranging for these variables to “magically” appear in the context—in the
right number and with the right kinds—is not a problem. (See Section 4.5.)
3 I saymorallyequivalent becauseΣ is asemanticsignature, not asyntactic
RMC signature, but this is largely a technical point. The distinction between
syntactic and semantic signatures is explained in Section 4.

The typechecking of an opaquely sealed module,mod :> sig ,
proceeds as follows:

1. For each of the type components specified opaquely insig ,
there should be an abstract type variableα bound as undefined
in the context (with the appropriate kind).

2. Compute the type components ofmod , and use these to de-
termine a substitutionδ that maps the undefined type variables
from the first step to their definitions inmod .

3. After applyingδ to the typing context, typecheckmod .

4. Check thatmod ’s signature matches (is coercible to)sig .

* * *
Exercise #2: Suppose that the following is well-typed in RMC:

rec (X : sig structure A : sig end) struct
structure A = mod

end

Here,sig is an RMC signature, andmod is an RMC module. Also,
assume that neitherX norB appears free insig . Determine whether
or not the above recursive module would continue to be well-typed
if its body (structure A = mod) were replaced with:

(a). structure A :> sig = mod

(b). structure B :> sig = mod; structure A = B

(c). structure B = mod; structure A :> sig = B

3.2 Forward Declarations, Not Signature Ascriptions

One design point on which existing recursive module proposals
differ is the question of whether the forward declaration signature
in a recursive module definition should also serve as the exported
signature of the recursive module itself.

In Crary et al.’s foundational type system, recursive modules are
modeled as fixed-points at the level of modules. According tothis
interpretation,rec (X : sig)mod has signaturesig , as long asmod
hassig under the assumption thatX hassig . Although Crary et al.’s
is the only proposal to treat recursive modules explicitly as fixed-
points,4 several other proposals, including Leroy’s and the one in
my thesis, follow suit in treating the forward declarationsig as
the principal exported signature of the recursive module itself. In
contrast, Russo’s extension to Moscow ML treatssig merely as a
forward declaration, not as a sealing signature. In other words, it
allows the recursive module to export components that appear in
mod but are not forward-declared insig.

I believe that Russo’s approach is a clear win, and RMC adopts
it. If the author of a recursive module wishes to seal the bodyof the
recursive module with the forward declaration signature, it is very
easy to do so explicitly,e.g.,by writingrec (X : sig) (mod :> sig).
Moreover, if a recursive module is only “slightly” recursive—e.g.,
if there is only one value componentf, say, that needs to be
referred to recursively through the recursive module variable X—
then Russo’s approach only requires one to specify the type of that
one componentf in the forward declaration signature. There is no
need to forward-declare components of the module that will not be
referred to recursively.

* * *
Exercise #3: In the example in Figure 1, is it necessary to use
a recursively dependent signature to defineS? Is there a simpler
signature that could be used as a forward declaration, without
effecting any changes to the exported signature ofAB?

4 Most other proposals employ a Scheme-style backpatching semantics for
module-level recursion, as does the present one. One exception is the pro-
posal of Nakata and Garrigue (2006), which uses a call-by-name semantics
for modules.

3.3 Computing the Type Components of a Module

A central step in both typing rules described above is the onein
which we compute the type components of the underlying module
mod . I will refer to this phase as thestatic typecheckingof mod .
In an earlier version of the RMC system (Dreyer 2006), which I
discuss in Section 5.1, this static typechecking pass was formalized
using a completely different set of rules from the regular module
typing judgment, and I found that this made the language definition
seem somewhatad hocand confusing. (It is a similar problem that
plagues the typechecking algorithm in my thesis (Dreyer 2005).)

As a result, I have sought to develop a moredeclarativeac-
count of module typechecking. In particular, my initial idea was
that the static typechecking steps could consist merely of nondeter-
ministically guessingthe type components ofmod . For example,
in typechecking the sealed definition ofAB.A from Figure 1, one
might simplyguessthat the typet was defined internally asint.
That one had guessedcorrectly could be verified after the fact by
making sure that the underlying module matched a signature with t
transparently equal toint. In practice, one would of course need to
supply a deterministic algorithm in order to perform the guessing,
but the declarative definition of the type system would not need to
specify the gory details of this algorithm.

Unfortunately, this idea does not seem to work, and it is instruc-
tive to see why. First, consider the following example:

rec (X : sig type t end)
struct type t = X.t end

We run into trouble here if we try to nondeterministically guess
the definition oft in the recursive module body. If we guess that
t is int, and we typecheck the body under a context whereX has
the signaturesig type t = int end—as demanded by step 3
of the recursive module typing rule described above—we find that
the body has the same signature. However, if we guess thatt is
bool, the module still typechecks, but this time with signature
sig type t = bool end. Hence, we lose the property that mod-
ules have principal signatures.

In short, the problem is that the recursive definition of the type
t in this example isnon-contractive, i.e., there are infinitely many
ways to solve it. Ideally, we would like to demand that the defini-
tions of the type components be contractive. But this demandis a
catch-22: we cannot evenstateit unless we have already computed
the definitions of the type components, which is precisely what we
were trying to avoid doing by nondeterministically guessing them.

A seemingly simple fix is to require that when we guess the type
components of a module, the guess we make is theuniqueguess
that enables typechecking to succeed. Such a restriction would ban-
ish the above example from consideration. However, this modified
approach causes a different kind of trouble. Consider this second
example:

rec (X : sig type ’a t end) struct
type ’a t = ’a X.t
val n : int t = 3
val b : bool t = true

end

In this example, although the type constructort is defined in the
same non-contractive way as before, there is a unique solution for
it so that the whole recursive module typechecks. Specifically, the
type annotations onn andb constrain the definition oft to be the
identity function,λα.α. Figuring this out requires a form of higher-
order unification, which in general is undecidable (Goldfarb 1981).

These types of examples have led me to abandon the idea of
guessing the type components of a module nondeterministically.
Fortunately, I have found a way to compute the type components
of a module (deterministically) that does not complicate the lan-

guage definition with a whole set of extra rules. The basic idea
is that the inference rules that implement static typechecking are
the same as those for normal typechecking, except with some of
the premises—such as the ones concerningvalue components of
modules—removed. As a result, it is only necessary to write down
one set of inference rules for both the regular and static module
typechecking judgments. I leave further discussion of thistech-
nique until Section 4.4.

In both of the problematic examples presented in this section,
the RMC static typechecking judgment would successfully com-
pute the type componentt in the body of the recursive module to
equalX.t. Whether such a cyclic type definition is considered ac-
ceptable is then a separate question, examined in the next section.

* * *

Exercise #4:Can you come up with a variant of the second prob-
lematic example above that achieves the same effect—i.e., there is
a unique way of guessingX.t correctly, and figuring it out involves
higher-order unification—but where the module in your variant
only has type components, no value components?

3.4 Cyclic Type Definitions

Recursive modules provide a natural means of writing down cyclic
type definitions that span module boundaries. However, existing
recursive module proposals differ on what kinds of cyclic type
definitions they consider permissible.

One approach is to allowtransparenttype cycles,i.e.,type com-
ponents that are defined transparently in terms of themselves, such
as type t = int * X.t. This is the approach taken by Crary
et al. (1999), but it requires them to extend their type theory with
support for so-calledequi-recursivetype constructors of higher
kind.5 The meta-theory of higher-kinded equi-recursive type con-
structors is not well-understood (in particular, it is not known
whether type equivalence in their presence is decidable).

A more restrictive approach is the one taken by Leroy (2003)
and Nakata and Garrigue (2006), who permit cycles between trans-
parent type definitions, but only if they are intercepted by the use
of opaque sealing. For instance, suppose we were to modify the
example in Figure 1 so that internallyA.t were defined to equal
int * X.A.t. The resulting cyclic definition would be permissi-
ble in OCaml and Traviata because the type cycle is broken by the
use of opaque sealing in the definition of moduleA.

However, the ability to express such recursive type definitions in
these languages is intricately tied to their failure to handle double
vision. For example, if these languages were to solve the double
vision problem, then in the definition of moduleA, the typeX.A.t
would be seen as transparently equal toint * X.A.t. This would
constitute an unbroken transparent type cycle, which OCamland
Traviata treat as illegal.

In the interest of adopting a simple policy concerning type cy-
cles that is compatible with solving double vision, my design for
RMC follows RTG in requiring that all type cycles go through at
least one component that is defined by adatatype declaration.
That is, even if all uses of opaque sealing are stripped away,there
must still be no transparent type cycles. This policy has thead-
vantage that recursive modules do not introduce any new forms of
(equi-)recursive type definitions that are not already expressible in
the underlying core language of ML—they just provide the ability
to decompose ML’s existing forms of recursive type definitions into
modular components.

That said, one consequence of following RTG is that the type-
checking of certain constructs in RMC is somewhat conservative.

5 Crary et al. coined the termequi-recursiveto describe recursive types
whose equational theory follows the style of Amadio and Cardelli (1993).

Specifically, in order to ensure that no transparent type cycles arise
in the presence of data abstraction, (1) the internal definitions of
abstract types in a sealed module are not allowed to depend on
any type variables bound as undefined (↑) in the context, and (2)
in functor applications, the type components of the argument mod-
ule may not depend on any type variables bound as undefined (↑)
in the context. (These restrictions are derived directly from similar
restrictions in RTG, and I refer the reader to (Dreyer 2007b)for de-
tailed discussion.) Nevertheless, as demonstrated in the RTG paper,
this approach is sufficient to typecheck common uses of sealing and
functors in recursive modules—e.g.,Okasaki’sbootstrapped heap
example (Okasaki 1998). I am currently investigating ways to relax
this restriction by generalizing RTG’s treatment of type cycles.

Finally, it is important to mention how RMC defines and de-
tects a transparent type cycle. The question arises once we have
computed the type components of some module, at which point we
typically need to use them in order to look up the definitions of
opaque type components in some signature. RMC’s policy is that
there must be some way of ordering the type components we are
looking up so that each component’s definition only depends recur-
sively on the previous ones in the ordering. For example, consider:

rec (X : sig type t; type ’a u end) struct
type t = bool X.u
type ’a u = ’a

end

This module is well-typed in RMC because the components of the
module can be named in a certain order (u, thent) so that their
definitions are acyclic—t’s recursive dependency onX.u is OK
becauseu comes earlier in the ordering. In contrast, consider:

rec (X : sig type t; type ’a u end) struct
type t = X.t X.u
type ’a u = ’a

end

In this case, the recursive module typing rule rejects the program
because the definition oft refers cyclically to itself (viaX.t).

It is worth noting that RMC also rejects similar examples where
no “true” transparent cycle exists, such as:

rec (X : sig type t; type ’a u end) struct
type t = X.t X.u
type ’a u = int

end

I do not consider this to be a serious limitation. In the aboveex-
ample, it does not seem like a serious hardship for the programmer
to remove this cyclic dependency by replacing the module’s def-
inition of t with type t = int. Alternatively, the programmer
could make the type definitiontype ’a u = int explicit in the
forward declaration signature, in which case the static typecheck-
ing step would be able to determine that the definition oft in the
body normalizes toint.

* * *

Exercise #5:The example in Figure 1 clearly does not have any
type cycles. What would happen, however, if we changed it in any
of the following ways? Would the RMC type system accept it or
reject it?

(a). Change the internal definition ofA.t to int * X.B.u.

(b). Change the internal definition ofB.u to bool * X.A.t.

(c). Change the example as described in(a),
and also remove the sealing in the definition of moduleA.

(d). Change the example as described in both(b) and(c).

3.5 Recursively Dependent Signatures

RMC extends the signature language of ML with recursively de-
pendent signatures (rds’s), which have the formrec (X) sig . Com-
pared with typechecking a recursive module, checking the well-
formedness of an rds is fairly straightforward. The basic goal is
to check that the rds does not contain any cyclic transparenttype
specifications, whose presence would demand support for equi-
recursive types.6 While RMC’s treatment of rds’s is not markedly
different from their treatment in most other proposals, it is worth
explaining informally nonetheless.

The well-formedness checking ofrec (X) sig proceeds as fol-
lows. First, we need to come up with some temporary signature
sig ′ to which we can bindX during the checking ofsig . This tem-
porarysig ′ will act essentially as a forward declaration ofsig. As
such, it need only be a “shallow” representation ofsig—it should
record the (path-)names and kinds ofsig ’s type components, but
may ignoresig ’s value components, becausesig can only possibly
refer to thetypecomponents ofX. In Russo’s account of rds’s, the
programmer is required to write down this shallowsig ′ explicitly,
but it is perfectly easy to infersig ′ via a syntactic pass oversig .

Second, after bindingX to sig ′ in the context, we proceed to
check the well-formedness ofsig.

Third, we check that there is some linear ordering of the type
components ofsig such that no transparent component’s specifica-
tion depends on a later component in the ordering. This is formal-
ized in a manner very similar to the detection of transparenttype
cycles in recursive modules (as described in the previous section).

For example,rec (X) sig type t = X.t end will be ill-
formed becauset is defined transparently in terms of itself. In con-
trast, the signatureS from Figure 1 will typecheck successfully—
even though it contains references to the recursive module variable
X in the specifications ofA.u andB.t—because the type compo-
nents of the signature can be ordered in such a way that those ref-
erences are seen as acyclic (i.e.,A.t, B.u, A.u, B.t).

4. The RMC Type System
4.1 Syntax

Figure 3 gives the syntax of RMC. While RMC is intended to be
representative of a Standard ML-like module language, it does not
directly support all features of SML. I focus instead on supporting
the most semantically interesting features, and leave formalization
of a full-fledged ML extension to future work.

Core Language In the spirit of keeping the core language as un-
derdetermined as possible, the only interesting type- and term-level
construct considered here is thepathP, which is a module variable
X followed by zero or more component projections. As a matter
of notation, I will writeX.ℓ1...ℓn as shorthand forX.ǫ.ℓ1...ℓn. In
particular,X is shorthand forX.ǫ.

As in ML, type constructorscon either have kindT (the base
kind of types) or are functions fromn arguments of kindT to
a single result of kindT, wheren > 0. For uniformity, in some
typing rulesT0 →T is treated as synonymous withT, andcon()
as synonymous withcon (whencon has kindT). I use the overbar
syntax to denote a sequence of zero or more objects separatedby
commas (e.g.,con = con1, . . . , conn).

Signatures In order to simplify and regularize the syntax of mod-
ules and signatures, I model type components and value compo-
nents asatomic modules. Corresponding to ML’s notion of an

6 This is in stark contrast to Crary et al.’s original proposalfor rds’s, which
requiresthem to be fully transparent specifically so that theycanbe imple-
mented internally using equi-recursive types. No subsequent proposal has
followed their approach.

Type Variables α, β
Module Var’s X,Y
Labels ℓ
Label Sequences ℓs ::= ǫ | ℓs.ℓ
Paths P ::= X.ℓs
Kinds K, L ::= T | Tn →T (n > 0)
Type Constr’s con ::= P | α | λ(α).con | con(con) | . . .
Terms exp ::= P | . . .

Signatures sig ::= [[K]] | [[con]] | [[ℓ≈ con : K]] |
[[ℓ ⊲ X : sig]] | (X : sig

1
)→ sig

2
|

rec (X) sig | sig where ℓs= con

Modules mod ::= [con] | [exp] | [ℓ≈ con : K] |
[ℓ ⊲ X= mod] | P |
let X =mod1 in mod2 |
λ(X : sig).mod | P1(P2) |
rec (X : sig)mod |
mod :> sig | mod : sig

[[= con : K]]
def

= [[K]] where ǫ = con

mod1(mod2)
def

= let X1 =mod1 in
let X2 = mod2 in X1(X2)

Figure 3. RMC Syntax

opaque type specification,[[K]] denotes the signature of an atomic
module containing a single type component of kindK. While there
is no primitive signature corresponding to a transparent type spec-
ification, RMC does support ML’swhere type (or with type)
construct (abbreviated here aswhere), and Figure 3 shows how to
define the transparent type signature[[= con : K]] as a derived form.
(This is how the Definition of SML defines transparent type speci-
fications as well (Milner et al. 1997).)

The signatures of RMC structures have the form[[ℓ ⊲ X : sig]].
As in ML, these structure signatures are dependently-typed, with
each internal nameXi bound in the subsequentsigj ’s. The reason
for distinguishing betweenexternallabelsℓ (which are immutable)
and internal variablesX (which areα-convertible) is explained
by Harper and Lillibridge (1994). Although SML does not make
such a syntactic distinction, I maintain it here in order to simplify
the presentation of typechecking. I also assume for simplicity that
all the labelsℓ and variablesX are distinct.

The signature[[ℓ≈ con : K]] represents anon-recursiveSML
datatype specification. It describes a module providing a type
componentℓ of kind K that is isomorphic tocon . (Following the
style of Harper and Stone (2000), this isomorphism is witnessed
via two value components—a data constructor calledin and a data
destructor calledout—that the module also provides.)

The modeling ofrecursivedatatype specifications is achieved
by using thedatatype signature[[ℓ≈ con : K]] in conjunction with
a recursively dependent signature (rds), writtenrec (X) sig . For
example, if we were to add unit, sum, and product types to the
language, we could model the SMLdatatype declaration

datatype ’a list = Nil | Cons of ’a * ’a list

as

rec (X) [[list≈λ(α).1 + α × X.list(α) :T→T]]

To be able tousesuch adatatype, of course, the term language
needs a mechanism for data constructor application, as wellas data
destructor application (pattern matching). For space reasons, I omit

Type Constructors A,B, τ ::= α | b | λ(α).τ | A(τ)
Base Types b ::= ∀[α]. τ1 ⇒ τ2 | . . .

Signatures Σ ::= [[= A :K]] | [[τ]] | [[ℓ : Σ]] |
∀(α1 ↓K1).(L1; Σ1)
→∃(α2 ↓K2).(L2; Σ2)

Type Locators L ::= {α : K 7→ ℓs}
Type Substitutions δ ::= {α 7→A}
Type Contexts ∆ ::= ∅ | ∆, α ↑K | ∆, α ↓K
Module Contexts Γ ::= ∅ | Γ, X :Σ

↑(∆)
def

= {α | α ↑K ∈ ∆}

∆ @α ↓
def

= ∆\{α ↑∆(α) | α ∈ α} ∪ {α ↓∆(α) | α ∈ α}

ℓ.L
def

= {α : K 7→ ℓ.ℓs | α : K 7→ ℓs ∈ L}

Σ.ℓs
def

=

8

>

<

>

:

Σ if ℓs = ǫ
Σ′ if ℓs = ℓs′.ℓ

andΣ.ℓs′ = [[. . . , ℓ : Σ′, . . .]]
undefined otherwise

Figure 4. Semantic Objects and Auxiliary Constructs

this feature, as the details would closely follow Harper andStone
(2000) and are orthogonal to the focus of the present work.

Lastly, functor signatures are denoted(X : sig
1
)→ sig

2
. Here,

sig
1

is the argument signature, andsig
2

is the result signature,
which may refer to type components of the argument viaX.

Modules [con] and [exp] are the atomic modules representing
type and value components, respectively. The syntax of structures
parallels that of their signatures, but structure projection (as in
SML) is limited to paths. We include a module-levellet construct
with semantics similar to SML’slocal mechanism. Functors are
modeled asλ-abstractions, and, for simplicity, functor application
is limited to applications of paths to paths. Figure 3 definessyntac-
tic sugar for general applications of the formmod1(mod2).

The syntax fordatatype modules parallels that ofdatatype
signatures. Recursivedatatype’s are encodable using a com-
bination of datatype modules and recursive modules, written
rec (X : sig)mod . For instance, to implement thelist datatype
(above), we can write:

rec (X : [[list : [[T→T]]]])

[list≈λ(α).1 + α × X.list(α) :T→T]

Lastly, RMC provides two sealing constructs—opaque sealing,
written mod :> sig , andtransparent sealing, writtenmod : sig—
which model the corresponding constructs in SML. Transparent
sealing has the effect of “narrowing”mod to the target signature
sig , but allows the identity ofmod ’s type components to leak
through, even if they are specified opaquely insig .

4.2 Semantic Objects

Following the Definition of SML, the static semantics of RMC
employs a language ofsemantic objects, whose syntax appears
in Figure 4. As it turns out, these semantic objects are really just
types/signatures (in an “internal” type system) that have been dec-
orated with some meta-data that is useful during typechecking.
That internal type system is defined in the companion technical
report (Dreyer 2007a), but the static semantics of RMC can beun-
derstood perfectly well without it.

Semantic types are similar to RMC types. The only difference
is that semantic types include a base type∀[α]. τ1 ⇒ τ2, which
represents the type ofdatatype constructors and destructors.

We assume and maintain the invariant that all types are kept in
β-normal form.

Semantic signatures are very similar to those in Russo’s the-
sis (Russo 1998), which is based closely on the style of the Defini-
tion. In short, semantic signatures are fully transparent signatures.
Data abstraction is handled separately via universal and existential
quantification over type variables—as evidenced in the semantic
functor signature—instead of via opaque type specifications in sig-
natures.

Type locatorsL are mappings from type variables to label se-
quences. The purpose of type locators is discussed below.

Type substitutionsδ map type variables to type constructors. In
order to maintain the invariant that types are kept in normalform,
type substitutions are assumed to implicitlyβ-normalize when they
are applied.

Regarding notation: LetFV(δ) mean the free variables of the
type constructors in the range ofδ. Also, if L = {α : K 7→ ℓs} is a
type locator, thenδL means{δα : K 7→ ℓs}.

Type contexts∆ bind type variables as eitherundefined(↑) or
defined(↓). Module contextsΓ bind module variablesX to seman-
tic signaturesΣ. The notation↑(∆) denotes the set of undefined
type variables in∆, and the notation∆ @α ↓ signifies the result of
changing the bindings ofα in ∆ from undefined to defined.

4.3 Interpretation of Signatures

Figure 5 shows how RMC type constructors and signatures are
interpreted in terms of their semantic counterparts.

The interpretation of type constructors is straightforward. The
only interesting point is that, when interpreting a type projected
from a moduleX, we eliminate the dependency on the module
variableX. (Semantic types only depend on type variables in∆.)

RMC signatures are interpreted assignature denotationsof the
form∃(α ↓K).(L; Σ). Here,α ↓K represent the opaque type com-
ponents of the signature, andΣ represents the signature itself (with
transparent references toα). Thetype locatorL is a mapping from
each of the variables inα to a label sequenceℓs that indicates which
type component ofΣ was the “source” of that abstract type in the
original RMC signature. For example, the signatureS from Figure 1
is interpreted as

∃(α ↓T, β ↓T).({α :T 7→ A.t, β :T 7→ B.u}; Σ)

whereΣ is as defined in Figure 2. (Note thatα andβ are bound
variables of the denotation.) This approach to signature interpreta-
tion is modeled closely after Russo (1998). The main noveltyis the
presence of the type locatorL. The reason forL is that it makes the
definition of signature matching (see below) more deterministic by
telling the elaborator explicitly where to look in order to fill in the
opaque type components of a signature.

The interpretation rules for signatures are standard with the ex-
ception of Rule 13 for rds’s, which follows closely the informal
description given in Section 3.5. The first premise of the rule com-
putes ashallowdenotation ofsig , ∃(α0 ↓K0).(L0; Σ0), in which
all its type components are treated as having opaque specifica-
tions and its value components are ignored. Given this signature
for X, the second premise computes the actual denotation ofsig :
∃(α ↓K).(L; Σ). These two premises set up a system of equations
between the “temporary” variablesα0—which were created to rep-
resent the type components ofX—and their definitions inΣ.

To solve this system of equations, the third premise uses the
lookup judgment defined in Figure 6, which in turn uses the type
locatorL0 to look up the definitions of theα0 in Σ and return a
type substitutionδ that solves for them. If there is a transparent type
cycle among the definitions, thelookup will fail. The detection of
cycles is implemented as described in Section 3.4.

Well-formed type constructors: ∆;Γ ⊢ con ; A : K

∆ ⊢ α : T
∆;Γ ⊢ α ; α : T

(1)
∆; Γ ⊢ P : [[= A :K]]

∆; Γ ⊢ P ; A : K
(2)

∆, α ↓T; Γ ⊢ con ; τ : T α = α1, . . . , αn

∆;Γ ⊢ λ(α).con ; λ(α).τ : Tn →T
(3)

∆; Γ ⊢ con ′
; λ(α).τ ′ : Tn →T

∆;Γ ⊢ con ; τ : T τ = τ1, . . . , τn

∆;Γ ⊢ con ′(con) ; {α 7→ τ}τ ′ : T
(4)

. . . Insert rules for your favorite base types here. . .

Well-formed terms: ∆;Γ ⊢ exp : τ

∆;Γ ⊢ P : [[τ]]

∆; Γ ⊢ P : τ
(5)

. . . Insert rules for your favorite core language here. . .

Well-formed signatures: ∆;Γ ⊢ sig ; ∃(α ↓K).(L; Σ)

∆; Γ ⊢ [[K]] ; ∃(α ↓K).({α : K 7→ ǫ}; [[= α : K]])
(6)

∆; Γ ⊢ con ; τ : T

∆; Γ ⊢ [[con]] ; ∃().(∅; [[τ]])
(7)

K = T
n →T ∆;Γ ⊢ con ; A : K β = β1, . . . , βn

∆;Γ ⊢ [[ℓ≈ con : K]] ; ∃(α ↓K).({α : K 7→ ℓ}; [[ℓ : [[= α : K]], in : [[∀[β]. A(β)⇒α(β)]], out : [[∀[β]. α(β)⇒A(β)]]]])
(8)

∆; Γ ⊢ [[]] ; ∃().(∅; [[]])
(9)

∆; Γ ⊢ sig
1

; ∃(α1 ↓K1).(L1; Σ1)
∆, α1 ↓K1; Γ, X1 : Σ1 ⊢ [[ℓ ⊲ X : sig]] ; ∃(α ↓K).(L; [[ℓ : Σ]])

∆; Γ ⊢ [[ℓ1 ⊲X1 : sig
1
, ℓ ⊲ X : sig]] ; ∃(α1 ↓K1, α ↓K).(ℓ1.L1,L; [[ℓ1 : Σ1, ℓ : Σ]])

(10)

∆; Γ ⊢ sig
1

; ∃(α1 ↓K1).(L1; Σ1) ∆, α1 ↓K1; Γ, X :Σ1 ⊢ sig
2

; ∃(α2 ↓K2).(L2; Σ2)

∆; Γ ⊢ (X : sig
1
)→ sig

2
; ∃().(∅;∀(α1 ↓K1).(L1; Σ1)→ ∃(α2 ↓K2).(L2; Σ2))

(11)

∆; Γ ⊢ sig ; ∃(α ↓K).(L; Σ) β : L 7→ ℓs ∈ L α ↓K = α1 ↓K1, β ↓L, α2 ↓K2 ∆;Γ ⊢ con ; B : L

∆;Γ ⊢ sig where ℓs= con ; ∃(α1 ↓K1, α2 ↓K2).(L\{β : L 7→ ℓs}; {β 7→B}Σ)
(12)

∆; Γ ⊢ Shal(sig) ; ∃(α0 ↓K0).(L0; Σ0)
∆, α0 ↓K0; Γ, X :Σ0 ⊢ sig ; ∃(α ↓K).(L; Σ) ⊢ lookup L0 in Σ ; δ

∆;Γ ⊢ rec (X) sig ; ∃(α ↓K).(L; δΣ)
(13)

Shallow version of a signature: Shal(sig)

Shal([[K]])
def

= [[K]]

Shal([[con]])
def

= [[]]

Shal([[ℓ≈ con : K]])
def

= [[ℓ : [[K]]]]

Shal([[ℓ ⊲ X : sig]])
def

= [[ℓ :Shal(sig)]]

Shal((X : sig
1
)→ sig

2
)

def

= [[]]

Shal(rec (X) sig)
def

= Shal(sig)

Shal(sig where ℓs = con)
def

= Shal(sig)

Figure 5. Well-formedness Rules for Type Constructors, Terms, and Signatures

4.4 Static Semantics of Modules

Figure 6 shows the typing rules for modules. The main module
typing judgment has the form∆;Γ ⊢ mod : Σ with α ↓. The judg-
ment assumes thatα represent the abstract types thatmod is going
to define, and thus they are bound as undefined (α ↑K) in the input
context∆. The shaded premises in some of the rules mark the delta
between the regular typing judgment and the static typing judg-
ment, which we discuss below. In particular, static typechecking is
defined by simply removing the shaded premises and replacingall
references to the regular typing judgment with the static one.

To begin with, let us focus on ordinary module typing. Rules 14
through 16 for paths and atomic modules are straightforward.

Rule 17 fordatatype modules[ℓ≈ con : K] returns a signature
that matches the interpretation of the correspondingdatatype
signature[[ℓ≈ con : K]].

The typing rules for structures (Rules 18 and 19) are self-
explanatory. One point of note is that, after the first binding of
a structure (ℓ1 ⊲X1 = mod1 in Rule 19) has been typechecked,
the remainder of the bindings are typechecked in a context where
the abstract types defined bymod1 are bound asdefined(namely,
∆ @α1 ↓). To see an instance where this is relevant, look at the
solution to Exercise #5(b) given at the end of the paper.

The typechecking of module-levellet (Rule 20) is essentially
the same as the typechecking of a structure with two bindings. The
only difference is that the result signature of thelet only exports
the second of the bindings.

Rule 21 for functors is fairly straightforward as well. It isworth
noting that in the signature returned for the functor, thereis no
type locatorL2 for the result (we just write∅). The main reason
is that, due to the so-calledavoidance problem, a type locator does

Well-formed modules: ∆;Γ ⊢ mod : Σ with α ↓

We omit “with α ↓” if α = ∅ (i.e., if mod does not define any abstract types).

X :Σ ∈ Γ
∆;Γ ⊢ X.ℓs : Σ.ℓs

(14)
∆; Γ ⊢ con ; A : K

∆; Γ ⊢ [con] : [[= A :K]]
(15)

∆ ⊢ τ : T ∆;Γ ⊢ exp : τ

∆;Γ ⊢ [exp] : [[τ]]
(16)

K = T
n →T ∆;Γ ⊢ con ; A : K β = β1, . . . , βn α ↑K ∈ ∆

∆; Γ ⊢ [ℓ≈ con : K] : [[ℓ : [[= α : K]], in : [[∀[β]. A(β)⇒α(β)]], out : [[∀[β]. α(β)⇒A(β)]]]] with α ↓
(17)

∆; Γ ⊢ [] : [[]]
(18)

∆; Γ ⊢ mod1 : Σ1 with α1 ↓ ∆@ α1 ↓; Γ, X1 : Σ1 ⊢ [ℓ ⊲ X= mod] : [[ℓ : Σ]] with α2 ↓

∆; Γ ⊢ [ℓ1 ⊲X1 =mod1, ℓ ⊲ X=mod] : [[ℓ1 : Σ1, ℓ : Σ]] with α1, α2 ↓
(19)

∆; Γ ⊢ mod1 : Σ1 with α1 ↓ ∆ @ α1 ↓; Γ, X :Σ1 ⊢ mod2 : Σ2 with α2 ↓

∆;Γ ⊢ let X= mod1 in mod2 : Σ2 with α1, α2 ↓
(20)

∆; Γ ⊢ sig ; ∃(α1 ↓K1).(L1; Σ1) ∆, α1 ↓K1, α2 ↑K2; Γ, X : Σ1 ⊢ mod : Σ2 with α2 ↓

∆; Γ ⊢ λ(X : sig).mod : ∀(α1 ↓K1).(L1; Σ1)→ ∃(α2 ↓K2).(∅; Σ2)
(21)

∆; Γ ⊢ P1 : ∀(α1 ↓K1).(L1; Σ1)→ ∃(α2 ↓K2).(L2; Σ2) ∆; Γ ⊢ P2 : Σ

α ↑K2 ⊆ ∆ ⊢ lookup L1 in Σ ; δ FV(δ) ∩ ↑(∆) = ∅ ⊢ Σ � δΣ1

∆;Γ ⊢ P1(P2) : δ{α2 7→α}Σ2 with α ↓
(22)

∆; Γ ⊢ sig ; ∃(α ↓K).(L; Σ) ∆, α ↓K;Γ, X :Σ ⊢stat mod : Σstat with β ↓

⊢ lookup L in Σstat ; δ ∆;Γ, X : δΣ ⊢ mod : Σ′ with β ↓ ⊢ Σ′ � δΣ

∆;Γ ⊢ rec (X : sig)mod : Σ′ with β ↓
(23)

∆; Γ ⊢ sig ; ∃(α0 ↓K0).(L0; Σ0) ∆ = ∆′, α ↑K0 (L; Σ) = {α0 7→α}(L0; Σ0)

∆, β ↑L; Γ ⊢stat mod : Σstat with β ↓ ⊢ lookup L in Σstat ; δ FV(δ) ∩ ↑(∆) = ∅

∆′, β ↑L; δΓ ⊢ mod : Σ′ with β ↓ ⊢ Σ′ � δΣ

∆;Γ ⊢ mod :> sig : Σ with α ↓
(24)

∆; Γ ⊢ sig ; ∃(α ↓K).(L; Σ) ∆; Γ ⊢ mod : Σ′ with β ↓ ⊢ lookup L in Σ′
; δ ⊢ Σ′ � δΣ

∆;Γ ⊢ mod : sig : δΣ with β ↓
(25)

Statically well-formed modules: ∆; Γ ⊢stat mod : Σ with α ↓

The rules defining this static judgment are precisely the same as the rules defining the regular module typing judgment (above),
exceptwith the shaded premises removed, and all occurrences of the regularmodule typing judgment replaced by this static judgment.

Signature matching: ⊢ Σ1 � Σ2

⊢ Σ � Σ
(26)

Σ′ = [[ℓ : Σ]]

⊢ Σ′ � [[]]
(27)

⊢ Σ′.ℓ1 � Σ1 ⊢ Σ′ � [[ℓ : Σ]]

⊢ Σ′ � [[ℓ1 : Σ1, ℓ : Σ]]
(28)

⊢ lookup L′

1 in Σ1 ; δ1 ⊢ Σ1 � δ1Σ
′

1 ⊢ lookup L2 in δ1Σ
′

2 ; δ2 ⊢ δ1Σ
′

2 � δ2Σ2

⊢ ∀(α′

1
↓K′

1
).(L′

1; Σ
′

1)→ ∃(α′

2
↓K′

2
).(L′

2; Σ
′

2) � ∀(α1 ↓K1).(L1; Σ1)→ ∃(α2 ↓K2).(L2; Σ2)
(29)

Abstract type lookup: ⊢ lookup L in Σ ; δ

L = {α1 : K1 7→ ℓs1, . . . , αn : Kn 7→ ℓsn} δ0 = ∅

∀i ∈ 1..n : Σ.ℓsi = [[= Ai : Ki]] FV(Ai) ∩ dom(L) ⊆ {α1, . . . , αi−1} δi = δi−1 ∪ {αi 7→ δi−1Ai}

⊢ lookup L in Σ ; δn

(30)

Figure 6. Typing Rules for Modules

not necessarily exist (Harper and Lillibridge 1994). In particular,
it may be that some of the abstract types inα2 do not correspond
to any type component specified inΣ2, so there is no way to locate
them. Fortunately, there is no need to locate them—a signature only
needs a type locator if one is going to matchagainst it, which is
not the case for the result signatureΣ2. In general, we only need
to match against signatures that correspond to RMC signatures
that the programmer wrote down, and such signatures always have
type locators (the signature interpretation judgment shows how to
compute them).

The typing rule for functor applications (Rule 22) first usesL1

to look up the definitions ofα1 in the signatureΣ of the argument
P2. This results in a substitutionδ, which maps the abstract type
components ofP1’s argument signature to their appropriate instan-
tiations. We then check whetherΣ matches the reified argument
signatureδΣ1. We also check that the type variablesα we are sup-
posed to define have the same kindsK2 as the abstract types in the
result signature ofP1. Finally, we check that the types we are us-
ing to fill in the definitions ofα1—i.e.,FV(δ)—do not depend on
any undefined variables. This last condition is necessitated by the
avoidance of transparent type cycles, as explained in Section 3.4.

For the next two rules, which concern recursive and opaquely
sealed modules, it is useful to refer back to the algorithmicdescrip-
tions of these rules given in Section 3.1. Beginning with Rule 23:
The first three premises implement step 1 of the algorithmic de-
scription, resulting in a type substitutionδ that maps the abstract
type components ofsig to their definitions inmod . Note that the
computation of the type components ofmod is achieved by a call
to the static typechecking judgment. Step 2 of the algorithmis
achieved by simply applyingδ to Σ. Steps 3 and 4 correspond to
the remaining two premises, respectively.

Rule 24 for opaque sealing matches the earlier algorithmic
description as follows: The first three premises implement step 1,
the next two premises implement step 2, and the last two premises
implement steps 3 and 4, respectively. The side condition onFV(δ)
requires that the internal definitions of the abstract typesα not
depend on any undefined types. The reason for this side condition
is explained in Section 3.4.

Lastly, note that Rule 24 allows the modulemod to internally
define a set of “local” abstract typesβ. These must be added to the
context explicitly because they are not in scope outside of the mod-
ule. In contrast, the typing rule for transparent sealing (Rule 25)
assumes that theβ thatmod wants to define are already bound in
the ambient context∆. Indeed, it is important thatβ are bound in
∆ since they may appear free in the resulting signatureδΣ. The key
difference between opaque and transparent sealing is that the for-
mer leaves the opaque type components ofsig abstract, while the
latter usesδ to reify the specifications of those components with
their definitions inmod .

Static Typechecking The static typechecking judgment is written
∆;Γ ⊢stat mod : Σ with α ↓. Static typechecking is formalized
using the same rules as regular module typechecking, exceptthat
we ignore the shaded premises. This technique underscores the
semantic coherence of the two typing judgments.

The purpose of static typechecking is not to ensure thatmod
is well-typed—it is merely to computemod ’s type components. In
fact, the value components ofmod are not necessarily well-typed,
and the types for those value components that appear in the result
signatureΣ may be garbage. This is fine—all that matters are the
typecomponents ofmod , which will be reflected correctly inΣ.

This point is driven home by the first rule with a shaded premise:
Rule 16, the rule for atomic term modules. With the second premise
removed, the static version of this rule may assign an arbitrary type
to the termexp. This renders the static Rule 16 nondeterministic,

but only in a way that doesn’t matter because the nondeterminism
concerns the type of avaluecomponent. In practice, for example,
when implementing static typechecking, we can infer the typeint
for all core terms, and still have a complete typechecker.

The shaded premises in the other rules are conditions that are
relevant to type-correctness in general, but are not important for
computing the type components of a module. In particular, all
references to the signature matching judgment⊢ Σ1 � Σ2 are
ignored during static typechecking because this judgment is useless
in computing type components. The side conditions onFV(δ) are
similarly ignored.

The rule with the most shaded premises is Rule 24. The reason
is that, in order to determine the type components of an opaquely
sealed modulemod :> sig , we need only look at the ascribed signa-
turesig—the premises concerningmod are irrelevant. For a trans-
parently sealed module, on the other hand, we must look at the
module’s implementation since its internal type definitions leak out.

Finally, one point of note: in the static version of Rule 23, it ap-
pears that we must statically typecheckmod twice, the second time
under a context to whichδ has been applied. In practice, the second
typechecking pass can be avoided by observing that static typing
is preserved under type substitution. Thus, under contextΓ, X : δΣ,
we know thatmod will (statically) have signatureδΣstat.

Signature Matching The signature matching judgment, written
⊢ Σ1 � Σ2, checks whetherΣ1 can be coerced toΣ2. The
definition of this judgment in Figure 6 is fairly standard. The
rules for structure signatures permit both dropping and reordering
of components. The rule for functor signatures uses contravariant
matching on the arguments and covariant matching on the results.

4.5 Evidence Translation and Type Soundness

In order to claim that RMC has a sound type system, I must
supply a dynamic semantics and a type soundness result. Following
Harper and Stone (2000), I do not provide a dynamic semantics
for RMC directly. Instead, I provide an evidence translation of
well-typed RMC modules into an internal language that is based
closely on the RTG language discussed in Section 2.3. This makes
it possible to reuse the type soundness result for RTG, and it
also offers an interpretation of RMC modules in terms of more
primitive constructs. Details of the internal language, its static
and dynamic semantics, and its type soundness are given in the
companion technical report (Dreyer 2007a).

The evidence translation judgment for modules is simply the
module typing judgment appended with; M, indicating that the
moduleM is the internal language translation of the given RMC
module. Similarly, the evidence translation for signaturematching
returns an internal language functorF, which coerces the source
signature to the target signature.

Figure 7 displays two of the most interesting evidence transla-
tion rules, namely those for recursive and sealed modules.

In the rule for recursive modules, the body of the recursive
module translates toM, and the functorF represents the coercion
from Σ′ (the signature ofM) to δΣ (the reified forward declaration
signature). The internal language type system does not permit the
forward declaration of a recursive module to differ from itsexport
signature. Thus, in order to encode the more general semantics of
RMC modules (as described in Section 3.2), the internal forward
declarationΣrec includes bothΣ′ andδΣ. The dynamic semantics
of the internal-language recursive module construct implements
recursive backpatching in the style of Scheme’sletrec.

In the rule for sealed modules, the module underneath the seal-
ing translates toM, and the functorF represents the coercion from
Σ′ (the signature ofM) to the sealing signaturesig . In the evidence
translation of the sealing, thenew construct is used to create the
local abstract typesβ, and thedef construct is used to define the

∆; Γ ⊢ sig ; ∃(α ↓K).(L; Σ) ∆, α ↓K;Γ, X :Σ ⊢stat mod : Σstat with β ↓
⊢ lookup L in Σstat ; δ ∆;Γ, X : δΣ ⊢ mod : Σ′ with β ↓ ; M ⊢ Σ′ � δΣ ; F

Σrec = [[extern : Σ′, intern : δΣ]] Mrec = [extern ⊲Y = {X 7→Xrec.intern}M, intern ⊲Z = F(Y)]

∆; Γ ⊢ rec (X : sig)mod : Σ′ with β ↓ ; (rec (Xrec : Σrec)Mrec).extern

∆;Γ ⊢ sig ; ∃(α0 ↓K0).(L0; Σ0) ∆ = ∆′, α ↑K0 (L; Σ) = {α0 7→α}(L0; Σ0)
∆, β ↑L; Γ ⊢stat mod : Σstat with β ↓ ⊢ lookup L in Σstat ; δ FV(δ) ∩ ↑(∆) = ∅

∆′, β ↑L; δΓ ⊢ mod : Σ′ with β ↓ ; M ⊢ Σ′ � δΣ ; F

∆;Γ ⊢ mod :> sig : Σ with α ↓ ; (new β ↑L in def α := δα in let X= M in F(X) :Σ)

Figure 7. Evidence Translation Rules for Recursive and Sealed Modules

abstract typesα corresponding to the opaque type components of
sig . These are the samenew anddef constructs on display in the
encoding from Figure 2.

4.6 Decidability

It is also important for practical purposes that the RMC typesystem
be decidable. It is mostly straightforward to show this because the
typing rules are essentially syntax-directed.

There are only two points of apparent nondeterminism. One in-
volves the types of value components in the signature returned by
the static typechecking judgment. As discussed above, thisnon-
determinism is irrelevant because these types are never inspected.
The other point of potential nondeterminism is that in certain typ-
ing rules—specifically, Rules 21 and 24—we must guess a list of
abstract types that a module is going to define. In fact, no guess-
ing is required. It is easy to define a simple prepass over a module
which will determine theuniquenumber, order, and kinds of the
abstract types that the module can possibly define. The definition
of this prepass is omitted for space reasons.

5. Related and Future Work
Earlier sections of the paper contain detailed comparisonsof RMC
with related work. In this final section, I discuss some otherrelated
work, and suggest directions for future work.

5.1 Are Forward Declarations a Burden?

Most existing recursive module proposals demand that the pro-
grammer supply a forward declaration signaturesig when defin-
ing a recursive module of the formrec (X : sig)mod . The only
one that does not is that of Nakata and Garrigue (2006), who ar-
gue that it is burdensome for the programmer to have to write such
signatures down. Instead, the typechecker for their Traviata lan-
guage performs two passes: a “reconstruction” pass, followed by a
“type-correctness” check. The former traverses the whole program,
collecting type information about all program identifiers,checking
for cyclic type definitions using a term-rewriting algorithm, and
apparently (I believe) giving globally unique names to all bound
variables. Given this information, the latter pass does relatively or-
dinary typechecking, although part of its simplicity is dueto the
fact that it does not address the double vision problem.

One reason for requiring forward declarations is to make recur-
sive module code easier to read. But the main argument for forcing
the programmer to write down a forward declaration is related to
the implicit support that recursive modules provide forpolymor-
phic recursion. For example, consider this recursive module:

rec (X : sig val f : ’a -> ’a end) struct
fun f y = ...X.f(3)...X.f(true)...

end

Here,f may refer to itself recursively viaX.f, and each such recur-
sive reference may instantiate the polymorphic type variable’a dif-
ferently. In general, type inference in the presence of polymorphic
recursion is undecidable (Henglein 1993). Hence, even if a forward
declaration signature is not required, the programmer may need to
write down a type annotation for any function that can be refer-
enced recursively throughX. Indeed, in order for the first pass of
Nakata and Garrigue’s algorithm to collect type information about
value bindings in a recursive module before they have been type-
checked, terms are required to be explicitly annotated withtheir
types. This would seem to negate the benefits of not requiringa
forward declaration.7

On balance, in the interest of simplicity, I have opted to follow
the norm and require the programmer to write down a forward dec-
laration. However, Nakata and Garrigue’s complaint about burden-
ing the programmer with unnecessary annotations remains a rea-
sonable one. In a previous version of the RMC type system (Dreyer
2006), I attempted to alleviate this burden using a different tac-
tic. Instead of eliminating forward declarations, I tried to use them
to my advantage. In particular, I provided a mechanism, written
“seal mod ”, by which the programmer could opaquely seal a
module using the signature for that module that appeared in the
nearest enclosing forward declaration. For instance, in the case of
the example from Figure 1, one would not need to supply explicit
signature ascriptions forA andB—rather, one would simplyseal
them and the type system would look to the forward declaration S
for the appropriate sealing signatures.

In the end, theseal mechanism proved to be more trouble than
it was worth. The formalization ofseal required a novel form of
bidirectional typechecking for modules, which, while interesting
from a formal point of view, made the typing rules very tricky
to follow. I hope to find a simpler way of supporting theseal
mechanism within the type system of the present paper.

5.2 Interaction of Recursive Modules and Type Inference

Formally, the closest relative of RMC is a type system that I devel-
oped recently together with Matthias Blume for a seemingly unre-
lated purpose—understanding the interaction of ML modulesand
Damas-Milner type inference (Dreyer and Blume 2007). I willrefer
to this type system as DB for short.

In the paper on DB, we demonstrate that subtle aspects of the
interaction of modules and type inference cause all Standard ML
typecheckers to be incomplete with respect to the Definitionof
SML. We show how to regain complete type inference by loos-

7 Nakata and Garrigue briefly sketch a type inference algorithm they have
implemented to avoid requiring explicitly-typed core terms in practice, but
it cannot possibly succeed in all cases due to the undecidability of inference
in the presence of polymorphic recursion (Henglein 1993).

ening the declarative definition of typing. Interestingly,the more
liberal declarative semantics of DB makes critical use of the RTG
language, even though DB does not support recursive modules.

While there are great formal similarities between RMC and
DB, there are a few major differences. One is that RMC supports
recursive modules. Another is RMC’s novel formalization ofthe
regular and static module typechecking judgments using thesame
set of typing rules. Typechecking in DB does not require any static
typechecking judgment due to the lack of recursive modules.

Ironically, the completeness result for DB type inference does
not hold up if one (naı̈vely) extends the language with RMC’s
recursive modules. Consider the following code:

signature S = sig type t; val v : t end
structure Foo =
rec (X : sig structure A : S end) struct
val f = (print "Hello"; fn x => x)
structure A :> S =

struct type t = int; val v = f 3 end
end

Due to ML’s (and DB’s)value restriction, the type off here cannot
be polymorphically generalized, butf can be declaratively assigned
any monomorphic type of the formτ → τ . However, there are
two inequivalent monotypes,int → int andX.A.t → X.A.t,
which would both be valid types forf given its subsequent use
inside the body ofA. Thus, we lose the ability to assign a principal
signature to the moduleFoo.

In essence, the problem here is that RMC’s solution to the
double vision problem conflates the typesX.A.t andint inside
the definition ofA, but it does not conflate them outside ofA, and
this confuses the type inference engine. One way to handle this
problem is to simply prohibit examples like the one above in which
the right-hand side of a module-levelval binding is side-effecting
but does not have a unique type. (This is essentially the approach
that is taken by the SML/NJ compiler.) I am currently investigating
alternative ways of resolving this issue.

5.3 Modules and Units

Flatt and Felleisen (1998) describe a language ofunits, recursive
modules for Scheme. They show how to extend them with type
components, and their solution successfully avoids the double vi-
sion problem, but the unit constructs are syntactically heavyweight
and awkward to use. In more recent work, Owens and Flatt (2006)
invest the unit language with features of ML modules (e.g.,translu-
cent signatures), introduce a distinction between first-class recur-
sive units and second-class hierarchical modules, and showhow
to encode a subset of the ML module system in their revised unit
language. Their units remain verbose, however, and they do not
provide any concrete proposal for extending an ML-style module
system with recursion.

The key advantage offered by Flatt-style units is that they
were designed from the beginning to supportseparate compilation
of recursive components. In contrast, ML’s separate compilation
mechanism—thefunctor—while powerful in many respects, does
not generalize naturally to support separate compilation of recur-
sive modules. One of the benefits of basing the RMC type system
on the RTG type system is that RTG provides built-in support for
unit-style recursive linking. Thus, I hope that RMC will serve as a
jumping-off point for future work on synthesizing the functionality
of modules and units.

5.4 Applicative vs. Generative Functors

Following Standard ML, the semantics of functors in RMC is
what is known asgenerative. This means that if a functor contains
abstract type definitions in its body, then every application of the

functor will result in the creation of fresh abstract types.In contrast,
OCaml provides anapplicativesemantics of functors (Leroy 1995),
in which every application of a functor to the same argument
returns a module with the same abstract types.

The main reason that RMC supports generative functors is that
they are simpler to account for in terms of universal and existential
type quantification than applicative functors are. However, both
applicative and generative semantics for functors are appropriate in
different circumstances, and there have been several proposals for
combining support for both in one language. (Dreyer et al. (2003)
offer the most comprehensive existing proposal for doing this, as
well as an overview of related work.) I am currently in the process
of incorporating applicative functors into RMC.

References
Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM

Transactions on Programming Languages and Systems, 15(4):575–631,
1993.

Karl Crary, Robert Harper, and Sidd Puri. What is a recursivemodule?
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 50–63, Atlanta, Georgia, 1999.

Derek Dreyer. Practical type theory for recursive modules.Technical Report
TR-2006-07, University of Chicago, Department of ComputerScience,
August 2006.

Derek Dreyer. A type system for recursive modules. Technical Report
TR-2007-10, University of Chicago, Department of ComputerScience,
July 2007a.

Derek Dreyer. Recursive type generativity.Journal of Functional Program-
ming, 2007b. To appear. Original version published in2005 ACM SIG-
PLAN International Conference on Functional Programming (ICFP),
pages 41–53, Tallinn, Estonia.

Derek Dreyer.Understanding and Evolving the ML Module System. PhD
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2005.

Derek Dreyer and Matthias Blume. Principal type schemes formodular
programs. InEuropean Symposium on Programming (ESOP), pages
441–457, Braga, Portugal, 2007.

Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-
order modules. InACM SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL), New Orleans, 2003.

Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. InACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 236–248, Montréal, Canada,
1998.

Warren D. Goldfarb. The undecidability of the second-orderunification
problem.Theoretical Computer Science, 13:225–230, 1981.

Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-
order modules with sharing. InACM SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL), pages 123–137, Portland,
Oregon, 1994.

Robert Harper and Benjamin C. Pierce. Design considerations for ML-
style module systems. In Benjamin C. Pierce, editor,Advanced Topics
in Types and Programming Languages, chapter 8. MIT Press, 2005.

Robert Harper and Chris Stone. A type-theoretic interpretation of Standard
ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof,
Language, and Interaction: Essays in Honor of Robin Milner, pages
341–387. MIT Press, 2000.

Fritz Henglein. Type inference with polymorphic recursion. ACM Transac-
tions on Programming Languages and Systems, 15(2):253–289, 1993.

Xavier Leroy. Applicative functors and fully transparent higher-order mod-
ules. InACM SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), pages 142–153, San Francisco, California, 1995.

Xavier Leroy. Manifest types, modules, and separate compilation. In
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), pages 109–122, Portland, Oregon, 1994.

Xavier Leroy. A proposal for recursive modules in ObjectiveCaml, 2003.
Available at:http://caml.inria.fr/about/papers.en.html.

David MacQueen. Modules for Standard ML. InACM Symposium on LISP
and Functional Programming, pages 198–207, 1984.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential
type. ACM Transactions on Programming Languages and Systems, 10
(3):470–502, 1988.

Keiko Nakata and Jacques Garrigue. Recursive modules for programming.
In ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), pages 74–86, Portland, Oregon, 2006.

Chris Okasaki.Purely Functional Data Structures. Cambridge University
Press, 1998.

Scott Owens and Matthew Flatt. From structures and functorsto modules
and units. In ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 87–98, Portland, Oregon, 2006.

Claudio V. Russo. Recursive structures for Standard ML. InInternational
Conference on Functional Programming (ICFP), pages 50–61, Florence,
Italy, 2001.

Claudio V. Russo.Types for Modules. PhD thesis, Edinburgh University,
Edinburgh, Scotland, 1998. LFCS Thesis ECS–LFCS–98–389.

Mads Tofte.Operational Semantics and Polymorphic Type Inference. PhD
thesis, University of Edinburgh, 1988.

Solutions to Exercises from Section 3
Solution to Exercise #1: The key change is in the type compo-
nents of the recursive module body. WhileA.t remains equal to
α, the removal ofB’s sealing means thatB.u becomes transpar-
ently equal tobool. Consequently, the reified forward declaration
signature thatS is transformed to is{β 7→ bool}Σ—i.e., Σ from
Figure 2 withbool substituted forβ. The effect this has on the
typechecking of the recursive module is simply that the identity of
X.B.u andbool is visible throughout the whole recursive module
definition, not just withinB.

Solution to Exercise #2:
(a) is well-typed. SealingA in this way has no effect on the in-

formation thatA gets to see (viaX) about its own type components.
(One should certainly hope as much—if sealing caused a problem
here, it would be an instance of the double vision problem!)

(b) is also well-typed. Intuitively, it ought to be, for it should not
matter thatmod is originally namedB before it is namedA. Step-
ping through: SinceA is just a copy ofB, the type components of
A are transparently equal to the type components ofB. Thus, when
we reify the forward declaration signature, the type components
of X.A will become visibly equal to whatever semantic type vari-
ables are being used to represent the abstract types defined by B.
Then, when we go underneath the sealing ofB, those variables will
be substituted with their definitions insideB, andmod will see the
same signature forX.A as it would have seen in the original version
of the recursive module.

(c) is not necessarily well-typed. Intuitively, the reason is that
mod is not underneath the sealing anymore. Although it happens
that A is internally defined to be a copy ofB, this information is
only knownwithin the sealed definition ofA. At the point where
we typecheckmod , it is not public knowledge thatA’s (and con-
sequentlyX.A’s) abstract type components are implemented inter-
nally by those ofmod , so we run into the double vision problem.
In this case, though, double vision is good. Ifmod were somehow
able to know thatX.A’s type components were equal to its own, the
type system would not be respecting the data abstraction boundary
erected by the programmer around the implementation ofA.

Solution to Exercise #3: We could instead define the forward
declaration signatureS to be:

sig
structure A : SA
structure B : SB

end

This is sufficient to makeAB typecheck because steps 1 and 2 of
the typing rule for recursive modules (in Section 3.1) will reify the
above forward declaration signature to the sameΣ to which the
original S was reified. Moreover, because RMC does not use the
forward declaration signature as a sealing signature, the fact that
the above signature is less transparent than the originalS will not
affect the exported signature of the moduleAB.

It is reasonable, then, to ask: do we need recursively dependent
signatures at all? I would argue that we do. For example, suppose
the programmer wishes to write down a source-level RMC signa-
ture representing the exported signature ofAB (e.g.,if they want to
parameterize another module over it). This cannot be done without
the aid of recursively dependent signatures.

Solution to Exercise #4: Here is one example:

signature S = sig
type ’a t; type n = int; type b = bool

end
rec (X : S) struct
type ’a t = ’a X.t
type n = int t
type b = bool t

end

The unique solution for the typet is the same as before:λα.α.

Solution to Exercise #5:
(a) is ill-typed because of RMC’s rule that the internal defini-

tions of abstract types must not depend on undefined type variables.
At the pointA is defined,X.B.u (i.e.,β) is bound in the context as
undefined, so the definition oft is not allowed to depend on it.

(b) is well-typed. This might seem odd since the situation is
similar to(a). The difference is that the definition ofB comes after
the definition ofA. Since typechecking processes module bindings
in the order they appear syntactically, the typechecking ofB is
performed in a context in whichX.A.t (i.e., α) has already been
defined (formally speaking, it is bound in the context asα ↓T).
Sinceα is no longer undefined, it is fine for the internal definition
of B.u to depend on it.

(c) is well-typed. By revealing the definition ofA.t to be depen-
dent onX.B.u, moduleA has placed the burden of ensuring absence
of transparent type cycles onB. SinceB.u is defined asbool, there
is no problem.

(d) is ill-typed. Here, there is actually a transparent type cycle,
which manifests itself as a type error during the typechecking ofB.
Specifically, the internal definition of the abstract typeB.u depends
on X.A.t, which is transparently equal toint * X.B.u, which
equalsint * β. Sinceβ is whatB is supposed to be defining, this
constitutes a cyclic type definition, which is prohibited.

