Non-Parametric

Georg Neis

MPI-SWS
neis@mpi-sws.org

Abstract

Type abstraction and intensional type analysis are featseem-
ingly at odds—type abstraction is intended to guarantea-par
metricity and representation independence, while typédysisais
inherently non-parametric. Recently, however, severs¢aechers
have proposed and implemented “dynamic type generatiord as
way to reconcile these features. The idea is that, when diirgede
an abstract type, one should also be able to generate atmerati
fresh type name, which may be used as a dynamic representativ
of the abstract type for purposes of type analysis. The ourest
remains: in a language with non-parametric polymorphisogsd
dynamic type generation provide us with the same kinds of ab-
straction guarantees that we get from parametric polynismgh

Our goal is to provide a rigorous answer to this question. We
define a step-indexed Kripke logical relation for a languadgi
both non-parametric polymorphism (in the form of type-szdset)
and dynamic type generation. Our logical relation enabd® es-
tablish parametricity and representation independermétss even
in a non-parametric setting, by attaching arbitrary retsi inter-
pretations to dynamically-generated type names. In additive
explore how programs that are provably equivalent in a nrai-t
tional parametric logical relation may be “wrapped” sysatically
to produce terms that are related by our non-parametritionla
and vice versa. This leads us to a novel “polarized” form af ou
logical relation, which enables us to distinguish formaistween
positive and negative notions of parametricity.

Categories and Subject Descriptors D.3.3 [Programming Lan-

guage§ Language Constructs and Features—Abstract data types;

F.3.1 Logics and Meanings of ProgralsSpecifying and Verify-
ing and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Parametricity, intensional type analysis, represematio
independence, step-indexed logical relations, type-sase

1. Introduction

When we say that a language suppgésametric polymorphisin
we mean that “abstract” types in that language are reallyadis—
that is, no client of an abstract type can guess or dependson it
underlying implementation [20]. Traditionally, the paretmc na-
ture of polymorphism is guaranteed statically by the laggisa

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31-September 2, 2009, Edinburgh, Scotland, UK.
Copyright(© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

Reprinted from ICFP’09,, [Unknown Proceedings], AugustSéptember 2, 2009,
Edinburgh, Scotland, UK., pp. 1-14.

Derek Dreyer

MPI-SWS
dreyer@mpi-sws.org

Parametricity

Andreas Rossberg

MPI-SWS
rossberg@mpi-sws.org

type system, thus enabling the so-caligple-erasurenterpretation
of polymorphism by which type abstractions and instardiaiare
erased during compilation.

However, some modern programming languages include a use-
ful feature that appears to be in direct conflict with paraiogoly-
morphism, namely the ability to perforintensional type analy-
sis [12]. Probably the simplest and most common instance of in-
tensional type analysis is found in the implementation nfjleages
supporting a typ®ynamic [1]. In such languages, any valuenay
be castotypeDynamic, but the castromtypeDynamic to any type
T requires a runtime check to ensure thatactual type equals.
Other languages such as Acute [25] and Alice ML [23], whioh ar
designed to support dynamic loading of modules, requirealtile
ity to check dynamically whether a module implements an etque
interface, which in turn involves runtime inspection of thedule’s
type components. There have also been a number of more experi
mental proposals for languages that emplaygecase construct
to facilitatepolytypicprogramming €.9.,[32, 29]).

There is a fundamental tension between type analysis ard typ
abstraction. If one can inspect the identity of an unknowretgt
run time, then the type is not really abstract, so any invasiaon-
cerning values of that type may be broken [32]. Consequdatly
guages with a typ@ynamic often distinguish betweenastable
andnon-castablaypes—with types that mention user-defined ab-
stract types belonging to the latter category—and prohilites
with non-castable types from being cast to tgg@amic.

This is, however, an unnecessarily severe restrictionchvaf-
fectively penalizes programmers for using type abstract@ven
a user-defined abstract type—implemented internally, say, as
int—it is perfectly reasonable to cast a value of type— t to
Dynamic, SO long as we can ensure that it will subsequently be cast
back only tot — t (notto, sayint — int orint — t),i.e,
so long as the cast &straction-safeMoreover, such casts are use-
ful when marshalling (or “pickling”) a modular component oge
interface refers to abstract types defined in other compsrj28].
That said, in order to ensure that casts are abstractie)-gas
necessary to have some way of distinguishing (dynamioaiign
a cast occurs) between an abstract type and its implemamtati

Thus, several researchers have proposed that languades wit
type analysis facilities should also suppdstnamic type genera-
tion [24, 21, 29, 22]. The idea is simple: when one defines an ab-
stract type, one should also be able to generate at run tifnesn"
type name, which may be used as a dynamic representative of th
abstract type for purposes of type analysi®Ve will see a con-
crete example of thisin Section 2.) Intuitively, the fresbs of type
name generation ensures that user-defined abstract typéswaed
dynamically in the same way that they are viewed staticallg-
as distinct from all other types.

1In languages with simple module mechanisms, such as Haskédi
possible to generate unique type names statically. Howehir is not
sufficient in the presence of functors and local or firstsla®dules.

The question remains: how do we know that dynamic type
generationworks? In a language with intensional type analysis—
i.e., non-parametripolymorphism—can the systematic use of dy-
namic type generation provably ensure abstraction safetypeo-
vide us with the same kinds of abstraction guarantees thagetve
from traditional parametric polymorphism?

Our goal is to provide a rigorous answer to this question. We
study an extension of System F, supporting (1) a type-sase ca
mechanism, which is essentially a variant of Girard’s J afwer{9],
and (2) a facility for dynamic generation of fresh type nantes
brevity, we will call this languag&. As a practical language mech-
anism, the cast operator is somewhat crude in comparisaneto t
more expressiveypecase-style constructs proposed in the liter-
ature? but it nonetheless renders polymorphision-parametric
Our main technical result is that, in a language with norapeeatric
polymorphism, parametricity may be provably regained widi-j
cious use of dynamic type generation.

The rest of the paper is structured as follows. In Section 2,
we present our language under consideration, G, and alscagiv
example to illustrate how dynamic type generation is useful

In Section 3, we explain informally the approach that we have
developed for reasoning about G. Our approach emploste
indexed Kripke logical relationwith an unusual form opossible
world that is a close relative of Sumii and Pierce’s [26]. This isect
is intended to be broadly accessible to readers who are gsner
familiar with the basic idea of relational parametricityt ijot with
the details of (advanced) logical relations techniques.

In Section 4, we formalize our logical relation for G and show
how it may be used to reason about parametricity and represen
tation independence. A particularly appealing feature wf for-
malization is that th@onparametricity of G is encapsulated in the
notion of what it means for twtypesto be logically related to each
other when viewed adata The definition of this type-level log-
ical relation is a one-liner, which can easily be replacethwin
alternative “parametric” version.

In Sections 5-8, we explore how terms related by the paramet-
ric version of our logical relation may be “wrapped” systéima
cally to produce terms related by the non-parametric ver&Gmd
vice versa), thus clarifying how dynamic type generatiarilitates
parametric reasoning. This leads us to a novel “polarizedthfof
our logical relation, which enables us to distinguish foltynae-
tween positive and negative notions of parametricity.

In Section 9, we extend G with iso-recursive types to forth G
and adapt the previous development accordingly. Then, 81 Se
tion 10, we discuss how the abovementioned “wrapping” fionct
can be seen as an embedding of System F (+ recursive types) int
G*, which we conjecture to be fully abstract.

Finally, in Section 11, we discuss related work, includiagent
work on the relevant concepts of dynamic sealing [27] andimul
language interoperation [13], and in Section 12, we coreclanid
suggest directions for future work.

2. The Language G

Figure 1 defines our non-parametric language G. For the naost p
G is a standard call-by-valug-calculus, consisting of the usual
types and terms from System F [9], including pairs and ext&te
types® We also assume an unspecified set of base typatong
with suitable constantsof those types.

Two additional, non-standard constructs isolate the ¢isgen
aspects of the class of languages we are interested in:

2That said, the implementation of dynamic modules in Alice ,Mar
instance, employs a very similar construct [23].

3We could use a Church encoding of existentials through usale, but
distinguishing them gives us more leeway later (cf. Sechipn

Types 7Tu=a|b|T— 7|7 X7 |Var|Ja.T
Values v ==z |c|AziT.e| (vi,v2) | Aa.e | pack (1,v) as T
Terms ex=v|eel (e, e2)|el]|e2]|eT]|

pack (7, e) as 7 | unpack {a,z)=ein e |
cast 7 T | newarT ine

Stores o :=¢€| o, arT

Config's ¢ ::=o;e

Type ContextsA = | A, a | A, arT
Value ContextsI" ::= € |

I xr
AT At 7
EcCAST
()A;FFcaStT1TQIT1—>TQ—>7'2
(ENEW)AFT Aaxt;TFe: 7 AT
A;T'Fnewarrine: 7/
ATke:7 AFT=7
Econv)—
(Econv) AT e T
AT
axT € A
TNAME) ——
() A«
arT € A
CNAME) ————
()A FaxrT
(CONF)}_U o;eke:T eFT
Foje:T
o;(Azite)v — o;efv/x]
o;{vi,v2).8 = o
o;(Aae)T — oje[t/a]
o;unpack (o, z)=(pack (1,v))ine < o;e[r/a][v/x]
(o ¢ dom(0)) o;newasRTine < 0,axT;e
(1 =m2) o;cast T1 T2 > O AT1IT1.AT2:T2.T1
(11 # 72) o;cast T1 e < O AT1ITI.AT2:T2.T2

(...plus standard “search” rules .. .)

Figure 1. Syntax and Semantics of G (excerpt)

e cast 71 T2 v1 v2 convertsv; from typer; to 7. It checks that
those two types are the same at the time of evaluation. If so,
the operatorsucceedsand returnsv;. Otherwise, itfails and
defaults tovs, which acts as aslse clause of the target type.

® new a~T in e generates a fresh abstract type name/alues
of type a can be formed using itepresentation type. Both
types are deemecbmpatible but not equivalent. That is, they
are considered equal elsssifiers but not aglata In particular,
cast a 7 v v’ will not succeedi(e., it will return v”).

Our cast operator is essentially the same as Harper and Mitchell's
TypeCondoperator [11], which was itself a variant of the non-
parametric J operator that Girard studied in his thesisQ@}.new
construct is similar to previously proposed constructsdfgramic
type generation [21, 29, 22]. However, we do not regeixplicit
term-level type coercions to witness the isomorphism betwan
abstract type name and its representation. Instead, our type
system is simple enough that we perform this conversigiicitly.

For convenience, we will occasionally use expressions ef th Type preservation can be expressed using the typingoaoiber

form let z=e1 in ez, which abbreviate the terfAz:71.e2) e1 (with for configurations. We formulate this rule by treating thpeystore

71 being an appropriate type fer). We omit the type annotation as a type context, which is possible because type stores are a

for existential packages where clear from context. Morgowe syntactic subclass of type contexts. (In a similar mannercan

take the liberty to generalize binary tuples#eary ones where write - o for well-formedness of store, by viewing it as a type

necessary and to use pattern matching notation to decorhuse context.) It is worth noting that the representation typethe store

in the obvious manner. are actually never inspected by the dynamic semantics. ahey
only needed for specifying well-formedness of configuraiand

2.1 Typing Rules proving type soundness.

The typing rules for the System F fragment of G are completely o
standard and thus omitted from Figure 1. We focus on the non- 2.3 Motivating Example

standard rules relate.d tast and new. Fu||_f0I’ma| (_Zietails of the Consider the fo”owing attempt to write a Simp|e functioﬂa'hary
type system appear in the expanded version of this paper [16] semaphore” ADT [17] in G. Following Mitchell and Plotkin [},5

~ Typing of casts is straightforward (RulecE&sT): cast 71 73 is we use an existential type, as we would in System F:
simply treated as a function of typg — 72 — 2. Its first

argument is the value to be converted, and its second argtimen Tsem := 3a.a X (@ = a) X (a — bool)
the default value returned in the case of failure. The ruleelye ~ €sem := pack (int, (1, Az:int.(1 — z), Az:int.(z # 0))) as Tsem
requires that the two types be well-formed.

For an expressiomew a7 ine, which binds« in e, Rule
ENEW checks that the body is well-typed under the assumption
that « is implemented by the representation typeFor that pur-
pose, we enrich type contexts with entries of the fornaa:7 that
keep track of the representation types tied to abstract rigpees.
Note thatr may not mention.

Syntactically, type names are just type variables. Whewede
as data, i(e., when inspected by theast operator), types are con-
sidered equivalent iff they are syntactically equal. Intcast, when
viewed as classifiers for terms, knowledge about the reptasen
of type names may be taken into account. RuteoEv says that
if a terme has a typer’, it may be assigned any other type that is
compatiblewith 7/. Type compatibility, in turn, is defined by the
judgmentA + 71 = 72. We only show the rule §aME, which

A semaphore essentially is a flag that can be in two statdgereit
lockedor unlocked The state can be toggled using the first function
of the ADT, and it can be polled using the second. Our littlelome
uses an integer value for representing the state, takfoglocked
ando for unlocked. It is an invariant of the implementation tha t
integer never takes any other value—otherwise, the toggletion
would no longer operate correctly.

In System F, the implementation invariant would be protécte
by the fact that existential types are parametric: ther@iway to
inspect the witness ak after opening the package, and hence no
client could produce values of typeother than those returned by
the module (nor could she apply integer operations to them).

Not so in G. The following program usesst to forge a value
s of the abstract semaphore type

discharges a compatibility assumptionz7 from the context; the edient := unpack (a, (so, toggle, poll)) = esemin
other rules implement the congruence closure of this axibne. let s = cast int a 666 sg in
important point here is that equivalent types are compatibut (poll s, poll (toggle s))

compatible types are not necessarily equivalent.

Finally, Rule ENEw also requires that the typée of the bodye
does not contain (i.e., 7" must be well formed in\ alone). A type
of this form can always be derived by applying&\v to convert
T to7'[r/al.

Because reduction afnpack simply substitutes the representation
type int for «, the consecutive cast succeeds, and the whole ex-
pression evaluates torue, true)—although the second component
should have toggled and thus be different from the first.

The way to prevent this in G is to create a fresh type name as

2.2 Dynamic Semantics witness of the abstract type:
The operational semantics has to deal with generation sfi fiype esemi := newa’ & intin
names. To that end, we introducéyge stores to record generated pack (¢, (1, Az:int.(1 — x), Az:int.(z # 0))) as Tsem

type names. Hence, reduction is definedconfigurations(c; e)
instead of plain terms. Figure 1 shows the main reductioastul
We omit the standard “search” rules for descending intoesutm
according to call-by-value, left-to-right evaluation erd

The reduction rules for the F fragment are as usual and do not
actually touch the store. However, types occurring in F toits
can contain type names bound in the store.

Reducing the expressiarew a7 in ¢ creates a new entry for
« in the type store. We rely on the usual hygiene convention for
bound variables to ensure thats fresh with respect to the current
store (which can always be achieveddyenaming)'

The two remaining rules are for casts. A cast takes two types
and checks that they are equivalehe.(syntactically equal). In
either case, the expression reduces to a function thatetiltm the
appropriate one of the additional value argumeings,the value to
be converted in case of success, and the default value adeerw
the former case, type preservation is ensured becauseesandc
target types are known to be equivalent.

After replacing the initial semaphore implementation witts one,
ecient Will evaluate to(true, false) as desired—theast expression
will no longer succeed, becausewill be substituted by the dy-
namic type namey’, anda’ # int. (Moreover, sincey’ is only
visible statically in the scope of theaw expression, the client has
no access te’, and thus cannatonvertfrom int to o’ either.)

Now, while it is clear thahew ensures proper type abstraction
in the client programecient, We want to prove that it does so for
any client program. A standard way of doing so is by showing a
more general property, namelgpresentation independen{20]:
we show that the moduleem:is contextually equivalerib another
module of the same type, meaning that no G program can observe
any difference between the two modules. By choosing thatroth
module to be a suitable reference implementation of the ADT i
question, we can conclude that the “real” one behaves gsoper
under all circumstances.

The obvious candidate for a reference implementation of the
semaphore ADT is the following:

4 A well-known alternative approach would omit the type stioréavor of esem2 := newa’ = bool in
using scope extrusion rules foew binders, as in Rossberg [21]. pack <0/7 {true, Ax: bool .-z, Ax: bool .x)) as Tsem

Here, the semaphore state is represented directly by a &otg
and does not rely on any additional invariant. If we can shioat t
esem1iS contextually equivalent tesemz then we can conclude that
esem1S type representation is truly being held abstract.

2.4 Contextual Equivalence

In order to be able to reason about representation indepeadee
need to make precise the notion of contextual equivalence.

A context C' is an expression with a single hold, defined
in the usual manner. Typing of contexts is defined by a judgmen
formk C : (A;T;7) ~ (A;TY;7'), where the triplgA; T 7)
indicates the type of the hole. The judgment implies thatafioy
expressiore with A; T + e : 7 we haveA’;TY + Cle] : 7'. The
rules are straightforward, the key rule being the one foestol

ACA rcr’
F] (AT 7) ~ (AT 7)
We can now define contextual approximation and contextual
equivalence as follows (with; e | asserting that; e terminates):

Definition 2.1 (Contextual Approximation and Equivalence)
LetA;T ke :TandA;T'Feq: 7.

AThFe <ex:T & vC, 7', 0.
FoAEC:(AT;7) ~ (o567) A
o;Clel] L = 0;C[e2] |
A;Ther <ex:TA
A;TFey<er: 7

def

A;ThFeg~es:7 &

That is, contextual approximatiofy; " F e; < ez : 7 means that
for any well-typed program context with a hole of appropriate
type, the termination of”'[e;] implies the termination ofZ'[e2].
Contextual equivalenc&; T F e; ~ es : 7 is just approximation
in both directions.

Considering that G does not explicitly contain any rec@siv
or looping constructs, the reader may wonder why terminaso
used as the notion of “distinguishing observation” in oufirde
tion of contextual equivalence. The reason is thatdie opera-
tor, together with impredicative polymorphism, makes isgible
to write well-typed non-terminating programs [11]. (ThiasvGi-
rard’s reason for studying the J operator in the first plat¢ [@ore-
over, usingcast, one can encode arbitrary recursive function defi-
nitions. Other forms of observation may then be encodedringe
of (non-)termination. See the expanded version of this pé&re
details [16].

3. A Logical Relation for G: Main Ideas

Following Reynolds [20] and Mitchell [14], our general apach
to reasoning about parametricity and representation emtignce
is to define dogical relation Essentially, logical relations give us a
tractable way of proving that two terms are contextuallyieajent,
which in turn gives us a way of proving that abstract typeseady
abstract. Of course, since polymorphism in G is non-paracet
the definition of our logical relation in the cases of unietrand
existential types is somewhat unusual. To place our approac
context, we first review the traditional approach to defidgjcal
relations for languages with parametric polymorphism,hsas
System F.

3.1 Logical Relations for Parametric Polymorphism

Although the technical meaning of “logical relation” is mat
woolly, the basic idea is to define an equivalence (or appraxi
tion) relation on programs inductively, following the stture of
their types. To take the canonical example of arrow typesyaudd

say that two functions are logically related at the type— 2 if,
when passed arguments that are logically related ,atither they
both diverge or they both converge to values that are ldgicat
lated atr,. Thefundamental theorerof logical relations states that
the logical relation is a congruence with respect to thetroots of
the language. Together with what Pitts [17] caltfequacy—i.e.,
the fact that logically related terms have equivalent teation
behavior—the fundamental theorem implies that logicadiiated
terms are contextually equivalent, since contextual edence is
defined precisely to be the largest adequate congruence.

Traditionally, the parametric nature of polymorphism isdaa
clear by the definition of the logical relation for universaild ex-
istential types. Intuitively, two type abstractiongy.e; andAa.ez,
are logically related at typ&¥a.7 if they map relatedype argu-
ments to related results. But what does it mean for two typa-ar
ments to be related? Moreover, once we settle on two relgped t
arguments| andr;, at what type do we relate the resuligr| /o]
andex[r3/al?

One approach would be to restrict “related type argumerats” t
be thesametype 7’. Thus, Aa.e; and Aa.e2 would be logically
related atva.r iff, for any (closed) typer’, it is the case that
e1[t'/a] andes[r'/a] are logically related at the type[r’'/a].

A key problem with this definition, however, is that, due te th
quantification overany argument typer’, the typer|[r’/a] may
in fact be larger than the typéx.7, and thus the definition of the
logical relation is no longer inductive in the structure bé ttype.
Another problem is that this definition does not tell us amgh
about the parametric nature of polymorphism.

Reynolds’ alternative approach is a generalization of @isa
“candidates” method for proving strong normalization fgs&m
F [9]. The idea is simple: instead of defining two type argutaen
to be related only if they are the same, allany two different
type arguments to be related by an (almost) arbitrary oeiati
interpretation (subject to certaamissibilityconstraints). That is,
we parameterize the logical relation at typdy an interpretation
function p, which maps each free type variable ofto a pair
of typest{, 75 together with some (admissible) relation between
values of those types. Then, we say that.e; and \a.ex are
logically related at typéva.7 under interpretationp iff, for any
closed types | andr; and any relatior2 between values of those
types, itis the case that 7] /a] andez[73 /] are logically related
at typer under interpretatiop, o — (71, 73, R).

The miracle of Reynolds/Girard’s method is that it simuétan
ously (1) renders the logical relation inductively wellfided in
the structure of the type, and (2) demonstrates the pariihetr
of polymorphism: logically related type abstractions mioshave
the same even when passed completely different type argamen
so their behavior may not analyze the type argument and behav
in different ways for different arguments. Dually, we caowtthat
two ADTSs pack (71,v1) as Ja.7 andpack (12, v2) as Ja.T are
logically related (and thus contextually equivalent) byiexing
somerelational interpretatior for the abstract type, even if the
underlying type representatioms and - are different. This is the
essence of what is meant by “representation independence”.

Unfortunately, in the setting of G, Reynolds/Girard’s nath
is not directly applicable, precisely because polymonphiis G is
not parametric! This essentially forces us back to the fppt@ach
suggested above, namely to only consider type argumente to b
logically related if they are equal. Moreover, it makes sertke
cast operator views types as data, so types may only be logically
related if they are indistinguishable as data.

The natural questions, then, are: (1) what metric do we use to
define the logical relation inductively, since the struetaf the
type no longer suffices, and (2) how do we establish that dimam

type generation regains a form of parametricity? We addresse
guestions in the next two sections, respectively.

3.2 Step-Indexed Logical Relations for Non-Parametricity

First, in order to provide a metric for inductively defininget
logical relation, we employstep-indexing Step-indexed logical
relations were proposed originally by Appel and McAlles{gy

as a way of giving a simple operational-semantics-basedemod
for general recursive types in the context of foundationalof
carrying code. In subsequent work by Ahmed and others [3, 6],
the method has been adapted to support relational reasoming
variety of settings, including untyped and imperative laages.

The key idea of step-indexed logical relations is to index th
definition of the logical relation not only by the type of theop
grams being related, but also by a natural numbeepresenting
(intuitively) “the number of steps left in the computatioffhat is,
if two termse; andes are logically related at type for n steps,
then if we place them in any program cont&xtand run the re-
sulting programs for, steps of computation, we should not be able
to produce observably different resulsd.,Cle1] evaluating to 5
andC/ez] evaluating to 7). To show that ande; are contextually
equivalent, then, it suffices to show that they are logicedhated
for n steps, for any:.

To see how step-indexing helps us, consider how we might
define a step-indexed logical relation for G in the case ofensal
types: two type abstractionsy.e; and\a.e2 are logically related
atVo.r for n steps iff, for any type argument, it is the case that
e1[7'/a] andes[r'/a] are logically related at[r’/a] for n — 1

steps. This reasoning is sound because the only way a programbij

context can distinguish betweer.e; and Aa.ez in n steps is
by first applying them to a type argumerft—which incurs a step
of computation for the3-reduction(Aa.e;) 7’ — e;[r'/a]—and
then distinguishing between [7'/a] andez[r’/a] within the next
n — 1 steps. Moreover, although the typér’/a] may be larger
thanVa.r, the step index — 1 is smaller, so the logical relation is
inductively well-defined.

3.3 Kripke Logical Relations for Dynamic Parametricity

Second, in order to establish the parametricity propexfedy-
namic type generation, we empld{ripke logical relations i.e.,
logical relations that are indexed Ippssible worlds Kripke log-
ical relations are appropriate when reasoning about ptiegehat
are true only under certain conditions, such as equivalefined-
ules with local mutable state. For instance, an imperatizET A
might only behave according to its specification if its lodalta
structures obey certain invariants. Possible worlds atipe/to cod-
ify suchlocal invariantson the machine store [18].

In our setting, the local invariant we want to establish isatvh
a dynamically generated type nameans That is, we will use
possible worlds to assign relational interpretations toasgically
generated type names. For example, consider the programs
andesemz2from Section 2. We want to show they are logically related
atJa. a X (¢ = «) x (o — bool) in an empty initial world
wo (i.e.,under empty type stores). The proof proceeds roughly as
follows. First, we evaluate the two programs. This will hake
effect of generating a fresh type namg with o/ ~ int extending
the type store of the first program and = bool extending the
type store of the second program. At this point, we corredjpaty
extend the initial worldwo with a mapping from’ to the relation
R = {(1,true), (0, false)}, thus forming a new worldy that
specifies the semantic meaningadf

5In fact, step-indexed logical relations may already be wtded as a
special case of Kripke logical relations, in which the stegex serves as
the notion of possible world, and whetés a future world ofm iff n < m.

We now must show that the values
pack (o, (1, Az:int.(1 —), Az int.(z # 0))) as Tsem
and
pack (a, (true, A\z: bool .=z, Az: bool .x)) as Tsem

are logically related in the world. Since G’s logical relation for
existential types is non-parametric, the two packages s the
sametype representation, but of course the whole point of using
new was to ensure that they do (namely, itd§. The remainder
of the proof is showing that the value components of the ppeka
are related at the type’ x (o/ — ') x (o’ — bool) under the
interpretationp = o’ + (int, bool, R) derived from the worldv.
This last part is completely analogous to what one would shaav
standard representation independence proof.
In short, the possible worlds in our Kripke logical relaton
bring back the ability to assign arbitrary relational iptertations
R to abstract types, an ability that was seemingly lost when we
moved to a non-parametric logical relation. The only catcthat
we can only assign arbitrary interpretationglymamictype names,
not tostatic, universally/existentially quantified type variables.
There is one minor technical matter that we glossed overen th
above proof sketch but is worth mentioning. Due to nondeiterm
ism of type name allocation, the evaluationegfmi and esemz may
result ino’ being replaced by} in the former andy, in the lat-
ter (for some fresh}, # o). Moreover, we are also interested in
proving equivalence of programs that do not necessaricate
exactly the same number of type names in the same order.
Consequently, we also include in our possible worlds a glarti
ectionn between the type names of the first program and the type
names of the second program, which specifies how each dynami-
cally generated abstract type is concretely representiaistores
of the two programs. We require them to be in 1-1 correspacelen
because theast construct permits the program context to observe

equality on type names, as follows:

equal? : Va.Vg. bool gef

Aa.AB. cast ((a = a) — bool) ((8 — B) — bool)
(Az:(a =). true)(Az:(8 — B). false)(A\x:8.x)

We then consider types to be logically related if they aresdmae

up to this bijection. For instance, in our running example, when
extendingwo to w, we would not only extend its relational in-
terpretation witha’ +— (int, bool, R) but also extend itg with

o' — (af, ab). Thus, the type representations of the two existen-
tial packagesq; andas, though syntactically distinct, would still
be logically related undew.

4. A Logical Relation for G: Formal Details

Figure 2 displays our step-indexed Kripke logical relatfon G

in full gory detail. It is easiest to understand this defonitiby
making two passes over it. First, as the step indices haveya wa
of infecting the whole definition in a superficially complesut
really very straightforward—way, we will first walk throughe
whole definitionignoring all occurrences of’s andk’s (as well as
auxiliary functions like the - |, operator). Second, we will pinpoint
the few places where step indices actually play an importdeatin
ensuring that the logical relation is inductively well-faled.

4.1 Highlights of the Logical Relation

The first section of Figure 2 defines the kinds of semanticatbje
that are used in the construction of the logical relationafans
R are sets otoms which are pairs of terms;; ande., indexed
by a possible worldv. The definition ofAtom|[r, 72] requires that
e1 andez have the types; and, under the type stores.o; and
w.o2, respectively. (We use the dot notatiety; to denote theé-th

Atomy,[11, 2]

{(k,w,e1,e2) | k <nAw € Worldy A - w.o1;5e1 :

TI A w.og ez T2}

Rely[71, 2] = {R C Atom?'[r1, 7] | V(k,w,v1,v2) € R.V(k',w') D (k,w). (K',w',v1,v2) € R}

SomeRel,, L= (71,72, R)| fv(1,72) = 0 A R € Rel, 11,72}

Interp,, gef {p € TVar % SomeRel,, }

Conc gef {n € TVar B TVar x TVar |Va,o’ € dom(n).a # o’ = n'(a) # ' (/) An?(a) #n*(d)}
World, gef {w = (01,02,m,p) | Fo1 AN o2 An € ConcA p € Interp,, A dom(n) = dom(p) A

Ya € dom(p). o1 F p'(a) = n'(a) Aoz F p*(a) = n?(a)}
def
L(o1,02,m,p)]n if (o1,02,7m, [pn) (K',w") 3 (k,w) E K <kAw € Worldy, A
loln = {a—=|r]n]|pla) =1} w.'.n JwnA }U’Ap 3 |w.plwp A
I_(T177-27R)J7L d:ef (T17T27 LRJ) vie {(17/2}1)11} o %wo;l)/\c
def rng(w’.n") — rng(w.n’) C
_RJn = {(k w, 61,62) €ER | k< TL} y dom(w'.ai) _ dom(wlai)
/ € / _
>R d:ef {(k‘,w,el,eg) |k::0\/ 77/277 jj:e>f vaedom(n).n/(a) —77(04)
(k - 1, ijkfl,el,ez) S R} P - p = Vo € dom(p)‘ p (O‘) = p(a)
Valalo £ [p(@)-Rln
Valblp & {(k,w,c,c) € Atomy[b, b]}
Vol x m']p e {(k,w, (v1,v1), (va,v%)) € Atomy[p" (T x 77), p* (7 x /)] |
kvavhU?) € VWIIT]]p A (k7w7v{7vé) € VnIIT,]]p}
Valr' = 7lp & {(k,w, Aezmi.er, Aeia.e2) € Atomy[p} (v — 7), p2 (7" — 7)] |
V(K w' v1,v2) € Viu[r']p. (K, w') 3 (k,w) =
(', w', ex[v1/a], e2[v2/]) € En[r]p}
Va[Va.7]p L' {(k, w, Aov.e1, Aav.es) € Atomn[p' (Va.T), p*(Vou.7)] |
V(K w') 3 (k,w). V(71, 72,7) € Tr [Q]w’
(K',w', e1[m/al, ea[r2/a]) € EL[7]p, a1}
Vo [Ba.7]p ©T {(k,w, pack (11, v1), pack (72, v2)) € Atomn[p' (3ew.7), p*(Bev.7)] |
Ir. (11, 72,7) € Ti[Qw A (k, w,v1,v2) € bV [7]p, =1}
En[r]p E{(kw,e1,e2) € Atomn o' (7), p%(7)] |
Vj < k.Voi,v1. (w.or;e1 =7 o1;01) =
', va. (k —j,w’) 3 (k,w) Aw'.o1 = 01 A (w.02;e2 = w'.o2;v2) A (k — j,w',v1,v2) € Voa[r]p}
def
Tn[w = A{(wn' (r),wn?(7), (w.p'(r),w.p* (), Valr]w.p)) | fv(7) € dom(w.p)}
Gulelp ::: {(k,w,0,0) | k <nAwe Worldy}
Gn[[r7 T T]] = {(k7 w, (’Yh 1’*—)1}1), (’727 ZEI—)”UQ)) |
df (k,w,v1,72) € Gu[T]p A (k,w,v1,v2) € Vi [7]p}
Dy, [e]|w e 0,0,0
[€] . {(0,0,0)}
n[A, a]w = {((61, —=11), (62, —>72), (p, 1)) |
(51,52,p) S Dn[[A]]w A\ (Tl,TQ,T) S Tn[[Q]]w}
[B.onrhw 2 {3008, (03, 0562), (p,cor) |
(61,52,) [[]]w A
S0 wp(a’) = 7 Awn(a’) = (B, Ba) A
w.o1(B1) = 01(7) ANw.o2(B2) = d2(7) Ar.R =V, [7]p}
A;Ther Zex: T g:e;‘ A;TFer:TAA T Hex:7A
vn > 0. Ywo € World,,. V(d1, b2, p) € Dp[A]we. Y(k,w,y1,72) € Gn[I]p.
(k,w) 3 (n,wo) = (k,w,d171(€1), 6272(e2)) € En[r]p

Figure 2. Logical Relation for G

type store component af, and analogous notation for projecting
out the other components of worlds.)

Rel[r1, 2] defines the set oAdmissiblerelations, which are
permitted to be used as the semantic interpretations ofaaibst
types. For our purposes, admissibility is simpignotonicity—i.e.,
closure under world extension. That is, if a relatiorRial relates

two valuesv; andwv2 under a worldw, then the relation must relate
those values in any future world af. (We discuss the definition of
world extension below.) Monotonicity is needed in orderns@e
that we can extend worlds with interpretations of new dymaype
names, without interfering somehow with the interpretagiof the
old ones.

Worlds w are 4-tuples(o1, 02,7, p), Which describe a set of
assumptions under which pairs of terms are related. Rerend

the free variables of are interpreted by, but the free variables of
7' aredynamictype names whose interpretations are givemy.

o2 are the type stores under which the terms are typechecked andt is possible to merge andw.p into a unified interpretatiop’, but

evaluated. The finite mappingsand p share a common domain,

which can be understood as the set of abstract type names that

have been generated dynamically. These “semantic” typeegam
do not exist in either store; or o2.® Rather, they provide a way
of referring to an abstract type that is representedsoometype
nameq; in o1 andsometype namexs in o2. Thus, for each name
a € dom(n) = dom(p), theconcretizationy maps the “semantic”
namea to a pair of “concrete” names from the storesando-,
respectively. (See the end of Section 3.3 for an example dif su
ann.) As the definition ofConc makes clear, distinct semantic
type names must have distinct concretizations; conselyuent
represents partial bijectionbetweens; andos.

The last component of the world is p, which assigns rela-
tional interpretations to the aforementioned semantie tyames.
Formally, p maps eachw to a tripler = (71, 72, R), whereR is a
monotone relation between values of typesand ». (Again, see
the end of Section 3.3 for an example of such.)gThe final con-
dition in the definition ofWorld stipulates that the closed syntactic
types in the range qf and the concrete type names in the range of
n are compatible. As a matter of notation, we will wrifeand p*
to denote the type substitutioga — a; | n(a) = (a1, @2)} and
{a— 7| p(a) = (11,72, R)}, respectively.

The second section of Figure 2 displays the definition of evorl
extension. In order fotw’ to extendw (writtenw’ 3 w), it must
be the case that (1’ specifies semantic interpretations for a
superset of the type names thainterprets, (2) for the names that
w interpretsw’ must interpret them in the same way, and (3) any
new semantic type names that interprets may only correspond
to new concrete type names that did not exist in the stores of
w. Although the third condition is not strictly necessary, have
found it to be useful when proving certain exampleg(the “order
independence” example in Section 4.4).

The last section of Figure 2 defines the logical relationlfitse
V[r]p is the logical relation for valuedy[7]p is the one for terms,
andT'[Q]w is the one fortypes as dataas described in Section 3
(here L2 represents thkind of types).

V[7]p relates values at the type where the free type variables
of 7 are given relational interpretations by Ignoring the step
indices, V[r]p is mostly very standard. For instance, at certain
points (namely, in the» andV cases), when we quantify over
logically related (value or type) arguments, we must alltvnh
to come from an arbitrary future world’ in order to ensure
monotonicity. This kind of quantification over future woslds
commonplace in Kripke logical relations.

The only really interesting bit in the definition &f[r]p is the
use of T'[Q2]w to characterize when the twigpearguments (resp.
components) of a universal (resp. existential) are lobjigelated.
As explained in Section 3.3, we consider two types to be hilyic
related in worldw iff they are the same up to the partial bijection
w.n. Formally, we defind’[Q2]w as a relation on triple§ri, 72,),
wherer; andr, are the two logically related types ands a rela-
tion telling us how to relate values of those types. To bedalty
related means that andr are the concretizations (according to
w.n) of some “semantic” type’. Correspondinglyr is the logi-
cal relationV [r']w.p at that semantic type. Thus, when we write
E[7]p, « — rinthe definition of [Va.7] p, this is roughly equiv-
alent to writing E[r[r'/a]]p (which our discussion in Section 3.2
might have led the reader to expect to see here instead) eakemn
for our present formulation is thad[r[r'/a]]p is not quite right:

61n fact, technically speaking, we considéom(n)
bound variables of the world.

dom(p) to be

we feel our present approach is cleaner.

Another point of note: since is uniquely determined from
71 and 72, it is not really necessary to include it in tHe[Q]w
relation. However, as we shall see in Section 6, formulatireg
logical relation in this way has the benefit of isolating dlilee non-
parametricity of our logical relation in the definition BfQ]w.

The term relatiorE[r] p is very similar to that in previous step-
indexed Kripke logical relations [6]. Briefly, it says thatd terms
are related in an initial world if whenever the first evaluates to a
value undemw.o, the second evaluates to a value under., and
the resulting stores and values are related in some futurlel wo.

The remainder of the definitions in Figure 2 serve to forngaliz
a logical relation foropenterms.G[I']p is the logical relation on
value substitutions, which asserts that relateds must map vari-
ables indom(T") to related valuesD[A]w is the logical relation on
type substitutions. It asserts that relatésimust map variables in
dom(A) to types that are related in. For type variables: bound
asa ~ 7, thed’s must mapx to a type hame whose semantic in-
terpretation inw is precisely the logical relation at Analogously
to T[Q]w, the relationD[A]w also includes a relational interpre-
tation p, which may be uniquely determined from téis.

Finally, the open logical relation;T" - e1 = eq : 7 is defined
in a fairly standard way. It says that for any starting warlgl and
any type substitutions; and d, related in that world, if we are
given related value substitutions and~- in any future worlcw,
thendiyie; anddzyzez are related inv as well.

4.2 Why and Where the Steps Matter

As we explained in Section 3.2, step indices play a critiol in
making the logical relation well-founded. Essentially,emever we
run into an apparent circularity, we “go down a step” by defini
ann-level property in terms of am(—1)-level one. Of course, this
trick only works if, at all such “stepping points”, the onlyay that
an adversarial program context could possibly tell whethem-
level property holds or not is by taking one step of compataéind
then checking whether the underlying<{1)-level property holds.
Fortunately, this is the case.

Since worlds contain relations, and relations contain séts
tuples that include worlds, a naive construction of thelsieats
would have an inconsistent cardinality. We thus stratifghiweorlds
and relations by a step index:level worldsw € World,, contain
n-level interpretationg € Interp,,, which map type variables to
n-level relations;n-level relationsR € Rel, [r1, 72] only contain
atoms indexed by a step level< n and a worldw € Worldy. Al-
though our possible worlds have a different structure thasrevi-
ous work, the technique of mutual world and relation stictfon
is similar to that used in Ahmed’s thesis [2], as well as régerk
by Ahmed, Dreyer and Rossberg [6].

Intuitively, the reason this works in our setting is as folto
Viewed as a judgment, our logical relation asserts that evms
e1 andes are logically related fok steps in a worldw at a type
7 under an interpretatiop (whose domain contains the free type
variables ofr). Clearly, in order to handle the case wheris just a
type variabley, the relations: in the range op must include atoms
at step index: (i.e.,ther’'s must be infSomeRelj+1).

But what about the relations in the range.op? Those relations
only come into play in the universal and existential casek@fog-
ical relation for values. Consider the existential case (thiversal
one is analogous). There, p pops up in the definition of the rela-
tion r that comes fron¥ . [Q2]w. However, that is only needed in
defining the relatedness of the valugsandwv, at step levek—1
(note the definition of R in the second section of Figure 2). Con-

sequently, we only needto include atoms at stefp—1 and lower
(i.e., must be inSomeRely), so the worldw from which r is
derived need only be iWorldy.

As this discussion suggests, itilmperativethat we “go down
a step” in the universal and existential cases of the log@ation.
For the other cases, it is not necessary to go down a stepuglth
we have the option of doing so. For example, we could define
k-level relatedness at pair type x 72 in terms of ¢—1)-level
relatedness at; andr.. But since the type gets smaller, there is no
need to. For clarity, we have only gone down a step in the &gic
relation at the points where it is absolutely necessaryventdave
used the> notation to underscore those points.

4.3 Key Properties
The main results concerning our logical relation are a®fat

Theorem 4.1 (Fundamental Property for <)
If A;THe: 7, thenA;THe e T

Theorem 4.2 (Soundness of wrt. Contextual Approximation)
IfA;THer Zex:7,thenA;THep <ep: 7.

These theorems establish that our logical relation previe
sound technique for proving contextual equivalence of @rams.
The proofs of these theorems rely on many technical lemmast m
of which are standard and straightforward to prove. We Igihla
few of them here, and refer the reader to the expanded ves$ion
this paper for full details of the proofs [16].

One key lemma we have mentioned already istiomotonicity
lemma, which states that the logical relation for valueslosexd
under world extension, and therefore belongs toRleé class of
relations. Another key lemma fgansitivity of world extensian

There are also a group of lemmas—Pitts terms tltempati-
bility lemmas [17]—which show that the logical relation is a pre-
congruence with respect to the constructs of the G language.
particular note among these are the onesfet andnew.

For cast, we must show thatast 71 7 is logically related to
itself under a type contexA assuming that, and , are well-
formed inA. This boils down to showing that, for logically related
type substitutions); and 2, it is the case thab; 71 = 172 if
and only if 271 = d272. This follows easily from the fact that
01 andd., by virtue of being logically related, map the variables
in dom(A) to types that are syntactically identical up to some
bijection on type names.

For new, we must show that, i\, ax~7";T F e1 = ex : T,
thenA; T + newam7’ in e1 3 newas7’ in ez : 7 (@ssuming
A F T and A + 7). The proof involves extending the and
p components of some given initial world, with bindings for
the fresh dynamically-generated type nameThen is extended
with & — (a1, a2), wherea; and a2 are the concrete fresh
names that are chosen when evaluating the left and right
expressions. The is extended so that the relational interpretation
of « is simply the logical relation at type’. The proof of this
lemma is highly reminiscent of the proof of compatibilityr fieef
(reference allocation) in a language with mutable refezeri6].

Finally, another important compatibility property tigope com-
patibility,i.e.,thatif A - 71 &~ 7 and(d1, d2, p) € D, [A]w, then
Valrilp = Valr]p and En[ri]p = En[r2]p. The interesting
case is whem is a variablex bound inA asa: ~ 72, and the result
in this case follows easily from the definition Bf[A, a ~ T]w.

4.4 Examples
Semaphore. We now return to our semaphore example from Sec-

former usesnt, the latterbool. To show that they are contextu-
ally equivalent, it suffices by Soundness to show that eagh lo
cally approximates the other. We prove only one directiamely

F esem1 3 esem2: Tsem the other is proven analogously.

Expanding the definitions, we need to sh@ww, esem1, €sem2) €
E,[sem]@. Note how each term generates a fresh type nafria
one step, resulting in a package value. Hence all we need i® do
come up with a worldy’ satisfying

® (k - 17wl) | (k,w),
o w'.o1 = w.o1,ar~int andw’.o2 = w.o2, asrsbool,
o (k—1,w', pack{a1,v1), pack{az,v2)) € Vi [7sen] 0.

wherev; is the term component ofsem’s implementation. We
constructw’ by extendingw with mappings that establish the
relation between the new type names:

R:= {(k",w", Vint; Ubool) € Atom}'f'_l[int, bool] |
(Vint; Vboot) = (1, true) V (Vint, Ubool) = (0, false) }
r := (int, bool, R)
w' = |w|k_1 W (a1~int, az~bool, (a1, az2), cav—=r)

The first two conditions above are satisfied by constructiam.
show that the packages are related we need to show the exis-
tence of anr’ with (a1, ae,7’) € Ty—1[Q]w’ such that(k —
2, W |k—2,v1,v2) € Vipl[remlp,a—1', Where réeq, = o X
(¢ = @) x (@ — bool). Sincea; = w'.n*(a), ' must be
(int, bool, Vi, _1[a]w’.p) by definition of T[2]. Of course, we
definedw’ the way we did so that thig is exactlyr.

The proof of (k — 2, |w’ |k—2,v1,v2) € Vi [Téenp, a7 de-
composes into three parts, following the structuregf;

1. (k—2,|w|k—2,1,true) € V,[a]p, arsr
This holds becausE, [a]p, a—r = R.

2. (k—2,|w'|k—2, Az:int.(1 — x), Az:bool.—x)
€ Vala — ao]p, av—r

e Suppose we are given related arguments in a future world:
(K", w" v1,v5) € Vpla]p, a—r = R.

¢ Hence eithefv], vy) = (1, true) or (v, v5) = (0, false).

e Consequentlyl — v} and —v5 will evaluate in one step,
without effects, to values again related By

e In other words(k"”, w"”,1 — v}, —w3y) € En[a]p, ar—r.

3. (k—2,|w' k=2, Az.(x # 0), A\x.z) € Voo — bool]p, a—r
Like in the previous part, the argument$ and v5 will be
related byR in some future(k”, w"). Thereforev; # 0 will
reduce in one step without effects t§, which already is a

value. Because of the definition of the logical relation ety
bool, this implies(k”, w"”, vi # 0,v3) € Ey[bool]p, c—r.

Partly Benign Effects. When side effects are introduced into a
pure language, they often falsify various equational laarscern-
ing repeatability and order independence of computatibnthis
section, we offer some evidence that the effect of dynampe ty
generation is partlenignin that it does not invalidate some of
these equational laws.

First, consider the following functions:

v1 = Az:(unit = 7). letz’ =z () inz ()
vz = Az:(unit — 7). 2 ()

The only difference betwean andv; is whether the argumentis
applied once or twice. Intuitively, either() diverges, in which case

tion 2 and show how to prove representation independence for both programs diverge, or else the first application términates,

the two different implementationssem: and esem2 Recall that the

in which case so should the second.

Second, consider the following functions:
vy := Az:(unit — 7). Ay:(unit = 7). lety’ =y () in (z (),y")
vh := Az:(unit = 7). y:(unit = 7).(z),y ()

The only difference betweer; andwvs is the order in which they
call their argument callbacks andy. Those calls may both result
in the generation of fresh type names, but the order in whieh t
names are generated should not matter.

Using our logical relation, we can prove thatandwv, are con-
textually equivalent, and so avg¢ andv’. (Due to space considera-
tions, we refer the interested reader to the expanded veo§ithis
paper for full proof details [16].)

However, as we shall see in the exampleofinde’ in the next
section, our G language doest enjoy referential transparency.
This is to be expected, of course, simesv is an effectful operation
and (in-)equality of type names is observable in the languag

5. Wrapping

We have seen that parametricity can be re-established in G by

introducing name generation in the right place. But whathis t
“right place” in general? That is, given an arbritrary exgsiene
with polymorphic typer., how can wesystematicallyransform it
into an expression’ of the same type. that is parametric?

One obvious—but unfortunately bogus—idea is the following
transforme such that every existentiaitroductionand every uni-
versaleliminationcreates a fresh name for the respective witness
or instance type. Formally, apply the following rewritegsitoe:

pack (T,e) as 7' ~» new a7 in pack (o, €) as 7’
eT ~> new a~T in e

Obviously, this would make every quantified type abstrazthst
any cast that tries to inspect it would fail.

Or would it? Perhaps surprisingly, the answer is no. To sgg wh
consider the following expressions of tyfign.7’) x (Ja.7'):

ey =

= letx = pack (1, v) in {x,z)
€2

(pack (7, v), pack {1, v))

They are clearly equivalent in a parametric language (arfddh
they are even equivalent in G). Yet rewriting yields:

let x = (new avr2T in pack (o, v)) in (x, z)
(new a7 in pack («, v), new a7 in pack (o, v))

el :
!
€y

The resulting expressions amet equivalent anymore, because they
perform different effects. Here is one distinguishing eoutt

letp =[] inunpack (@1, z1) = p.1in
unpack (a2, z2) = p.2 in equal? aq az

Although the representation typds not disclosed as sucsharing
between the two abstract typesdfis. In a parametric language,
that would not be possible.

In order to introduce effects uniformly, and to hide intdrna
sharing, the transformation we are looking for needs to iaeid
on the structure of types, not terms. Roughly, for each dfient
occurring inT. we need to generate one fresh type name. That
is, instead of transforming itself, we simplywrap it with some
expression that introduces the necessary names at thedrgubg
induction on the type-.

In fact, we can refine the problem further. When looking at a G
expressiore, what do we actually mean by “making it parametric”?
We can mean two different things: either ensuring thaehaves
parametrically, or dually, that any contex¢éats e parametrically.

In the former case, we are protecting tmntextagainste, in the
latter we protect against malicious contexts. The latter is what is
sometimes referred to abstraction safety

Wrf(e) £ lete=ein Wrf(z) (if e not avalue)
WrZ (v) L
Wrf (v) L
Wrt () & (WrE (0.1), W (0.2))
wrt | (v) & Az Wil (v WiE (21))
Wi _(v) &' o newT o in Wi (v)
Wi (v) L unpack (a, z)=wv in
new® a in pack (a, WrE (x)) as Ja.7
new" aine = newa'~ain ela’/q]
new aine e

Figure 3. Wrapping

Figure 3 defines a pair of wrapping operators that correspond
to these two dual requirementdr™ protects an expressian: 7.
from beingusedin a non-parametric way, by inserting fresh names
for each existential quantifier. Duallyyr~ forcese to behavepara-
metrically by creating a fresh name for each polymorphitains-
ation. The definitions extend to other types in the usual tfonied
manner. Both definitions are interdependent, because soliégsh
for function arguments. These operators are similar to ype-t
directed translation that Sumii and Pierce suggest fobbskang
type abstraction in an untyped language [27] (they proposelé-
scriptive terms “firewall” forWr™, and “sandbox” foAVr). How-
ever, their use of dynamic sealing instead of type generatisults
in the insertion of runtime coercions to seal/unseal eadivitual
value of abstract type, while our wrapping leaves such edlene.

Given these operators, we can go back to our semaphore ex-
ample:esemi can now be obtained ad'r;., (esem) (Modulo some
harmless)-expansions). This generalises to any ADT: wrapping its
implementation positively will guarantee abstraction baking it
parametric. We prove that in the next section.

Positive wrapping is reminiscent afodule sealindor opaque
signature ascription) in ML-style module languages. If veawe as
a module and its type. as a signature, theWr; (e) corresponds
to the sealing operatioa :> 7.. While module sealing typically
only performs static abstraction, wrapping describes theauohic
equivalent [22]. In fact, positive wrapping is preciselyhsealing
is implemented in Alice ML [23], where the module language is
non-parametric otherwise.

The correspondence to module sealing motivates our tregtme
of existential types. Notice thalr™ causes a fresh type name to
be created only once for each existentially quantified tyfeat
is, corresponding to each existentiatroduction Another option
would be to generate type names with each existeeliimination
In fact, such a semantics would arise naturally were we toause
Church encoding of existentials in conjunction with our pping
for universals. However, in such a semantics, unpackingistes-
tial value twice would have the effect of producing two distiab-
stract types. While this corresponds intuitively to therigeativity”
of unpack in System F, it is undesirable in the context of dynamic,
first-class modules. In particular, in order for an absttgot t de-
fined by some dynamic module M to have some permanent identity
(so that it can be referenced by other dynamic modules),iihis
portant that each unpacking of M yields a handle to the sammena
for t. Moreover, as we show in the next section, our approach to
defining wrapping is sufficient to ensure abstraction safety

6. Parametric Reasoning

The logical relation developed in Section 4 enables us toalo
parametric reasoning about equivalence of G programs. It also

def

Ty [Q]w

{(r1,72, (1,73, R)) | b7 AN w.o;-71i=7] AN RE€ERel,[r, 73]}

(everything else as in Figure 2)

Figure 4. Parametric Logical Relation

enables us to dparametricreasoning, but only indirectly: we have
to explicitly deal with the effects ofiew and to define worlds
containing relations between type names. It would be paéfer

if we were able to do parametric reasoning directly. For gxam
given two expressions;, e2 that do not use casts, and assuming
that the context does not do so either, we should be able somea
about equivalence af; andes in a manner similar to what we do
when reasoning about System F.

6.1 A Parametric Logical Relation

Thanks to the modular formulation of our logical relationFiy-
ure 2, it is easy to modify it so that it becomes parametri¢t wa
need to do is swap out the definition BfQ2]w, which relates types
as data. Figure 4 gives an alternative definition that alloksos-
ing an arbitrary relation between arbitrary types. Evanghelse
stays exactly the same. We decorate the sgaohmetric logical
relations thus obtained witl (i.e., V°, E°, etc.) to distinguish
them from the original ones. Likewise, we writ§ for the notion
of parametric logical approximatiomefined as in Figure 2 but in
terms of the parametric relations. For clarity, we will refe the
original definition as th@on-parametridogical relation.

This modification gives us a seemingly parametric definition
of logical approximation for G terms. But what does that altyu
mear? What is the relation between parametric and non-paranetri
logical approximation and, ultimatelgontextualapproximation?
Since the language is not parametric, clearly, paramétriequiv-
alent terms generally are not contextually equivalent.

The answer is given by the wrapping functions we defined in the
previous section. The following theorem connects the twione
of logical relation and approximation that we have intraghiic

Theorem 6.1 (Wrapping for 3°)

1. If - e; 3° e2 : 7, then Wit (er) X Wi (e2)
2. IfFe1 Zex: 7, thenk Wry (e1) 3° Wr; (e2)

LT,

2 LT,

This theorem justifies the definition of the parametric lagice-
lation. At the same time it can be read as a correctness fflesult
the wrapping operators: it says that whenever we can relaie t
terms using parametric reasoning, then the positive wreyspof
the first term contextually approximates the positive wiagmf
the second. Dually, once any properly related terms are pedp
negatively, they can safely be passed to any term that depamd
its context behaving parametrically.

6.2 Examples

Semaphore. Consider our running example of the semaphore
module again. Using the parametric relation, we can proaettte
two implementations are related without actually reaspribout
type generation. That aspect is covered once and for all &y th
Wrapping Theorem.

Recall the two implementations, here given in unwrappechfor

esem1 = pack (int, (1, Az:int.(1 — z), Az:int.(x # 0))) as Tsem
esemz = pack (bool, (true, \z: bool .—x, Az: bool .x)) as Tsem

We can prove- elemi =° etemz © Tsem USiNg conventional para-
metric reasoning about polymorphic terms. Now defiggn1 =
W (esem) andesemz = Wri_ (efems), Which are semantically

equivalent to the original definitions in Section 2.3. Theapfring
Theorem then immediately tells us thatsem1 X esem2: Tsem

A Free Theorem. We can use the parametric relation for proving
free theorems [30] in G. For example, for any : Ya.ao — ain

G it holds thatWr™ (g) either diverges for all possible arguments
Tandk v : 7, orit returnsv in all cases. We first apply the
Fundamental Property far to relateg to itself in F, then transfer
this to E° for Wr™ (g) using the Wrapping Theorem. From there
the proof proceeds in the usual way.

7. Syntactic vs. Semantic Parametricity

The primary motivation for our parametric relation in theyous
section was to enable more direct parametric reasoningt dbeu
result of (positively) wrapping System F terms. Howeverijsit
also possible to use our parametric relation to reason about
that aresyntactically or intensionally non-parametrici., that
use cast’s), so long as they arsemantically or extensionally
parametricice.,the use otast is not externally observable).
For example, consider the following two polymorphic functs
of typeVa.7, (here, leth2i = Ax:bool. if x then 1 else 0):
Toa :=30. (axa—f)x (B—=a)x(8—a)
g1 := Aa. pack {a X a, (Ap.p, Az.(x.1), Ax.(2.2))) as 74
g2 := Aa. cast Thool Ta
(pack (int, (Ap:(bool x bool). b2i(p.1) + 2x b2i(p.2),
Az:int. z mod 2 # 0,
Az:int. z div 2 # 0)) as Tpool)
(91)

These two functions take a type argumenand return a simple

What can we say about the content of the parametric relation? generic ADT for pairs overn. But g» is more clever about it

Obviously, it cannot contain arbitrary non-parametric Grte—
e.g.,cast 7 72 is not even related to itself il°. However, we still
obtain the following restricted form of the fundamental pecty:

Theorem 6.2 (Fundamental Property for3°)
If A;T F e:7andeiscast-free, thenA\;T Fe Z°e: 7.

In particular, this implies that any well-typed System Fnteis
parametrically related to itself. The relation will alsantain terms
with cast, but only if the use otast does not violate parametricity.
(We discuss this further in Section 7.)

Along the same lines, we can show that our parametric logical
relation is sound w.r.t. contextual approximatidgithe definition
of the latter is limited to quantifying only ovesnst-free contexts.

10

and specializes the representation féor= bool. In that case,
it packs both components into the two least significant bita o
single integer. For all other typeg. falls back to the generic
implementation frony; .

Using the parametric relation, we will be able to show that
F Wrt(g1) < Wrt(gz) : Va.7o. One might find this surprising,
sincegs is syntactically non-parametric, returning different iep
mentations for different instantiations of its type arguntndHow-
ever, since the two possible implementatigageturns are exten-
sionally equivalent to each otheg is semantically indistinguish-
able from the syntactically parametge¢.

Formally: Assume that., 7 are the types anB., € Rel[r1, 72]
is the relation the context picks, parametrically, fotf 7o # bool,
the rest of the proof is straightforward. Otherwise, we dokmow

Viflalp = [p(e).R]n
VEb]p &f {(k,w,c,c) € Atom,[b, b]}
ViE[r x ']p o {(k,w, (v1,v1), (va,v4)) € Atomy, [p" (7 x 7'), p* (7 x /)] |
(k,w,v1,v2) € VE[T]p A (k,w, vy, vh) € ViE[T]p}
VE = 7lp gef {(k,w, \x:T1.e1, A\x:To.€2) € Atomy, [p' (7" — 1), 2 (7" =)] |
W w1, v2) € Vi [P]p. (K, ') 3 (b, w) =
(K',w',ervr /], ealvz/2]) € Er[7]p}
ViE[Va.t]p & {(k,w, Aa.e1, Aa.ea) € Atomy,[p' (Va.T), p*(Va.7)] |
V(K w') 3 (k,w). V(r1,72,7r) € T, [Quw'.
(K',w',erlr1/a], ear2/a]) € bE; [7]p, arr}
ViEBa.]p & {(k,w, pack {11, v1), pack (12, v2)) € Atom,[p* (3e.7), p?(3e.7)] |
Ir. (11, 72,7) € Tki [Qw A (k,w,vi,v2) € DVniIIT]]p, a—T}
Eilrle & {(kw.ere) € Atomn[p} (7). p7()] |
Vi < k.Yoi,v1. (w.or;e1 =7 o1;01) =
', v2. (k — j,w') 3 (k,w) Aw'.o1 = 01 A (w.o2;e2 =" w.o9;v2) A (k — §,w', v1,v2) € V,E[7]p}
T [Qw e (o) Df[Alw = Dy[AJw
Ty [Qw © 0w Di[Alw & D.[Alw
AT ke STeq:r b A;TFer :TANA; T Hes: T A

Vn > 0,Vwe € World,, . V(d1, 2, p) € DF [A]wo. V(k,w,y1,72) € GF[T]p.
(k,w) 3 (n,wo) = (k,w,8171(e1), 6272(e2)) € B [r]p

Figure 5. Polarized

anything aboutr; and R., becauser; andr, are related inl™.
Nevertheless, we can construct a suitable relationalpreation
R € Rel[r1 x 71, int] for the typeg:

v'),0) | (k,w,v,false), (k,w, v, false) € Ra}
'), 1) | (k,w,v,true), (k,w,v’, false) € Ro}
v

(k, w, "Y,2) | (k,w,v, false), (k,w, v, true) € Ro}

As it turns out, we do not need to know much about the structure
of R, to define Rz. What we are relying on here is only the
knowledge that all values iR, are well-typed, which is built into
our definition of Rel. From that we know that there can never be
any other value thamrue or false on the right side of the relation
R.. Hence we can still enumerate all possible cases to dé&fine
and do a respective case distinction when proving equiceler
the projection operations.

Interestingly, it seems that our proof relies critically thie fact
that our logical relations are restricted to syntacticalill-typed
terms. Were we to lift this restriction, we would be forceds@ems)
to extend the definition ofRg with a “junk” case, but the calls to
b2i in g2 would get stuck if applied to non-boolean values. We
leave further investigation of this observation to futurarkv

8. Polarized Logical Relations

The parametric relation is useful for proving parametyigitoper-
ties about (the positive wrappings of) G terms. Howeves, dli-or-
nothing: it can only be used to prove parametricity for tethad ex-
pect to betreatedparametrically and alsbehaveparametrically—
cf. the two dual aspects of parametricity described in adi We
might also be interested in proving representation inddpece
for terms that danot behave parametrically themselves (in either
the syntactic or semantic sense considered in the prevemtios).
One situation where this might show up is if we want to show rep
resentation independence for generic ADTSs that (like thesadn
Section 7) return different results for different instatitins of their
type arguments, but where (unlike in Section 7) the diffeesis not
only syntactic but also semantic.

11

Logical Relations

Here is a somewhat contrived example to illustrate the point
Consider the following two polymorphic functions of typer.,:

To :=3B. (= B) X (B — «)

f1 := Aa. cast Tint To (pack (int, (Az:int.z+1, Az:int.x)) as Tint)
(pack (o, (A\z:a.z, Az:a.x)) as 7a)

f2 := Aa. cast Tint To (pack (int, (Az:int.z, Az:int.x+1)) as Tint)

(pack (o, (A\z:a.z, Az:a.x)) as 7a)

These functions take a type argumenand return a simple ADT
3. Values of typex can be injected int@, and projected out again.
However, both functions specialize the behavior of this ADT
type int—for integers, injecting: and projecting again will give
back notn, but rathern + 1. This is true for both functions, but
they implement it in a different way.

We want to prove that both implementations are equivalent
under wrapping using a form of parametric reasoning. Howeve
we cannot do that using the parametric relation from theiprev
ous section—since the functions do behaveparametricallyie.,
they return observably different packages for differerstantia-
tions of their type argument), they will not be relatedAfi.

To support that kind of reasoning, we need a more refinedtreat
ment of parametricity in the logical relation. The idea iséparate
the two aforementioned aspects of parametricity. Consetyieve
are going to have a pair of separate relatioRig, and E~. The
former enforces parametric usage, the latter paramethaier.

Figure 5 gives the definition of these relations. We call them
polarized because they are mutually dependent and the polarity
(+ or —) switches for contravariant positionse., for function
arguments and for universal quantifiers. Intuitively, iagh places,
term and context switch roles.

Except for the consistent addition of polarities, the dé&bini of
the polarized relations again only represents a minor noadiin
of the original on€.We merely refine the definition of the type re-

7In fact, all four relations can easily be formulated in a &ngnified
definition indexed by ::= €| o|+ | —. We refrained from doing so here
for the sake of clarity; see the expanded version of thisip@peletails [16].

€G

ec € F E° > eF

SO/

Figure 6. Relating the Relations

lation T'[Q]w to distinguish polarity: in the positive case it behaves
parametricallyi(e.,allowing an arbitrary relation) and in the nega-
tive case non-parametrically.€., demanding- be thelogical rela-
tion at some type). Thus, existential types behave pararabyrin
E but non-parametrically it ~, and vice versa for universals.

8.1 Key Properties

The way in which polarities switch in the polarized relasanir-

rors what is going on in the definition of wrapping. That of s®I
is no accident, and we can show the following theorem thatesl
the polarized relations with the non-parametric and pataoc@nes
through uses of wrapping:

Theorem 8.1 (Wrapping for ji)

1. IfFe; 3T e2: 7, then- Wr:.r(el) =3 Wr:.r(ez) DT
2. IfFe1 Zex: 7, thent Wr(e1) 37 Wry (e2) : 7.
3. IfFe1 2T ea: 7, then Wry (e1) 3° Wiy (e2) : 7.
4. 1Ift e 2° eq: 1, then- Wri(el) =~ Wri(eg) DT

Moreover, we can show that the inverse directions of theggiim
cations require no wrapping at all:

Theorem 8.2 (Inclusion for <%)
1L IfFe; Z3ex:Torke; 3°ex:7,thenke; 3T e 7.

~ ~

2. |f|—€1j762:’7',them—61<62:Tand|—€1j06217.

~

This theorem can equivalently be stated Bs: C £ C E* and
E- C E° C ET.

Note that Theorem 6.1 follows directly from Theorems 8.1 and
8.2. Similarly, the following property follows from Theare8.2
together with Theorem 4.1:

Corollary 8.3 (Fundamental Property for <T)
If A;TFe: 7, thenA;T e 3t e T

Interestingly, compatibility does not hold fgr® (consider the
polarities in the rule for application), which has the cansence
that we cannot show Corollary 8.3 directly. For a similarsag
we cannot show any such property fgr at all.

Figure 6 depicts all of the above properties in a single diagr
Unlabeled arrows denote inclusion, while labeled arrowstkethe
wrapping that maps one relation to the other. Eheperators show
the fundamental properties for the respective relatioas,which
class of terms are included (G terms or F terms).

8.2 Example

Getting back to our motivating example from the beginninghef
section, it is essentially straightforward to prove thatf; =<7

If 71 = int, then we know from the definition o'~ that
T2 = int, t00. We hence know that both sides will evaluate to the
specialized version of the ADT. Since we ardfirt, we get to pick
some(7y{, 75,7") € TT[Qw as the interpretation gf, where the
choice ofr’ is up to us. The natural choice is to use= 75 = int
with the relationr’ = (int,int, {(k,w,n + 1,n) | n € Z}). The
rest of the proof is then straightforward.

If 71 # int we similarly know that # int from the definition
of T~. Hence, both sides use the default implementations, which
are trivially related inF*, thanks to Corollary 8.3.

Finally, applying the Wrapping Theorem 8.1, we can conclude
that- Wi (f1) 2 WrT(f2) : Va.7a, and hence by Soundness,
FWrt(f1) X Wrt(fa) : VauTa.

Note how we relied on the knowledge thatand, can only be
int at the same time. This holds for types related’in but not in
T+ orT°. If we had tried to do this proof if°, the typesr; and
T2 would have been related B° only, which would give us too
little information to proceed with the necessary case mtision.

9. Recursive Types
We now add iso-recursive types to G and call the restilt G

Types 7 == ... |poT
Values v = .| roll vas T
Terms e == ... |rolleast| unroll e

The extensions to the semantics are standard and therefdted—
they do not affect the type store. Also, the definition of eatiial
equivalence does not change (except there are more cgntexts

9.1 Extending the Logical Relations

The step-indexing that we used in defining our logical retfei
makes it very easy to adapt them t8. G here are two natural ways
in which we could define the value relation at a recursive type

1. Vilpa.t]p d:a{(k:,w7 roll vy, roll v2) € Atomy,|...] |
(k, w, v1,v2) € BV 7] p, 0= Vi [pacT]p}

2. Valpa.t]p d:ef{(k‘, w, roll vy, roll v2) € Atomy,[...] |

(k,w,v1,v2) € bV [r[po.7/al]p}

For. € {¢, o}—i.e.,for the non-parametric and parametric forms
of the logical relation—the above two formulations are gglgnt
due to the validity of a standard substitution property. dsnf-
nately, though, we do not have such a property for the padriz
relation. In fact, for € {+, —}, the first definition wrongly records
a fixed polarity fora. It is thus crucial that we choose the second
one; only then do all key properties continue to hold th G

9.2 Extending the Wrapping

How can we upgrade the wrapping to account for recursivestype
Given an argument of typpa.7, the basic idea is to first unfold
it to type 7[ua.7 /], then wrap it at that type, and finally fold the
result back to type.«.7. Of course, since[ua.7/a] may be larger
thanu«.7, a direct implementation of this idea will not result in a
well-founded definition.

The solution is to use a fixed-point (definable in terms of re-
cursive types, of course), which gives us a handle on thepimgp
function we are in the middle of defining. Figure 7 shows th& ne
definition. We first index the wrapping by an environmenthat
maps recursive type variablesto wrappings for those variables.
Roughly, the wrapping at type«.r under environmenp is a re-
cursive functionF’, defined in terms of the wrapping at typeun-

f2 : Ya.7o. The proof proceeds as usual, except that we have to der environmenp, o — F'. Since the bound variable of a recursive
make a case distinction when we want to show that the function type may occur in positions of different polarity, we actyaieed

bodies are related iEt. At that point, we are given a triple
(11, 72,7) € T [Qw.

12

two mutually recursive functions and then select the rigie de-
pending on the polarity. The cognoscenti will recognizes s a

Wik, (v) £ (if « ¢ dom(p

)
Wit (v) o ot (a)v (if @ € dom(yp)
Wi o (0) £ letrec £ = Az roll (Wrf_, (unroll z)[pa.7 /a
and f~ = Az.roll (Wr___, (unroll2)[ua.7 /0]

in ffo (wherep’ = ¢, a—=(f*, 7))

)
)
)
)

(other cases as before except for the consistent additig) of

Figure 7. Wrapping for G'

polarized variant of the so-calleyntactic projectiorfunction as-
sociated with a recursive type [8].

Note that the environment only plays a role for recursivee/p
and that for anyr that does not involve recursive typésf,rf;@ is

the same as our old wrappindr® from Section 5. TakingVr

to be shorthand foer@, all our old wrapping theorems for G
continue to hold for @. Full proofs of these theorems are given in
the expanded version of this paper [16].

10. Towards Full Abstraction

The definition of the parametric relatidn® (including the exten-
sion for recursive types) is largely very similar to that dfypical
step-indexed logical relatioRr. for F*, i.e., System F extended
with pairs, existentials and iso-recursive types [3]. Thaimdif-
ference is the presence of worlds, but they are not actua#y in
a particularly interesting way ife°. Therefore, one might expect
that any two P terms related by the hypotheticAt. would also
be related byE° and vice versa.

However, this is not obvious: ‘Gis more expressive than'F
i.e.,terms in the parametric relation can contain non-triviasusf
casts €.g.,the generic ADT for pairs from Section 7), and there is
no evident way to back-translate these terms irtpds would be
needed for function arguments. That invalidates a proofcguh
like the one taken by Ahmed and Blume [5].

Ultimately, the property we would like to be able to show iatth
the embedding of Finto G* by positive wrapping iully abstract

el ~fu e T & Wr:r(el) ~ Wri(eg) iT

This equivalence is even stronger than the one about logttt
edness inEr« and E°, becauses is only sound w.r.t. contextual
approximation, not complete.

Since F is a fragment of G, and P contexts cannot observe
any difference between art'Eerm and its wrapping, the direction
from right to left, calledequivalence reflectigris not hard to show.

Theorem 10.1 (Equivalence Reflection)
If A;T Feeer :7andA; T bpe e2 0 7
andA;T + Wri(e1) ~ Wr:r(eg) :7,thenA;T ey ~Fe e2: 7.

Unfortunately, it is not known to us whether the other dii@tt
equivalence preservatioholds as well. We conjecture that it does,
but are not aware of any suitable technigue to prove it.

Note that while equivalence reflection also holds for F and G—
i.e., in the absence of recursive types—equivalence presemnvatio
does not, because non-termination is encodable in G buthrfot i

11. Related Work

Type Generation vs. Other Forms of Data Abstraction. Tradi-
tionally, authors have distinguished between two compiearg
forms of data abstraction, sometimes dubbedstaéicand thedy-
namic approach [13]. The former is tied to the type system and

13

relies on parametricity (especially for existential typeshide an
ADT's representation from clients [15]. The latter appro&ctypi-
cally employed in untyped languages, which do not have tiityab
to place static restrictions on clients. Consequentlya tating has
to be enforced on the level of individual values. For thaiglzages
provide means for generating unique names and using th&eyas
for dynamically sealingalues. A value sealed by a given key can
only be inspected by principals that have access to the kgy [2
Dynamic type generation as we employ it [21, 29, 22] can be
seen as a middle ground, because it bears resemblance tagsoth
proaches. As in the dynamic approach, we cannot rely on para-
metricity and instead generate dynamic names to protettaabs
tions. However, these are type-level names, not term-leamies,
and they only “seal” type information. In particular, indiual val-
ues of abstract type are still directly represented by ttierying
representation type, so that crossing abstraction boigsdaas no
runtime cost. In that sense, we are closer to the static appro
Another approach to reconciling type abstraction and tyd-a
ysis has been proposed by Washburn and Weirich [31]. They in-
troduce a type system that tracks information flow for termd a
types-as-data. By distinguishing security levels, thestggstem
can statically prevent unauthorized inspection of typeslignts.

Multi-Language Interoperation. The closest work to ours is that
of Matthews and Ahmed [13]. They describe a pair of mutuahy r
cursive logical relations that deal with the interopenati@tween a
typed language (“ML") and an untyped language (“Schemet}. U
like in G, parametric behavior is hard-wired into their Mldsi
polymorphic instantiation unconditionally performs arfoof dy-
namic sealing to protect against the non-parametric Scleidee
(In contrast, we treatew as its own language construct, orthog-
onal to universal types.) Dynamic sealing can then be defimed
terms of the primitive coercion operators that bridge betwthe
ML and Scheme sides. These coercions are similar to our {meta
level) wrapping operators, but ours perform type-levelisganot
term-level sealing.

The logical relations in Matthews and Ahmed’s formalism are
somewhat reminiscent adf° and F, although theirs are distinct
logical relations for two languages, while ours are for agkin
language and differ only in the definition @f[Q]w. In order to
prove the fundamental property for their relations, thegvpra
“bridge lemma” transferring relatedness in one languagéhéo
other via coercions. This is analogous to our Wrapping Téror
for <°, but the latter is an independent theorem, not a lemma. Also,
they do not propose anything like our polarized logicaltielss.

A key technical difference is that their formulation of tiogjical
relations does not use possible worlds to capture the type @he
latter is left implicit in their operational semantics). fdrtunately,
this resulted in a significant flaw in their paper [4]. They &aince
reportedly fixed the problem—independently of our work—rgsa
technique similar to ours, but they have yet to write up thaite

Proof Methods. Logical relations in various forms are routinely
used to reason about program equivalence and type abstr§2fi,
14, 17, 3]. In particular, Ahmed, Dreyer and Rossberg régem:-
plied step-indexed logical relations with possible wotldseason
about type abstraction for a language with higher-ordete 6.
State in G is comparatively benign, but still requires awdac def-
inition of worlds that we stratify using steps.

Pitts and Stark used logical relations to reason about progr
equivalence in a language with (term-level) name genardfi8]
and subsequently generalized their technique to handlebieutef-
erences [19]. Sumii and Pierce use them for proving secrecy r
sults for a language with dynamic sealing [26], where gerdra
names are used as keys. Their logical relation uses a formssi-p
ble world very similar to ours, but tying relational integpations to

term-level private keys instead of to type names. Theirégcbme [6] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. Stapeadent

into play in the interpretation of the typeits of encrypted data, representation independence.AOPL, 2009.

whereas in our setup the worlds are important in the intéaiios [7] Andrew W. Appel and David McAllester. An indexed model of
of universal and existential types. In another line of wdkamii recursive types for foundational proof-carrying cod®@OPLAS
and Pierce have usdisimulationsto establish abstraction results 23(5):657-683, 2001.

for both untyped and polymorphic languages [27, 28]. Howeve (g karl Crary and Robert Harper. Syntactic logical relasofor
none of the languages they investigate mixes the two paredig polymorphic and recursive types. Pomputation, Meaning and

Grossman, Morrisett and Zdancewic have proposed the use of Logic: Articles dedicated to Gordon Plotki2007.
apstractlon b(acketsfor syntactlca!ly tracing abstﬁlct!on bound- [9] Jean-Yves Girard.Interprétation fonctionelle et élimination des
aries [10] during program execution. However, t IS IS a camp coupures de I'arithmétique d’ordre supériedPhD thesis, Université
atively weak method that does not seem to help in proving-para Paris VII, 1972.

metricity or representation independence results. [10] Dan Grossman, Greg Morrisett, and Steve Zdancewicta8yin type

abstraction. TOPLAS 22(6):1037-1080, 2000.

12. Conclusion and Future Work [11] Robert Harper and John C. Mitchell. Parametricity andants of

In traditional static languages, type abstraction is distadd by Girard's J operatorinformation Processing Letterd999.
parametric p_olymorphlsm._ This approach no longer Workerhe [12] Robert Harper and Greg Morrisett. Compiling polymdgph using
dynamic typing features like castsypecase, or reflection are intensional type analysis. ROPL, 1995.

added to the mix. Dynamic type generation addresses thidgmmo

In this paper, we have shown that dynamic type generation suc
ceeds in recovering type abstraction. More specificallyw@ pre-
sented a step-indexed logical relation for reasoning apmgram

[13] Jacob Matthews and Amal Ahmed. Parametric polymorphigough
run-time sealing, or, theorems for low, low prices!BSOR 2008.

[14] John C. Mitchell. Representation independence aral alastraction.

equivalence in a non-parametric language wiét and type gen- In POPL, 1986.
eration; (2) we showed that parametricity can be re-estiadd sys- [15] John C. Mitchell and Gordon D. Plotkin. Abstract typesvé
tematically using a simple type-directed wrapping, whioért can existential type.TOPLAS 10(3):470-502, 1988.
be reasoned about using a parametric variant of the logittion; [16] Georg Neis. Non-parametric parametricity. MasteHesis,
(3) we showed that parametricity can be refined into paraoistr Universitat des Saarlandes, 2009.
havior and parametriusageand gave a polarized logical relation 117] Andrew Pitts. Typed operational reasoning. In Benja@i Pierce,
that dlStlngUlSheS these dual notions, thereby handllng?rﬂﬂbtle editor, Advanced Topics in Types and Programming Languages
examples. The concept of a polarized logical relation sewasl, chapter 7. MIT Press, 2005.
anc_i It remains to t.)e seen yvhat else it mlght be usefl_JI f0|_’r-lnte [18] Andrew Pitts and lan Stark. Observable properties ghéi order
estingly, all our logical relations can be defined as a sifeieily functions that dynamically create local names, or: Whateh In
differing only in the interpretatiofi” of types-as-data. MFCS volume 711 oLLNCS 1993.

An open que.suon IS .Whether the wrapplng,.when seen as an [19] Andrew Pitts and lan Stark. Operational reasoning dmictions with
embedding of F into G, is fully abstract. We conjecture that it is, local state. IrHOOTS 1998.
but we were only able to show equivalence reflection, notvagui)) .
lence preservation. Proving full abstraction remains aer@sting [20] John C. Reynolds. Types, abstraction and paramettjsmrphism.

challenge for future work. In Information Processingl983.

On the practical side, we would like to scale our logical vela [21] Andreas Rossberg. Generativity and dynamic opacityafsstract

tion to handle a more realistic language like ML. Unfortuhgt types. InPPDP, 2003.

wrapping cannot easily be extended to a type of mutable-refer [22] Andreas Rossberg. Dynamic translucency with abstnadtinds and
ences. However, we believe that our approach still scaladame higher-order coercions. IMFPS 2008.

class of languages, so long as we instrument it with a distinc 23] Andreas Rossberg, Didier Le Botlan, Guido Tack, TremsBrunk-
tion between module and core levels. Specifically, notenap- laus, and Gert Smolka. Alice ML through the looking glassTRP,
ping only does something “interesting” for universal anstential volume 5, 2004.

types, and is the identity (modulg-expansion) otherwise. Thus,

. ; ; 24] Peter Sewell. Modules, abstract types, and distribuggsioning. In
for a language like Standard ML, which does not support first- (2] POPL, 2001. yP 9

class polymorphism—or Alice ML, which supports modules-as
first-class-values, but not eX|stent|a[s—wrapp|ng comi(d:bnflned Nardelli, Mair Allen-Williams, Pierre Habouzit, and Vikt&/afeiadis.
to the module level (as part of the implementation of opadge s Acute: High-level programming language design for distétl
nature ascription). For core-level types it could just beittentity. computation.JFP, 17(4&5):547—-612, 2007.

This is a real advantage of type generation over dynamidngeal
since, for the latter, the need to seal/unseal individuklesof ab-
stract type precludes any attempt to confine wrapping to tesdu

[25] Peter Sewell, James Leifer, Keith Wansbrough, Frac&appa

[26] Eijiro Sumii and Benjamin C. Pierce. Logical relatidias encryption.
JCS 11(4):521-554, 2003.

[27] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fdynamic

References sealing. TCS 375(1-3):161-192, 2007.

[1] Martin Abadi, Luca Cardelli, Benjamin Pierce, and RidiRémy. [28] Eijiro Sumii and Benjamin C. Pierce. A bisimulation feype
Dynamic typing in polymorphic language3FP, 5(1):111-130, 1995. abstraction and recursiodACM 54(5):1-43, 2007.

[2] Amal Ahmed. Semantics of Types for Mutable StatehD thesis, [29] Dimitrios Vytiniotis, Geoffrey Washburn, and Stepheffeirich. An
Princeton University, 2004. open and shut typecase. TiuDI, 2005.

[3] Amal Ahmed. Step-indexed syntactic logical relations fecursive [30] Philip Wadler. Theorems for free! IRPCA 1989.
and quantified types. IESOF 2006. [31] Geoffrey Washburn and Stephanie Weirich. Generajiiarametric-

[4] Amal Ahmed. Personal communication, 2009. ity using information flow. IrLICS, 2005.

[5] Amal Ahmed and Matthias Blume. Typed closure conversion [32] Stephanie Weirich. Type-safe ca$EP, 14(6):681-695, 2004.

preserves observational equivalencelG&P, 2008.

14

