
Modular Type Classes

Derek Dreyer
Toyota Technological Institute at Chicago

dreyer@tti-c.org

Robert Harper
Carnegie Mellon University

rwh@cs.cmu.edu

Manuel M.T. Chakravarty
University of New South Wales

chak@cse.unsw.edu.au

Abstract
ML modules and Haskell type classes have proven to be highly ef-
fective tools for program structuring. Modules emphasize explicit
configuration of program components and the use of data abstrac-
tion. Type classes emphasize implicit program construction and
ad hoc polymorphism. In this paper, we show how the implicitly-
typed style of type class programming may be supported within
the framework of an explicitly-typed module language by viewing
type classes as a particular mode of use of modules. This view of-
fers a harmonious integration of modules and type classes, where
type class features, such as class hierarchies and associated types,
arise naturally as uses of existing module-language constructs, such
as module hierarchies and type components. In addition, program-
mers have explicit control over which type class instances are avail-
able for use by type inference in a given scope. We formalize our
approach as a Harper-Stone-style elaboration relation, and provide
a sound type inference algorithm as a guide to implementation.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Polymorphism,
Modules; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Type structure

General Terms Design, Languages, Theory

Keywords Type classes, modules, type inference, type systems

1. Introduction
The ML module system [17] and the Haskell type class system [23,
19] have proved, through more than 15 years of practical experi-
ence and theoretical analysis, to be effective linguistic tools for
structuring programs. Each provides the means of specifying the
functionality of program components, abstracting programs over
such specifications, and instantiating programs with specific real-
izations of the specifications on which they depend. In ML such
specifications are called signatures, abstraction is achieved through
functors, and instantiation is achieved by functor application to
structures that implement these signatures. In Haskell such spec-
ifications are called type classes, abstraction is achieved through
constrained polymorphism, and instantiation is achieved through

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

polymorphic instantiation with instances of type classes. There is a
clear correspondence between the highlighted concepts (see [24]),
and consequently modules and type classes are sometimes regarded
as opposing approaches to language design. We show that there is
no opposition. Rather, type classes and modules are complemen-
tary aspects of a comprehensive framework of modularity.

Perhaps the most significant difference is the mode of use of the
two concepts. The Haskell type class system is primarily intended
to support ad hoc polymorphism in the context of a parametrically
polymorphic language. It emphasizes the implicit inference of class
constraints and automatic construction of instances during overload
resolution, which makes it convenient to use in many common
cases, but does not facilitate more general purposes of modular
programming. Moreover, the emphasis on automatic generation
of instances imposes inherent limitations on expressiveness—most
importantly, there can be at most one instance of a type class at any
particular type.

In contrast, the ML module system is designed to support the
structuring of programs by forming hierarchies of components and
imposing abstraction boundaries—both client-side abstraction, via
functors, and implementor-side abstraction, via signature ascription
(aka sealing). The module system emphasizes explicit manipula-
tion of modules in the program, which makes it more flexible and
general than the type class mechanism. Modules may be ascribed
multiple signatures that reveal varying amounts of type informa-
tion, signatures may be implemented by many modules, and neither
modules nor signatures are restricted to have the rigid form that
Haskell’s instances and classes have. On the other hand, ML lacks
support for implicit module generation and ad hoc polymorphism,
features which experience with Haskell has shown to be convenient
and desirable.

There have been many proposals to increase the expressive-
ness of the original type class system as proposed by Wadler and
Blott [23], including constructor classes [15], functional dependen-
cies [12], named instances [16], and associated types [2, 1]. These
may all be seen as adding functionality to the Haskell class system
that mirrors aspects of the ML module system, while retaining the
implicit style of usage of type classes. However, these (and other)
extensions tend to complicate the type class system without allevi-
ating the underlying need for a more expressive module system.

In fact, there are ways in which the Haskell type class mech-
anism impedes modularity. To support implicit instance genera-
tion while ensuring coherence of inference, Haskell insists that
instances of type classes be drawn from a global set of instance
declarations; in particular, instances are implicitly exported and
imported, which puts their availability beyond programmer con-
trol. This can be quite inconvenient—for many type classes there is
more than one useful instance of the class at a particular type, and
the appropriate choice of instance depends on the context in which
an overloaded operator is used. Hence, the Haskell Prelude must
provide many functions in two versions: one using type classes and
the other an explicit function argument—e.g., sort and sortBy.

POPL’07 1 2006/10/26

In this paper we take a different tack. Rather than bolster the
expressiveness of type classes, we instead propose that a more sen-
sible approach to combining the benefits of type classes and mod-
ules is to start with modules as the fundamental concept, and then
recover type classes as a particular mode of use of modularity. We
retain the advantages of a fully expressive explicit module system,
while also offering the conveniences of implicit type class program-
ming, particularly the integration of ad hoc and parametric poly-
morphism. Moreover, the proposed design provides a clean separa-
tion between the definition of instances and their availability for use
during type inference. This offers localization of instance scoping,
enhanced readability, and the potential for instances to be compiled
separately from their uses. The result is a harmonious integration
of modules and type classes that provides the best features of both
approaches in a single, consistent framework. The elegance of our
approach stems from the observation that type class features, such
as class hierarchies and associated types, arise naturally as uses of
existing module-language constructs, such as module hierarchies
and type components.

In summary, this paper makes the following contributions:

• We present a smooth integration of type classes and mod-
ules that provides a foundation for future work on incorpo-
rating type classes into ML and a proper module system into
Haskell. We give an intuition of the integration of type classes
into ML in Section 2.

• We highlight some interesting design issues that arose while
developing the interpretation of type classes in terms of mod-
ules (Section 3).

• We specify the semantics of an extended module language
that supports type classes. We formalize its elaboration (in
the style of Harper and Stone [9]) into an explicitly-typed
module type system. We also generalize Damas and Milner’s
Algorithm W [3] to an inference algorithm for modular type
classes that we have proved sound with respect to the elab-
oration semantics. Due to space limitations, Section 4 only
sketches the most salient and unusual features of our formal-
ization. For the full formalization of our language, together
with expanded technical discussion and theorem statements,
we refer the reader to our companion technical report [7].

Our elaboration translation demonstrates that modules can serve as
evidence in the sense of Jones [14]. Compared to the customary
use of dictionary records as evidence, modules offer a cleaner way
of handling extensions to the basic type class mechanism such as
associated types. In addition, for the application to type classes, the
use of modules as evidence makes clear that the construction of
evidence respects the phase distinction [8], i.e., it is based solely on
compile-time information, not run-time information. We conclude
in Section 5 with further discussion of related work.

2. Modular Type Classes: An Overview
In this section we summarize our approach to representing the main
mechanisms of a Haskell-style type class system within the context
of an ML-style module system. For readability, we employ ML-like
syntax for our examples, although the formal design we describe
later is syntactically more austere and leaves a number of (largely
superficial) aspects of an actual ML extension to future work.

2.1 Classes are signatures, instances are modules

A type class in Haskell is essentially an interface describing a set of
operations whose types mention a distinguished abstract type vari-
able known as the class parameter. It is natural therefore to repre-
sent a class in the module setting as a signature (i.e., an interface)
with a distinguished type component (representing the class param-

eter). In particular, we insist that the distinguished type component
be named “t”. It may be followed by any number of other type,
value, or substructure components. We call such a signature a class
signature, specifically an atomic class signature (in contrast to the
composite ones that we describe below in Section 2.3.) For exam-
ple, the class of equality types is represented by the atomic class
signature EQ, defined as follows:

signature EQ = sig
type t
val eq : t * t -> bool

end

Note that class signatures like EQ are just ordinary ML signatures
of a certain specified form.

Correspondingly, an instance of a type class is represented by a
module. A monomorphic instance of a type class is represented by
a structure, and a polymorphic instance is represented by a functor.
For example, we can encode an int instance of the equality class
as a structure whose signature is EQ where type t = int:

structure EqInt = struct
type t = int
val eq = Int.eq

end

As in Haskell, the instance for a compound type t(t1, . . . , tn) is
composed from instances of its component types, t1, . . . , tn, by a
functor, Eq

t
, associated with its outermost type constructor, t. For

example, here is an instance of equality for product types t1 * t2:

functor EqProd (X : EQ, Y : EQ) = struct
type t = X.t * Y.t
fun eq ((x1,y1), (x2, y2)) =

X.eq(x1,x2) andalso Y.eq(y1,y2)
end

There is an evident correspondence with Haskell instance decla-
rations, but rather than use Horn clause logic programs to specify
closure conditions, we instead use functional programs (in the form
of functors).

From the EqInt and EqProd modules we can construct an
instance, say, of signature EQ where type t=int*int:

structure EqII = EqProd(EqInt,EqInt)

Of course, one of the main reasons for using type classes in the
first place is so that we don’t have to write this functor application
manually—it corresponds to the process known as dictionary con-
struction in Haskell and can be performed automatically, behind the
scenes, during type inference. In particular, such automatic functor
application may occur in the elaboration of expressions that ap-
pear to be values, such as when a variable undergoes polymorphic
instantiation (see below). Consequently, it is important that the ap-
plication of an instance functor does not engender any computa-
tional effects, such as I/O or non-termination. We therefore require
that instance functors be total in the sense that their bodies satisfy
something akin to ML’s value restriction. This restriction appears
necessary in order to ensure predictable program behavior.

2.2 Separating the definition of an instance from its use

In Haskell, an instance becomes immediately available for use by
the type inference engine as soon as it is declared. As a conse-
quence, due to the implicit global importing and exporting of in-
stances, there can only ever be a single instance of a class at a cer-
tain type in one program. This is often a nuisance and leads to awk-
ward workarounds. Proposals such as named instances [16] have
attempted to alleviate this problem, but have not been generally ac-
cepted.

POPL’07 2 2006/10/26

In contrast, our reconstruction of type classes in terms of mod-
ules provides a natural solution to this dilemma. Specifically, we
require that an instance module only become available for use by
the inference engine after it has been nominated for this purpose
explicitly by a using declaration. This separates the definition of
an instance from its adoption as a canonical instance, thus facili-
tating modular decomposition and constraining inference to make
use only of a clearly specified set of instances. For example, the
declaration

using EqInt, EqProd in mod

nominates the two instance modules defined earlier as available
for canonical instance generation during elaboration of the module
mod . The typing rule for using demands that EqInt and EqProd
not overlap with any instances that have already been adopted as
canonical. (A precise definition of overlapping instances is given in
Section 3.2.)

In both our language and Haskell, canonical instance genera-
tion is implicitly invoked whenever overloading is resolved. In our
language, we additionally provide a mechanism canon(sig) by
which the programmer can explicitly request the canonical instance
module implementing the class signature sig .1 At whatever point
within mod instance generation occurs, it will employ only those
instances that have been adopted as canonical in that scope.

2.3 Class hierarchies via module hierarchies

In Haskell, one can extend a class A with additional operations
to form a class B, at which point A is called a superclass of B.
Class hierarchies arise in the module setting naturally from module
hierarchies. This is easiest to illustrate by example.

Suppose we want to define a class called ORD, which extends
the EQ class with a lt operation. We can do this by first defining an
atomic class LT that only supports lt, and then defining ORD as a
composite of EQ and LT:

signature ORD = sig
structure E : EQ
structure L : LT
sharing type E.t = L.t

end

The sharing specification makes explicit that ORD is providing two
different interpretations of the same type, as an equality type and
as an ordered type. ORD is an example of what we call a composite
class signature, i.e., a signature consisting of a collection of atomic
signatures bound to submodules whose names are arbitrary.

Instances of composite class signatures are not written by the
programmer directly, but rather are composed automatically by the
inference engine from the instances for their atomic signature parts.
For example, if we want to write instances of ORD for int and the
* type constructor, what we do instead is to write instances of LT:

structure LtInt = struct
type t = int
val lt = Int.lt

end
functor LtProd (X : ORD, Y : LT) = struct
type t = X.E.t * Y.t
fun lt ((x1,y1), (x2,y2)) =

X.L.lt(x1,x2) orelse
(X.E.eq(x1,x2) andalso Y.L.lt(y1,y2))

end

Note that LtProd requires its first argument to be an instance of
ORD, not LT. This is because the implementation of lt in the body

1 This feature is particularly useful in conjunction with our support for
associated types; see Section 2.5.

of the functor depends on having both equality and ordering on the
type X.E.t so that it can implement a lexicographic ordering on
X.E.t * Y.t. For Y.t, only the lt operation is needed.

Now, let us assume these instances are made canonical (via the
using declaration) in a certain scope. Then, during typechecking,
if the inference engine demands a canonical module of signature
ORD where type E.t = int * int, it will be computed to be

struct
structure E = EqProd(EqInt,EqInt)
structure L = LtProd(struct

structure E = EqInt
structure L = LtInt

end,
LtInt)

end

The fundamental reason that we do not allow instances for
ORD to be adopted directly is that we wish to prevent the in-
stances for ORD from having any overlap with existing instances
that may have been adopted for EQ. If one were to define an in-
stance for ORD where type E.t = int directly, one would im-
plicitly provide an instance for EQ where type t = int through
its E substructure; and if one tried to adopt such an ORD instance as
canonical, it would overlap with any existing canonical instance of
EQ where type t = int.

Under our approach, this sort of overlap is avoided. Moreover,
the code one writes is ultimately very similar to the code one would
write in Haskell (except that it is expressed entirely in terms of
existing ML constructs). In particular, the instance declaration for
ORD at int in Haskell is only permitted to provide a definition for
the new operations (namely, lt) that are present in ORD but not in
EQ. In other words, an instance declaration for ORD in Haskell is
precisely what we would call an instance of LT.

2.4 Constrained polymorphism via functors

Under the Harper-Stone interpretation of Standard ML (hereafter,
HS) [9], polymorphic functions in the external (source) language
are elaborated into functors in an internal module type system.
Specifically, a polymorphic value is viewed as a functor that takes
a module consisting only of type components (representing the
polymorphic type variables) as its argument and returns a module
consisting of a single value component as its result.

The HS semantics supports the concept of equality polymor-
phism found in Standard ML by simply extending the class of sig-
natures over which polymorphic functions may be abstracted to in-
clude the EQ signature defined above. For example, in the internal
module type system of HS, the ad hoc polymorphic equality func-
tion is represented by the functor

functor eq (X:EQ) :> [[X.t * X.t -> bool]] = [X.eq]

where the brackets notation describes a module with a single value
component. Polymorphic instantiation at a type τ consists of com-
puting a canonical instance of EQ where type t = τ , as de-
scribed above, applying the functor eq to it, and extracting the value
component of the resulting module.

The present proposal is essentially a generalization of the HS
treatment of equality polymorphism to arbitrary type classes. A
functor that abstracts over a module representing an instance of
a type class is reminiscent of the notion of a qualified type [11],
except that we make use of the familiar concept of a functor from
the ML module system, rather than introduce a new mechanism
solely to support ad hoc polymorphism.

Of course, the programmer need not write the eq functor manu-
ally. Our external language provides an overload mechanism, and

POPL’07 3 2006/10/26

the elaborator will generate the above functor automatically when
the programmer writes

val eq = overload eq from EQ

Note that there is no need to bind the polymorphic function returned
by the overload mechanism to the name eq; it can be called
anything. In practice, it may be useful to be able to overload all the
components of a class signature at once by writing overload SIG
as syntactic sugar for a sequence of overload’s for the individual
components of the signature.

The following are some examples of elaboration in the presence
of the overloaded eq function:

using EqInt, EqProd in ...eq((2,3),(4,5))...
; ...Val(eq(EqProd(EqInt,EqInt))) ((2,3),(4,5))...

fun refl y = eq(y,y)
; functor refl (X : EQ) :> [[X.t -> bool]]

= [fn y => Val(eq(X)) (y,y)]

(Note: the Val operator seen here is the mechanism in our internal
module type system by which a value of type τ is extracted from a
module of signature [[τ]].)

Our language also allows for the possibility that the programmer
may wish to work with explicitly polymorphic functions in addition
to implicit overloaded ones. In particular, by writing

functor Refl = explicit (refl :
(X : EQ) -> sig val it : X.t -> bool end)

we convert the polymorphic function refl into an explicit functor
Refl. The programmer can then apply it to an arbitrary module ar-
gument of signature EQ and project out the it component of the re-
sult. The reason we require a signature annotation on the explicit
construct is that the implicitly-typed refl may be declaratively as-
cribed many different signatures. Whenever refl is used, type in-
ference will compute the appropriate instance arguments for it re-
gardless of the particular signature it has been ascribed. However,
since it is the programmer who applies Refl, she needs to know
exactly what shape Refl’s module argument is expected to have.

We also provide an implicit construct to coerce explicit func-
tors into implicit ones. (See the technical report [7] for details.)

2.5 Associated types arise naturally

The experience with type classes in Haskell quickly led to the de-
sire for type classes with more than one class parameter. However,
these multi-parameter type classes are not generally very useful un-
less dependencies between the parameters can be expressed. This
led in turn to the proposal of functional dependencies [12] and more
recently associated types [2, 1] for Haskell.

An associated type is a type component provided by a class
that is not the distinguished type component (class parameter).
The associated types of a class do not play a role in determining
the canonical instance of a class at a certain type—that is solely
determined by the identity of the distinguished type.

Modular type classes immediately support associated types as
additional type components of a class signature. An illustrative
example is provided by a class of collection types:

signature COLLECTS = sig
type t
type elem
val empty : t
val insert : elem * t -> t
val member : elem * t -> bool
val toList : t -> elem list

end

The distinguished type t represents the collection type and the
associated type component elem represents the type of elements.
An instance for lists, where the elements are required to support
equality for the membership test, would be defined as follows:

functor CollectsList (X : EQ) = struct
type t = X.t list
type elem = X.t
val empty = []
fun insert (x, L) = x::L
fun member (x, []) = raise NotInCollection

| member (x, y::L) = X.eq (x,y) orelse
member (x,L)

fun toList L = L
end

When using classes with associated types, it is common to need
to place some constraints on the identities of the associated types.
For example, suppose we write the following:

val toList = overload toList from COLLECTS
fun sumColl C = sum (toList C)

The sumColl function does not care what type of collection C is,
so long as its element type is int. Correspondingly, the elaborator
will assign sumColl the polymorphic type (i.e., functor signature)

(X : COLLECTS where type elem = int) -> [[X.t -> int]]

Note that the constraint on the type X.elem is expressed com-
pletely naturally using ML’s existing where type mechanism,
which is just syntactic sugar for the transparent realization of an
abstract type component in a signature. In contrast, the extension
to handle associated type synonyms in Haskell [1] requires an ad-
ditional mechanism called equality constraints in order to handle
functions like sumColl.

As Chakravarty et al. [1] have demonstrated, it is useful in
certain circumstances to be able to compute (statically) the identity
of an associated type assoc in the canonical instance of a type
class SIG at a given type τ . This is achieved in our setting via
the canon(sig) construct, which we introduced above as a way
of explicitly computing a canonical instance. In particular, we can
write

canon(SIG where type t = τ).assoc

which constructs the canonical instance of SIG at τ and then
projects the assoc type from it.2 In the associated type extension
to Haskell, one would instead write assoc(τ).

While the ML syntax here is clearly less compact, there is a
good reason for it. Specifically, the Haskell syntax only makes
sense because Haskell ties each associated type name in the pro-
gram to a single class (in this case, assoc would be tied to SIG).
In contrast, in our setting, it is fine for several different class signa-
tures to have an associated type component called assoc.

3. Design Considerations
In this section we examine some of the more subtle points in
the design of modular type classes and explain our approach to
handling them.

3.1 Coherence in the presence of scoped instances

The using mechanism described in the introduction separates the
definition of instance functors from their adoption as canonical

2 Note that, due to the principle of phase separation in the ML module
system [8], the identity of the assoc type here can be determined purely
statically, and elaboration does not actually need to construct the dynamic
parts of canon(SIG where type t = τ).

POPL’07 4 2006/10/26

instances. It also raises questions of coherence stemming from
the nondeterministic nature of polymorphic type inference. Sup-
pose EqInt1 and EqInt2 are two observably distinct instances of
EQ where type t = int. Consider the following code:

structure A = using EqInt1 in
struct ...fun f x = eq(x,x)... end

structure B = using EqInt2 in
struct ...val y = A.f(3)... end

The type inference algorithm is free to resolve the meaning of this
program in two incompatible ways. On the one hand, it may choose
to treat A.f as polymorphic over the class EQ; in this case, the ap-
plication A.f(3) demands an instance of EQ where type t=int,
which can only be resolved by EqInt2. On the other hand, type in-
ference is free to assign the type int -> bool to A.f at the point
where f is defined, in which case the demand for an instance of EQ
can only be met by EqInt1. These are both valid typings, but they
lead to observably different behavior.

An unattractive solution is to insist on a specific algorithm for
type inference that arbitrarily chooses one resolution over another,
but this sacrifices the elegant, declarative nature of a Hindley-
Milner-style type system and, worse, imposes a specific resolution
policy that may not be desired in practice. Instead, we prefer to take
a different approach, which is to put the decision under program-
mer control, permitting either outcome at her discretion. We could
achieve this by insisting that the scope of a using declaration be
given an explicit signature, so that in the above example the pro-
grammer would have to specify whether A.f is to be polymorphic
or monomorphic. However, this approach is awkward for nested
using declarations, forcing repeated specifications of the same in-
formation.

Instead we propose that the using declaration be confined to an
outer (or top-level) layer that consists only of module declarations,
whose signatures are typically specified in any case. All core-level
terms appear in the inner layer, where type inference proceeds
without restriction, but no using clauses are allowed. Thus, the
set of permissible instances is fixed in any inner context, but may
vary across outer contexts. At the boundary of the two layers, a type
or signature annotation is required. This ensures that the scope of a
using declaration is explicitly typed without effecting duplication
of annotations. The programmer who wishes to ignore type classes
simply confines herself to the inner level, with no restrictions; only
the use of type classes demands attention be paid to the distinction.

3.2 Overlapping instances

To ensure coherence of type inference, the set of available instances
in any context must be non-overlapping. Roughly speaking, this
means that there should only be one way to compute the canonical
instance of any given class at any given type. There is considerable
leeway, though, in determining the precise definition of overlap,
and indeed this remains a subject of debate in the Haskell commu-
nity. For the purposes of this paper we follow the guidelines used
in Haskell 98. In particular, we insist that there be one instance per
type constructor, so that instance resolution proceeds by a simple
inductive analysis of the structure of the instance type, composing
instance functors to obtain the desired result.

However, in the modular approach suggested here, there is an
additional complication. Just as a module may satisfy several dif-
ferent signatures, so a single module may qualify as an instance of
several different type classes. For example, the module

struct type t = int; fun f(x:t) = x end

may be seen as an instance of the class

sig type t; val f : t -> t end

and also of the class

sig type t; val f : t -> int end.

Thus, to check if two instances A and B (with the same t com-
ponent) are non-overlapping, we need to ensure that the set of all
classes to which A could belong is disjoint from the set of all classes
to which B could also belong.

A simple, but practical, criterion to ensure this is to define two
instances to be non-overlapping iff either (1) they differ on their
distinguished t component, so that no overlap is possible, or (2) in
the case that they have the same t component, that they be struc-
turally dissimilar, which we define to mean that their components
do not all have the same names and appear in the same order. While
other, more refined definitions are possible, we opt here for sim-
plicity until evidence of the need for a more permissive criterion is
available.

3.3 Unconstrained type components in class signatures

In order to support ordinary ML-style polymorphism, we need a
way to include unconstrained type components in a class signa-
ture. We could use the class signature sig type t end for this
purpose. However, since our policy is that the only canonical in-
stances of atomic class signatures are those that have been ex-
plicitly adopted as canonical by a using declaration, this would
amount to treating sig type t end as a special case.

We choose instead to allow composite class signatures to con-
tain arbitrary unconstrained type components, so long as they are
named something other than t. For example, under our approach,
the divergent function

fun f x = f x

can be assigned the polymorphic type

(X : sig type a; type b end) -> [[X.a -> X.b]]

(The choice of the particular names a and b here is arbitrary.)
In our formal system, we refer to the union of the t components

and the unconstrained components of a class signature S as the
parameters of S.

3.4 Multi-parameter and constructor classes

Two extensions to Wadler & Blott’s [23] type class system that have
received considerable attention are multi-parameter type classes
and constructor classes. We have chosen not to cover these exten-
sions in this paper. Concerning multi-parameter classes, most uses
of them require functional dependencies [12], which when rewrit-
ten to use associated types (which we support), turn into single-
parameter classes. Hence, we expect the need for multi-parameter
classes to be greatly diminished in our case.

As for constructor classes, we see no fundamental problems
in supporting them in an extension of our framework since type
components of ML modules may have higher kind. However, we
view them as an orthogonal extension, and thus have opted to omit
them in the interest of a clearer and more compact presentation.

4. Formal System
In this section, we will give a brief sketch of our type-theoretic for-
malization of modular type classes, highlighting its most distinctive
features. For full details, see the companion technical report [7].

4.1 Declarative elaboration semantics

Following Harper and Stone [9], we define our language of modular
type classes using an elaboration semantics, in which external lan-
guage (EL) source programs are interpreted by translation into an
internal language (IL) type system. The elaboration translation is

POPL’07 5 2006/10/26

syntax-directed, but it is also nondeterministic with respect to poly-
morphic generalization and instantiation. This style of definition is
the standard method of giving meanings to programs involving type
classes, although in the context of Haskell it is often referred to as
evidence translation [14].

The IL we use is a simplified variant of the type system for
modules given in Dreyer’s thesis [4], which in turn is based on
the higher-order module calculus of Dreyer, Crary and Harper [6].
For defining the semantics of type classes, the most salient feature
of this IL is that it distinguishes between two kinds of functors
(and functor signatures): total and partial. Total functor signatures,
written ∀X:S1.S2, classify functors with argument signature S1

and result signature S2, whose bodies are judged syntactically to
be free of computational effects. Partial functor signatures, written
ΠX:S1.S2, classify functors whose bodies may contain effects. In
general, since ML is not purely functional, ML functors may be
partial. However, as we explained in Section 2.1, we require that
instance functors be total in order to ensure predictable program
behavior at points of polymorphic instantiation. (A technical aside:
the notation S2 for the result signature of a total functor indicates
that it is required syntactically to be transparent. This restriction
is demanded by Dreyer et al.’s treatment of data abstraction as
a computational effect, but it is in no way a hindrance—functors
corresponding to Haskell instances are naturally transparent.)

As for our external language, we have already described most
of its novel constructs informally in Section 2. One feature of
our EL that we have not discussed is its mechanism for inducing
polymorphic generalization. Traditionally, generalization is per-
formed implicitly as part of typechecking a term-level let con-
struct, let x=exp

1
in exp

2
(hence the name let-polymorphism). Af-

ter typechecking exp
1
, the principal type scheme of exp

1
is gener-

alized into a polymorphic type (or polytype), to which x is bound
during the typechecking of exp

2
.

As explained in Section 2.4, polymorphic types are modeled
in our language as a special case of functor signatures in which
the argument has a class signature and the result signature speci-
fies a single value component. Thus, instead of tying generaliza-
tion to let, we opt instead to induce it via an orthogonal construct
[exp] that coerces an EL core term exp into a module, thereby
generalizing its monotype (i.e., type) into a polytype (i.e., functor
signature). Likewise, polymorphic instantiation occurs implicitly
when a module path P—a module variable X followed by zero or
more component projections—is used as a core-language expres-
sion. Under this approach, traditional let-polymorphism is modeled
as a composition of the generalizing [exp] and a non-generalizing
let-construct let X=mod in exp . In particular, the let-polymorphic
let x=exp

1
in exp

2
is encodable as let X=[exp

1
] in {x 7→X}exp

2
.

Following Harper and Stone, the main translation judgments in
our elaboration semantics all have the form

Θ; Γ ` EL-phrase ; IL-phrase : IL-classifier

Here, EL-phrase and IL-phrase range over EL and IL modules,
terms and type constructors, and IL-classifier ranges correspond-
ingly over IL signatures, types and kinds. We design the inference
rules so that the output IL-phrase is guaranteed to have the output
IL-classifier in the IL type system. The context Γ may contain bind-
ings of type variables α to kinds K, term variables x to types τ , and
module variables X to signatures S. The novel element in this judg-
ment form is Θ, which is a set of paths to structures and functors
that are to be considered canonical instances within EL-phrase. We
call Θ the canonical instance set.

Most of the rules in our elaboration semantics are similar to
corresponding rules in the Harper-Stone semantics, and thus do not
interact with the canonical instance set Θ. There are three major
rules that do. One is the rule for the using mechanism, which has

the effect of adding a given path to Θ (under the condition that it
does not overlap with any instance modules already in Θ). Most of
the work in formalizing this rule is in specifying what it means for
two instances to overlap. See the technical report for details [7].

Two other rules that interact with Θ are those for polymorphic
generalization and instantiation. Rule 1 formalizes the polymorphic
instantiation that occurs when a module path P is used as a term:

Γ ` P : ∀X:S.[[τ]] Γ ` S ≤ S Θ; Γ c̀an V : S

Θ; Γ ` P ; Val(P〈V〉) : τ [V/X]
(1)

The first premise checks that P is in fact a polymorphic value (rep-
resented as a total functor). Instantiation then consists of finding
the canonical instance module of the class signature S to which P
will be applied. Since the parameters of S are abstract, the choice
of which instance module is nondeterministic. Consequently, the
second premise picks a transparent signature S that is a subtype of
S, meaning that it realizes the parameters of S with some choices
τ1, . . . , τn. (Signature subtyping, a common judgment in module
type systems, is defined formally in [7].) Lastly, the third premise
computes the canonical IL module V of signature S using the
canonical module judgment Θ; Γ c̀an V : S. Note that all of this
is done in terms of module and signature judgments, without ever
explicitly mentioning the instantiating types τ1, . . . , τn!

The canonical module judgment Θ; Γ c̀an V : S is straightfor-
ward to define. In short, a composite instance module is canoni-
cal if all its atomic instance components are canonical; an atomic
instance module is canonical if it is either a canonical instance
structure (from the set Θ) or the result of applying a canonical in-
stance functor from Θ to a canonical argument. Canonical modules
may also contain arbitrary unconstrained type components (named
something other than t, as per the discussion in Section 3.3).

Rule 2 formalizes polymorphic generalization for [exp]:

X 6∈ FV(exp) Γ c̀lass X : S ; Θ′

Θ, Θ′; Γ, X:S ` exp ; v : τ

Θ; Γ ` [exp] ; ΛX:S.[v] : ∀X:S.[[τ]]
(2)

One can view this rule as “guessing” a polymorphic type ∀X:S.[[τ]]
to assign to exp . Suppose that S is an atomic class signature like
EQ. In order to see whether exp can be elaborated with this type, we
add the class constraint X:S to the context and make it a canonical
instance of the signature S where type t = X.t (by adding X
to Θ) before typechecking exp . The last step is critical: if X is
not added to Θ, then the canonical module judgment will have
no way of knowing that X is the canonical module of signature
S where type t = X.t at polymorphic instantiation time.

However, in the case that S is a composite class, the elaborator
does not permit X to be added directly to the instance set Θ.
To simplify the formalization of other judgments, we require all
the instance structures in Θ to have atomic signature. Thus, in
general we need a way of parsing the class constraint X:S in order
to produce a set of paths Θ′ (all of which are rooted at X) that
represent the atomic instance modules contained within X.

This class parsing is achieved via the class elaboration judg-
ment Γ c̀lass X : S ; Θ′ used in the second premise of Rule 2. For
example, if S were the composite class ORD from Section 2.3, then
Θ′ would be the set {X.E, X.L}. In the case that there are multi-
ple paths in X to atomic instances of the same signature, Θ′ will
include exactly one. (It doesn’t matter which one, since X repre-
sents a canonical instance module, and the c̀an judgment guaran-
tees that any two submodules of a canonical module that have the
same transparent signature must be the same module value.)

The class elaboration judgment also checks that S is a valid
class signature. A signature is considered a valid class signature
if it is a collection of unconstrained type components and atomic
instance components (whose first component is t), in which the

POPL’07 6 2006/10/26

unconstrained and t components—i.e., the parameters of S—are
all abstract (although possibly, as in the case of ORD, subject to
type sharing constraints). The requirement that the parameters of
S be abstract ensures that the instances in the set Θ′ all concern
abstract type components of the freshly chosen variable X, which
in turn guarantees that the instances in Θ′ do not overlap with any
instances in the input instance set Θ.

4.2 Type inference algorithm

The elaboration semantics sketched above is nondeterministic, and
hence is not directly implementable without backtracking. In order
to guide implementation, we therefore also provide a type inference
algorithm in the style of Algorithm W [3]. This section describes
some highlights of our algorithm.

Following Damas and Milner, we thread through the inference
rules a substitution δ whose domain consists of unification vari-
ables, denoted by bold α. In addition, polymorphic instantiation
in the presence of type classes generates constraints, which we de-
note Σ. Constraints are sets of X:S bindings, in which the X’s do
not appear free in the S’s. Each X:S represents a demand generated
by the algorithm for a canonical module of signature S to be sub-
stituted for X in the term or module that is output by elaboration.

For example, the inference judgment for terms has the form
Θ; Γ ` exp ⇒ e : τ/(Σ; δ), where everything to the left of the ⇒
is input to the algorithm and everything to the right of the ⇒ is
output. Rule 3 is the inference rule for polymorphic instantiation:

Γ ` P :↓ ∀X:S.[[τ]] S⇒ ∃α.S Γ, X:S ` τ ↓ τ ′

Θ; Γ ` P ⇒ Val(P〈X〉) : τ ′/(X:S; id)
(3)

Given a path P of polymorphic signature ∀X:S.[[τ]], the second
premise uses the auxiliary judgment S⇒ ∃α.S to generate fresh
unification variables α corresponding to the abstract type com-
ponents of S. It then applies P to an unknown canonical module
X of signature S, and projects out the value component. This in
turn effects a demand for X:S in the output constraint. For exam-
ple, if S were the class EQ, then the output constraint would be
X : EQ where type t = α. (Note: the “:↓” judgment used in the
first premise indicates ∀X:S.[[τ]] is the normal form signature of P,
and the last premise normalizes τ so that references to type com-
ponents of X become references to the corresponding α.)

As type inference uncovers the identity of certain unification
variables, it becomes possible (and at certain points necessary) to
eliminate some of the constraints amassed in Σ through a process
we call constraint normalization. This process takes zero or more
steps of constraint reduction until the input constraint has been
converted to a normal form in which all residual constraints are
instances of atomic classes at unification variables. The normaliza-
tion judgment has the form Θ;Γ ` Σ1 ↓ (Σ2; σ; δ), where σ is a
module substitution whose domain is that of Σ1. The relation be-
tween the input and output of normalization is summarized by the
following invariant:

If Θ; Γ ` Σ1 ↓ (Σ2; σ; δ),
then ∀X:S ∈ Σ1. Θ, dom(Σ2); δΓ, Σ2 c̀an σX : δS.

That is, if we treat the domain of the normalized constraint Σ2 as a
set of canonical instances, then from those instances together with
the canonical instances already in Θ, the substitution σ shows how
to construct canonical modules to satisfy all the demands of the
original constraint Σ1 (subject to type substitution δ).

To make this concrete, suppose Θ contains the EqInt and
EqProd instance modules given in Section 2.1, and suppose that
Σ1 is X : EQ where type t = int * α. Then the normalized
Σ2 would be Y : EQ where type t = α, and the substitution σ
would map X to EqProd(EqInt,Y). (In this case, δ would simply
be the identity substitution id.)

The constraint normalization algorithm may be viewed as a
backchaining implementation of the canonical module judgment.
It is essentially a combination of Haskell-style context reduction
(aka simplification) and constraint improvement [10], except that it
is formalized entirely in terms of modules and signatures.

4.3 Soundness

We have proven that our inference algorithm is sound with respect
to the elaboration semantics. For space reasons, we collect the
main results here and refer the reader to the companion techni-
cal report [7] for the full statement of the soundness theorem and
its auxiliary definitions, including the precise meaning of the theo-
rem’s preconditions.

Theorem (Soundness)
Suppose (Θ; Γ) is valid for inference, Θ′ ⊇ Θ, Γ′ ` δ′ : δΓ,
` (Θ′; Γ′) ok, and ∀X:S ∈ Σ. Θ′; Γ′

c̀an σ′X : δ′S. Then:

1. If Θ; Γ ` exp ⇒ e : τ/(Σ; δ),
then Θ′; Γ′ ` exp ; σ′δ′e : δ′τ .

2. If Θ; Γ ` mod ⇒ M : S/(Σ; δ),
then Θ′; Γ′ ` mod ; σ′δ′M : δ′S.

Consider part 1. Informally, Θ, Γ and exp are inputs. If type
inference on exp succeeds, it produces an IL term e, along with a
constraint Σ and a substitution δ. If in any “future world” (Θ′; Γ′)
the constraint Σ can be solved by substitutions σ′ and δ′, then exp
will declaratively elaborate to σ′δ′e in that world. The theorem
statement for modules (part 2) is analogous.

4.4 Incompleteness

While the inference algorithm is sound, it is not complete, for rea-
sons that arise independently of the present work. One source of in-
completeness is inherited from Haskell and concerns a fundamental
problem with type classes, namely the problem of ambiguity [14].
The canonical example uses the following two signatures:

signature SHOW = sig
type t
val show : t -> string

end
signature READ = sig
type t
val read : string -> t

end
val show = overload show from SHOW
val read = overload read from READ

Given this overloading, the expression show (read ("1")) is
ambiguous, as the result type of read and argument type of show
are completely unconstrained. This is problematic because, de-
pending on the available canonical instances, two or more valid
elaborations with observably different behaviour may exist. Hence,
ambiguous programs need to be rejected. This can be done easily
during inference, but for inference to be complete the complete-
ness theorem has to be formulated in such a way that ambiguous
programs are excluded from consideration. We have avoided this
issue here entirely in the interest of a clearer presentation.

Another source of incompleteness is inherited from ML, and
arises from the interaction between modules and type inference.
Consider the following Standard ML program:

functor F(X : sig type t end) = struct
val f = (print "Hello"; fn x => x)

end
structure Y1 = F(struct type t = int end)
structure Y2 = F(struct type t = bool end)
val z1 = Y1.f(3)
val z2 = Y2.f(true)

POPL’07 7 2006/10/26

The binding of f in F is chosen to have an effect, so that it cannot
be given a polymorphic type. This raises the question of what sig-
nature should be assigned to F. According to the Definition of Stan-
dard ML [18] (and the HS semantics as well), the above program
is well-typed because f may be assigned the type X.t -> X.t,
which is consistent with both subsequent uses of F. But in order
to figure this out, a compiler would have to do a form of higher-
order unification—once we leave the scope of X.t, the unification
variable in the type of f should be skolemized over X.t.

As a result, nearly all existing implementations of Standard
ML reject this program, as do we. (The only one that accepts
it is MLton, but MLton also accepts similar programs that the
Definition rejects [5].) This example points out that the interactions
between type inference and modules are still not fully understood,
and merit further investigation beyond the scope of this paper.

5. Related Work
Type classes in Haskell. Since Wadler and Blott’s seminal pa-
per [23], the basic system of type classes has been extended in a
number of ways. Of these, Jones’ framework of qualified types [11]
and the resulting generalizations to constructor classes [15], multi-
parameter type classes, and functional dependencies [12] are the
most widely used. We discussed the option of supporting multi-
parameter and constructor classes in the modular setting in Sec-
tion 3.4. Instead of functional dependencies, we support associated
types, as they arise naturally from type components in modules.

Achieving a separation between instance declaration and in-
stance adoption, so that instance declarations need not have global
scope, is still an open problem in the Haskell setting. There exists
an experimental proposal by Kahl and Scheffczyk [16] that is moti-
vated by a comparison with ML modules. Their basic idea is to al-
low constrained polymorphic functions to be given explicit instance
arguments instead of having their instance arguments computed au-
tomatically. We support this functionality by providing the ability
to coerce back and forth between polymorphic functions and func-
tors, the latter of which may be given explicit module arguments
(Section 2.4). Moreover, we permit different instances of the same
signature to be made canonical in different scopes, which Kahl and
Scheffczyk do not.

Comparing type classes and modules. The only formal compari-
son between ML modules and Haskell type classes is by Wehr [24].
He formalizes a translation from type classes to modules and vice
versa, proves that both translations are type-preserving, and uses
the translations as the basis for a comparison of the expressive-
ness of the language features. Wehr concludes that his encoding
can help Haskell programmers to emulate certain aspects of mod-
ules in Haskell, but that the module encoding of type classes in ML
is too heavyweight to be used for realistic programs. Not surpris-
ingly, Wehr’s encoding of type classes as modules uses signatures
for classes and modules for instances, as we do. In fact, his transla-
tion can be regarded as an elaboration from a Haskell core language
to a fragment of ML. However, the fundamental difference between
our work and his is that he performs elaboration in the non-modular
context of Haskell, whereas we demonstrate how to perform elab-
oration and type inference in the modular context of ML.

Type classes for ML. Schneider [20] has proposed to extend ML
with type classes as a feature independent of modules. This leads
to significant duplication of mechanism and a number of techni-
cal problems, which we avoid by expressing type classes via mod-
ules. More recently, Siek and Lumsdaine [22] have described a
language FG that integrates concepts, which are closely related to
type classes, into System F. However, FG does not support type
inference. Siek’s thesis [21] defines a related language G, which
supports inference for type applications, but not type abstractions.

Concepts in G are treated as a distinct construct, unrelated to mod-
ules, and G does not support parameterized modules (i.e., functors).

Parameterized signatures. Jones [13] has proposed a way of
supporting modular programming in a Haskell-like language, in
which a signature is encoded as a record type parameterized over
the abstract type components of the signature. However, he does
not consider the interaction with type classes.

Acknowledgments
We thank Stefan Wehr for stimulating discussions on ways of
representing type classes with modules.

References
[1] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.

Associated type synonyms. In ICFP ’05.
[2] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and

Simon Marlow. Associated types with class. In POPL ’05.
[3] Luis Damas and Robin Milner. Principal type schemes for functional

programs. In POPL ’82.
[4] Derek Dreyer. Understanding and Evolving the ML Module System.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 2005.
[5] Derek Dreyer and Matthias Blume. Principal type schemes for

modular programs. Technical Report TR-2006-08, University of
Chicago Comp. Sci. Dept., October 2006.

[6] Derek Dreyer, Karl Crary, and Robert Harper. A type system for
higher-order modules. In POPL ’03.

[7] Derek Dreyer, Robert Harper, Manuel M.T. Chakravarty, and
Gabriele Keller. Modular type classes. Technical Report TR-2006-
09, University of Chicago Comp. Sci. Dept., October 2006.

[8] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order
modules and the phase distinction. In POPL ’90.

[9] Robert Harper and Chris Stone. A type-theoretic interpretation of
Standard ML. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,
Language, and Interaction: Essays in Honor of Robin Milner. MIT
Press, 2000.

[10] Mark P. Jones. Simplifying and improving qualified types. In
FPCA ’95.

[11] Mark P. Jones. A theory of qualified types. In ESOP ’92.
[12] Mark P. Jones. Type classes with functional dependencies. In

ESOP ’00.
[13] Mark P. Jones. Using parameterized signatures to express modular

structure. In POPL ’96.
[14] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge

University Press, 1994.
[15] Mark P. Jones. A system of constructor classes: Overloading

and implicit higher-order polymorphism. Journal of Functional
Programming, 5(1), 1995.

[16] Wolfram Kahl and Jan Scheffczyk. Named instances for Haskell type
classes. In Haskell Workshop, 2001.

[17] David MacQueen. Modules for Standard ML. In LFP ’84.
[18] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.

The Definition of Standard ML (Revised). MIT Press, 1997.
[19] Simon Peyton Jones et al. Haskell 98 language and libraries: the

revised report. Journal of Functional Programming, 13(1), 2003.
[20] Gerhard Schneider. ML mit Typklassen. Master’s thesis, June 2000.
[21] Jeremy Siek. A Language for Generic Programming. PhD thesis,

Indiana University, August 2005.
[22] Jeremy Siek and Andrew Lumsdaine. Essential language support for

generic programming. In PLDI ’05.
[23] P. Wadler and S. Blott. How to make ad-hoc polymorphism less

ad-hoc. In POPL ’89.
[24] Stefan Wehr. ML modules and Haskell type classes: A constructive

comparison. Master’s thesis, Albert-Ludwigs-Universität Freiburg,
Institut für Informatik, 2005.

POPL’07 8 2006/10/26

