Logical Step-Indexed Logical Relations

Derek Dreyer

Max Planck Institute for Software Systems
Saarbriicken, Germany

LICS 2009
UCLA
August 12, 2009

Joint work with Amal Ahmed and Lars Birkedal

Logical Relations

Vnat] p = {(n,n)| ne N}

VI —] p = {(x.e1, \x.ez) |
vy, va.
(Vl,VZ) € V[[T/]]p -
(e1[vi/x], e2[v2/x]) € E[7"] p}
V[3a.7]p = {(packT,vias - - ,packm,v,as ---) |
dy € Rel(7y, 7).
(vi,m) €V[r]p,a— (11,7,x)}

Va]p = x where p(a) = (11,72, X)

Logical Relations for Recursive Types?

V]pa.t]p = {(foldvy,foldw,) |
(vi,v2) € V[r|pa. 7/a]] p}

Logical Relations for Recursive Types?

V]pa.t]p = {(foldvy,foldw,) |
(vi,v2) € V[r|pa. 7/a]] p}

Problem: The definition is no longer well-founded!

Step-Indexed Logical Relations (Appel-McAllester '01)

Idea: Index logical relations by n € N representing
“the number of steps left until the clock runs out.”

e Two terms are related “infinitely” iff they are n-related (for all n).

V{pa.m]p = {(n,foldvy,foldv,) |
(n—1,vi,vp) € V[r[pc. 7/a]] p}

Intuitively, this makes sense because it takes a step of
computation to extract v; from foldv;.

Advantages of Step-Indexed Logical Relations

Easy to develop using only elementary mathematical constructions.

Applicable to “difficult” languages, e.g., with higher-order state:
e Imperative self-adjusting computation (Acar et al., POPL’08)
e Representation independence for “generative” ADTs (POPL’09)
e Parametricity in the presence of dynamic typing (ICFP’09)
e Compiler correctness (Benton et al., e.g., TLDI’09, ICFP’(09)

Comparison With Other Approaches

With more mathematically sophisticated approaches
(e.g., minimal invariance, FM-cpos, ultra-metric spaces):

X Hard to construct, not as (obviously) widely applicable

With step-indexed logical relations:
v/ Easy to construct, widely applicable

Comparison With Other Approaches

With more mathematically sophisticated approaches
(e.g., minimal invariance, FM-cpos, ultra-metric spaces):

X Hard to construct, not as (obviously) widely applicable

v/ Easy to develop high-level equational proof principles

With step-indexed logical relations:
v/ Easy to construct, widely applicable
X Hard to develop high-level equational proof principles

You get what you pay for!

Problem #1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy,
but the user of the model shouldn’t have to deal with them.

e Important to develop clean, abstract, step-free proof principles

Problem #1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy,
but the user of the model shouldn’t have to deal with them.

e Important to develop clean, abstract, step-free proof principles

E.g. Appel-McAllester claim this extensionality property:

e f1 and f, are infinitely related (e.g., related for any # of steps) iff
for all v; and v, that are infinitely related, fv; and f,v, are, too.

Problem #1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy,
but the user of the model shouldn’t have to deal with them.

e Important to develop clean, abstract, step-free proof principles

E.g. Appel-McAllester claim this extensionality property:

e f1 and f, are infinitely related (e.g., related for any # of steps) iff
for all v; and v, that are infinitely related, fv; and f,v, are, too.

Unfortunately, it is false!

e In fact, f; and f, are infinitely related iff, for any step level n,
for all v; and v, that are n-related, fiv; and f>v; are, too.

Problem #2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric,
i.e., they model approximation (<), not equivalence (=).

e Wecandefine e = ey tomeane; < ey Aep < ey.

Problem #2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric,
i.e., they model approximation (<), not equivalence (=).

e Wecandefine e = ey tomeane; < ey Aep < ey.

We would like a symmetric extensionality principle, e.g.,

e f1 = f» iff Vv, v,. we have that vi = v, implies fiv| = fovs.

Problem #2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric,
i.e., they model approximation (<), not equivalence (=).

e Wecandefine e = ey tomeane; < ey Aep < ey.

We would like a symmetric extensionality principle, e.g.,

e f1 = f» iff Vv, v,. we have that vi = v, implies fiv| = fovs.

But even ignoring Problem #1, this is false:

e To show f; = f>, we must show that v; < v, implies fiv; < fovo,
and that v, < v implies v, < fivy.

Our Contributions

Define a relational modal logic, LSLR, for expressing step-indexed
logical relations without mentioning steps.

Define a step-free logical relation in LSLR for reasoning about
program (in-)equivalence in System F + recursive types.

Show logical relation is sound w.r.t. contextual equivalence by
defining a suitable “step-indexed” model of LSLR.

Develop a set of useful derivable rules concerning the logical relation.

Demonstrate the effectiveness of our approach by proving several
representative examples of contextual equivalences from the literature.

© The Language F*
@ The Logic LSLR
© Encoding a Logical Relation for F# in LSLR

@ Derivable Rules

© The Language F*

The Language F*

Types T == a | unit|int|bool | 7y x| 7 +7 |

T — 7 | Vo1 | 3. T | poe. T
PrimOps o= + | — | = | < | < | ...
Terms e == x| ()| £n|ole,...,e,) |

true | false | if ethene;elsee; |
(e1,e2) | fste | snde | inl, e | inr, e |
caseeof inlx;=e|inrx,=e; |
Ax:T.e|ee | Aa.e|e[r]]

packT,eas Ja. 7' | unpacke;asa,xine; |
fold, e | unfolde

Values v ::= x| () | £n | true | false | (vi,v2) |
inl, v |inr,v| Ax:7.e | Aa.e |
pack7,vasJa. 7 | fold, v

@ The Logic LSLR

The Logic LSLR (Basic Idea)

Start with Plotkin and Abadi’s “logic for parametric polymorphism”
(TLCA’93)

e Adapt it to reason operationally about CBV small-step semantics

Extend it with recursively defined relations
e Enables straightforward logical relation for recursive types

¢ To make sense of circularity, introduce “later” operator >A from
Appel, Mellies, Richards, and Vouillon’s “very modal model”
paper (POPL’07), which in turn was adapted from Godel-Lob
logic of provability

The Logic LSLR (Syntax)

Rel. Var’s r,s € RelVar

F+ Ctxt’s ' == | Na|lx:7|lt:7

Rel. Ctxt’s A == -] A/ r:VRel(r,n) | r: TRel(r,)
Log. Ctxt’s © == -|6,A

Atomic Prop’s P 1= e =e) | e e | e N e | e N e
Propositions A,B = P|T|L|AAB|AVB|

ASB|VLA|ILA |

VAA | 3AA | (e1,e2) ER|PA
Relations RS = r|(x:7,x:m)A|

(t1 : 71,80 7). A | ur.R

LSLR Main Judgment

[AOFA

Relational Axioms

(Vl,V2> c (x1 DT, X Tz).A EA[Vl/xl,Vz/XQ]
(el,ez) < (11 ST, 0 7'2>.A EA[el/tl,ez/lz]

(e1,e2) € ur.R = (ey,e2) € R[ur.R/r]

Monotonicity

ADPDA

Lob Rule

PADA) DA

Distributivity Laws

>(A A B)
>(A V B)
>(A D B)
>VI.A
>VA.A
>3[".A
>3AA

>A A >B
>A V >B
>A D >B
VI'.>A
VADA
I >A
JA DA

© Encoding a Logical Relation for F# in LSLR

Logical Relation for Values

v [[a]] P = R7 where ,0(0{) = (7—177—27R)
V] p def (x1 : T, X2 : Tp). X1 = X2, where 7, € {unit, int, bool}

V[t xt"]p o (x1:p1(7" < 7"), 20 2 po (7! x 7).
A, x] 2, X x = (LX) Axo = (1,) A
*,x) €V[r'lp A (x,x3) €V p

Vi +7"]p & (

xi:pi(t 77,20 s o+ 7).
(3x], 5. x; = inlx| Axp = inlx, A (X}, x5) € V[7'] p)
V (3, Xy xp = inrx{ Axy = inrx) A (x], %) € V[p))

def (

VT —=7"p = xi:p(7" = 7"),x0: p2(7" = 7).

Yy, y2. (v1,32) € V[Tl p D (xiy1,x252) € E[7"] p

Logical Relation for Values (of Quantified Types)

V[Va. 7] p o (x1: p1 (V. 7), 22 = pa(Ver. 7).
Yoy, ap. Vr: VRel(ag, ap).
(x1 [on],x2 [o2]) € E[7] p, = (eur, a2, 7)

def
V[Ba.m]p & (x1:p1(Ba.7),x2 : p2(3e. 7).
Jdag, g, y1,y2. 3r : VRel(ag, ag).
X1 =packajg,yras --- A xp = packap,yas --- A
O1,y2) € V[r] p,a = (a1, a2,7)

Logical Relation for Values (of Recursive Type)

def
Vipa.tlp = pr.(x: pi(pa.7),x 0 po(pa. 7).
dy1,y2. x1 = foldy; A x, = foldy, A

l>(yl,yZ) S% [[7—]] P, — (pl(:ua' 7—)’ pZ(:ua' 7—)7 r)

@ Derivable Rules

Coincidence of Value and Term Relations

[TA; 0 (vi,vn) € V]T]p
A OF (viyvw) € Er]p

Extensionality

D, xy,x0;, 8,0, (x1,x2) € V[T p b (vixy,vaxs) € E[7"] p
A0 F (viyv) € VT — 7" p

Evaluation Rules

['AOFe e TiAOF et é)
[TA O (e),65) € E[T] p
[iA0F (e e) € Er] p

[AOF (e, e0) € ET] p
[, x1, %0, ;O e) ¥ X1, e — X, (x1, %) € V[r] p
= (Eilxi], Ealxo]) € E[7'] 0/
A O F (Eiley], Exed) € EJ7] 0

Useful Rules Concerning the > Modality

F;A;@l,@z |— B
F;A; @1,l>@2 - >B

A0k e vse, T:AOF e+ el
[TA;0F (e, e5) € E[T] p
A OF (e1,e) € Er] p

[VA:O,bAFA
[A:OFA

Useful Rules Concerning the - Modality

F;A;@l,@z |— B
F;A; @1,D@2 - >B

A0k e vse, T:AOF e+ el
[TA;0F (e, e5) € E[r] p
A OF (e1,e) € Er] p

[VA:O,bAFA
[A:OFA

Fixed-Point Induction

F; = funf(x;) is ¢;
[x1,x0, A0, (F1, Fy) e V[T — 7" p, (x1,%) € V][] p
= (alFi/flelF2/f]) € E]"] p
[VA;0F (Fl,FZ) € V[[T' — 7‘”]] P

What Else Is In the Paper

Encoding of € [7] p in the logic

More derivable rules (both equational and inequational)
Model of the logic
Proof of soundness of LR w.r.t. contextual equivalence

Example proofs of contextual equivalences

Comparison with related work

Future Work

e Generalize our approach to handle (higher-order) state
e We’ve already done this (paper under submission)
o Explore connection to bisimulation-based methods
(Sumii, Pierce, Sangiorgi, et al.)
e Mechanize our metatheory!

Thank You!

	The Language F
	The Logic LSLR
	Encoding a Logical Relation for F in LSLR
	Derivable Rules

