
The Marriage of Bisimulations

and Kripke Logical Relations

Chung-Kil Hur Derek Dreyer

Georg Neis Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

POPL 2012
Philadelphia, USA

Program equivalence in ML-like languages

Canonical definition: Contextual equivalence

Observable equivalence under an arbitrary context

Hard to reason about, due to the quantification over
arbitrary contexts

Various methods developed for local reasoning

Bisimulations and Kripke Logical Relations (KLRs)
Handle higher-order functions, abstract types, recursive
types, general references, exceptions, continuations, etc.

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Motivation #1: Marrying complementary approaches

KLRs’ treatment of local state is more powerful.
Transition systems for controlling evolution of state.

Subsumes the power of environmental bisimulations.

Bisimulations’ treatment of recursion is cleaner.
Coinduction simpler and more direct than step-indexing.

Can we join them together in a single method?

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Motivation #2: Inter-language reasoning

Goal: compositional equivalences between programs
in different languages

e.g., compositional certified compilation

Horizontal compositionality is preservation of
equivalence under linking of modules.

Vertical compositionality is transitive composition
of equivalence proofs.

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Motivation #2: Inter-language reasoning

Goal: compositional equivalences between programs
in different languages

e.g., compositional certified compilation

Horizontal compositionality is preservation of
equivalence under linking of modules.

Vertical compositionality is transitive composition
of equivalence proofs.

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Motivation #2: Inter-language reasoning

Goal: compositional equivalences between programs
in different languages

e.g., compositional certified compilation

Horizontal compositionality is preservation of
equivalence under linking of modules.

Vertical compositionality is transitive composition
of equivalence proofs.

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Motivation #2: Inter-language reasoning

Goal: compositional equivalences between programs
in different languages

e.g., compositional certified compilation

Horizontal compositionality is preservation of
equivalence under linking of modules.

Vertical compositionality is transitive composition
of equivalence proofs.

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Motivation #2: Inter-language reasoning

KLRs are not transitively composable
Due to their use of “step-indexing” for recursive features

Hur et al. [ICFP09, POPL11] only studied one-pass compilers

Bisim’s do not scale (in an obvious way) to
inter-language reasoning

Due to their use of “syntactic” devices for H-O functions

Can we remove these limitations?

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Contributions of this work

A new method for local relational reasoning:

Relation Transition Systems (RTSs)

Combines the “most appealing” features of
KLRs and bisimulations

Potential to scale to inter-language reasoning
Does not rely on syntactic devices for H-O functions
Supports transitive composition of equivalence proofs

Key idea

Don’t just support local reasoning. Demand it!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Contributions of this work

A new method for local relational reasoning:

Relation Transition Systems (RTSs)

Combines the “most appealing” features of
KLRs and bisimulations

Potential to scale to inter-language reasoning
Does not rely on syntactic devices for H-O functions
Supports transitive composition of equivalence proofs

Key idea

Don’t just support local reasoning. Demand it!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Key idea

Existing methods support local reasoning
but don’t demand it

There’s nothing preventing one from sneaking a
“brute-force” proof in through the back door

Our method will demand strictly local reasoning
Brute-force proofs will not be permitted!

Benefit of our approach: More compositionality

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Language: Simply typed λ-calculus with recursive types

τ ∈ Type ::= α | τbase | τ1 → τ2 | τ1 × τ2 | µα. τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Coinductive approach (similar to bisimulations)

v1≈ v2 : τ
def
=

∃∼L. v1∼L v2 : τ
∧ consistent(∼L)

If you want to prove v1 equivalent to v2,

1 Find a “local knowledge”∼L relating v1 and v2

2 Show that∼L is consistent

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Coinductive approach (similar to bisimulations)

v1≈ v2 : τ
def
= ∃∼L. v1∼L v2 : τ

∧ consistent(∼L)

If you want to prove v1 equivalent to v2,

1 Find a “local knowledge”∼L relating v1 and v2

2 Show that∼L is consistent

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Coinductive approach (similar to bisimulations)

v1≈ v2 : τ
def
= ∃∼L. v1∼L v2 : τ

∧ consistent(∼L)

If you want to prove v1 equivalent to v2,

1 Find a “local knowledge”∼L relating v1 and v2

2 Show that∼L is consistent

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Coinductive approach (similar to bisimulations)

v1≈ v2 : τ
def
= ∃∼L . v1∼L v2 : τ

∧ consistent(∼L)

If you want to prove v1 equivalent to v2,

1 Find a “local knowledge”∼L relating v1 and v2

2 Show that∼L is consistent

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Value closure ∼L = Value equivalence modulo ∼L

1 Restrict∼L to only function types

2 Derive∼L from∼L by induction

f1∼L f2 : σ → τ
f1∼L f2 : σ → τ

c ∈ JτbaseK
c ∼L c : τbase

v1∼L v2 : τ v ′1∼L v
′
2 : τ ′

〈v1, v
′
1〉∼L 〈v2, v

′
2〉 : τ × τ ′

v1∼L v2 : τ [µα. τ/α]
roll v1∼L roll v2 : µα. τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Coinductive approach (similar to bisimulations)

v1≈ v2 : τ
def
= ∃∼L . v1∼L v2 : τ

∧ consistent(∼L)

If you want to prove v1 equivalent to v2,

1 Find a “local knowledge”∼L relating v1 and v2

2 Show that∼L is consistent

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Coinductive approach (similar to bisimulations)

v1≈ v2 : τ
def
= ∃∼L . v1∼L v2 : τ

∧ consistent(∼L)

If you want to prove v1 equivalent to v2,

1 Find a “local knowledge”∼L relating v1 and v2

2 Show that∼L is consistent

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Coinductive approach (similar to bisimulations)

v1≈ v2 : τ
def
= ∃∼L . v1∼L v2 : τ

∧ consistent(∼L)

If you want to prove v1 equivalent to v2,

1 Find a “local knowledge”∼L relating v1 and v2

2 Show that∼L is consistent

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

λx . e1 ∼L λx . e2 : σ → τ

=⇒
∀v1 ∼?

1 v2 : σ.

e1[v1/x] ∼?
2 e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

What should ∼?
1 be?

λx . e1 ∼L λx . e2 : σ → τ

=⇒
∀v1 ∼?

1 v2 : σ.

e1[v1/x] ∼?
2 e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

∼?
1 = ∼L : Unsound

Because v1, v2 come from the context

λx . e1 ∼L λx . e2 : σ → τ

=⇒
∀v1 ∼?

1 v2 : σ.

e1[v1/x] ∼?
2 e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

∼?
1 should be a global notion of equivalence ∼G

λx . e1 ∼L λx . e2 : σ → τ

=⇒
∀v1∼G v2 : σ.

e1[v1/x] ∼?
2 e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Intuition: Global vs. local knowledge

∼L represents local knowledge
Functions our proof/module says are equivalent

∼G represents global knowledge
Functions the whole program says are equivalent

Defining ∼G “semantically” is hard!
It’s as hard as the original problem of finding a good
relational model of ML!

So existing H-O bisimulations all define ∼G as some
variation on syntactic identity

Applicative, environmental, normal form bisim’s

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Intuition: Global vs. local knowledge

∼L represents local knowledge
Functions our proof/module says are equivalent

∼G represents global knowledge
Functions the whole program says are equivalent

Defining ∼G “semantically” is hard!
It’s as hard as the original problem of finding a good
relational model of ML!

So existing H-O bisimulations all define ∼G as some
variation on syntactic identity

Applicative, environmental, normal form bisim’s

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Our key insight

What is ∼G?

Idea: Parameterize our whole model over ∼G!

We will make some assumptions about it (∼G ⊇∼L),
but∼G may relate any two values at function type.

∼G can even contain “junk” like (4∼G true : int→ int)!

Highly reminiscent of the Girard/Reynolds method for
reasoning about parametricity of ADTs

Takehome #1

Girard/Reynolds: Clients of ADT are parametric
w.r.t. relational interpretation of abstract types

Our method: Equivalence proofs are parametric
w.r.t. relational interpretation of function types

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Our key insight: Ignorance is bliss!

What is ∼G? Who cares?

Idea: Parameterize our whole model over ∼G!

We will make some assumptions about it (∼G ⊇∼L),
but∼G may relate any two values at function type.

∼G can even contain “junk” like (4∼G true : int→ int)!

Highly reminiscent of the Girard/Reynolds method for
reasoning about parametricity of ADTs

Takehome #1

Girard/Reynolds: Clients of ADT are parametric
w.r.t. relational interpretation of abstract types

Our method: Equivalence proofs are parametric
w.r.t. relational interpretation of function types

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Our key insight: Ignorance is bliss!

What is ∼G? Who cares?

Idea: Parameterize our whole model over ∼G!

We will make some assumptions about it (∼G ⊇∼L),
but∼G may relate any two values at function type.

∼G can even contain “junk” like (4∼G true : int→ int)!

Highly reminiscent of the Girard/Reynolds method for
reasoning about parametricity of ADTs

Takehome #1

Girard/Reynolds: Clients of ADT are parametric
w.r.t. relational interpretation of abstract types

Our method: Equivalence proofs are parametric
w.r.t. relational interpretation of function types

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

Instead of defining ∼G . . .

λx . e1 ∼L λx . e2 : σ → τ

=⇒

∀∼G ⊇ ∼L .

∀v1∼G v2 : σ.

e1[v1/x] ∼?
2 e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

. . . we parameterize over ∼G!

λx . e1 ∼L λx . e2 : σ → τ

=⇒
∀∼G ⊇ ∼L . ∀v1∼G v2 : σ.

e1[v1/x] ∼?
2 e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

What should ∼?
2 be?

λx . e1 ∼L λx . e2 : σ → τ

=⇒
∀∼G ⊇ ∼L . ∀v1∼G v2 : σ.

e1[v1/x] ∼?
2 e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

Both diverge or both converge to related values?

λx . e1 ∼L λx . e2 : σ → τ

=⇒
∀∼G ⊇ ∼L . ∀v1∼G v2 : σ.

e1[v1/x] ∼?
2 e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

Both diverge or both converge to related values?

λf . f (0) ∼L λf . f (0) : (int→ int)→ int

=⇒
∀∼G ⊇ ∼L . ∀v1∼G v2 : int→ int.

v1(0) ∼?
2 v2(0) : int

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

Both diverge or both converge to related values?

λf . f (0) ∼L λf . f (0) : (int→ int)→ int

=⇒
∀∼G ⊇ ∼L . 4∼G true : int→ int.

4(0) ∼?
2 true(0) : int

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of consistent(∼L)

∼?
2 should be “local term equivalence” ∼exp

G

λx . e1 ∼L λx . e2 : σ → τ

=⇒
∀∼G ⊇ ∼L . ∀v1∼G v2 : σ.

e1[v1/x] ∼exp
G e2[v2/x] : τ

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Intuition: Local term equivalence

To show your terms are locally equivalent

e1 ∼exp
G e2

−→

∗
−→

∗

K1[f1(v1)] K2[f2(v2)]

K1[r1] ∼exp
G K2[r2]−→

∗

−→

∗

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Intuition: Local term equivalence

Execute them “locally” until. . .

e1 ∼exp
G e2−→

∗
−→

∗

K1[f1(v1)] K2[f2(v2)]

K1[r1] ∼exp
G K2[r2]−→

∗

−→

∗

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Intuition: Local term equivalence

. . . they pass control to “external” functions

e1 ∼exp
G e2−→

∗
−→

∗

K1[f1(v1)] K2[f2(v2)]

K1[r1] ∼exp
G K2[r2]−→

∗

−→

∗

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Intuition: Local term equivalence

Assume you get back control

with related return values

e1 ∼exp
G e2−→

∗
−→

∗

K1[f1(v1)] K2[f2(v2)]

K1[r1]

∼exp
G

K2[r2]

−→
∗

−→

∗

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Intuition: Local term equivalence

Show your continuations are locally equivalent

e1 ∼exp
G e2−→

∗
−→

∗

K1[f1(v1)] K2[f2(v2)]

K1[r1] ∼exp
G K2[r2]−→

∗

−→

∗

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

1

2

3

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

↓ ω ↓ ω

1

2

3

Case 1: Both diverge

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

↓ ∗ ↓ ∗
v1 ∼G v2 : τ

1

2

3

Case 2: Both terminate

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

↓ ∗ ↓ ∗
K1[f1(v1)] K2[f2(v2)] : τ

1 f1 ∼G f2 : τarg → τret
2 v1∼G v2 : τarg
3 ∀r1∼G r2 : τret. K1[r1] ∼exp

G K2[r2] : τ

Case 3: Both call a function

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

↓ ∗ ↓ ∗
K1[f1(v1)] K2[f2(v2)] : τ

1 f1 ∼G f2 : τarg → τret
2 v1∼G v2 : τarg
3 ∀r1∼G r2 : τret. K1[r1] ∼exp

G K2[r2] : τ

Case 3: Both call a function

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

↓ ∗ ↓ ∗
K1[f1(v1)] K2[f2(v2)] : τ

1 f1 ∼G f2 : τarg → τret
2 v1∼G v2 : τarg
3 ∀r1∼G r2 : τret. K1[r1] ∼exp

G K2[r2] : τ

Case 3: Both call a function

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

↓ ∗ ↓ ∗
K1[f1(v1)] K2[f2(v2)] : τ

1 f1 ∼G f2 : τarg → τret
2 v1∼G v2 : τarg
3 ∀r1∼G r2 : τret. K1[r1] ∼exp

G K2[r2] : τ

Case 3: Both call a function

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

↓ ∗ ↓ ∗
K1[f1(v1)] K2[f2(v2)] : τ

1 f1 ∼G f2 : τarg → τret
2 v1∼G v2 : τarg
3 ∀r1∼G r2 : τret. K1[r1] ∼exp

G K2[r2] : τ

Case 3: Both call a function

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Definition of local term equivalence ∼exp
G

Derive∼exp
G from∼G by coinduction

e1 ∼exp
G e2 : τ

↓ ∗ ↓ ∗
K1[f1(v1)] K2[f2(v2)] : τ

1 f1 ∼G f2 : τarg → τret
2 v1∼G v2 : τarg
3 ∀r1∼G r2 : τret. K1[r1] ∼exp

G K2[r2] : τ

Case 3: Both call a function

Takehome #2

Since our proofs are parametric w.r.t.∼G,
we CAN and we MUST reason locally!

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Summary: The benefits of “proof parametricity”

1 Horizontal compositionality (aka congruence)
The less proofs about different modules assume
about∼G, the easier they are to link together

2 Vertical compositionality (aka transitivity)
Since equivalence proofs must use “local” reasoning,
their structure is highly constrained, making them
easier to compose transitively

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

Closely related work

“Normal form” (or “open”) bisimulations
Related fcn arguments represented by a fresh variable x

Hence, bisimulation must account for terms getting stuck

Definition very similar to our “local term equivalence”

Mendler-style coinduction
L is a “robustly post-fixed point (rpfp)” of an
endofunction F if ∀G ≥ L. L ≤ F (G)

Rpfp’s are closed under joins even for non-monotone F

Our consistency condition is a variant of this

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

What else is in the paper?

Generalization to open terms
Requires parameterizing ∼L over ∼G

Extension of model with abstract types
Based on [Sumii-Pierce ’05]

Extension of model with higher-order state
Based on [Dreyer-Neis-Birkedal ’10]

Transitivity proved for pure fragment
Proof for full model currently under submission

All results mechanized in Coq
Future work:

Inter-language reasoning (certified ML/C compilers
with FFI)
Supporting refined type system (e.g., effect system)

Supporting concurrency

C.-K. Hur, D. Dreyer, G. Neis, V. Vafeiadis The Marriage of Bisimulations and Kripke Logical Relations

