
Logical Step-Indexed Logical Relations

Derek Dreyer

Max Planck Institute for Software Systems
Saarbrücken, Germany

LICS 2009
UCLA

August 12, 2009

Joint work with Amal Ahmed and Lars Birkedal

Logical Relations

V JnatK ρ = {(n, n) | n ∈ N}

V Jτ ′ → τ ′′K ρ = {(λx.e1, λx.e2) |
∀v1, v2.

(v1, v2) ∈ V Jτ ′K ρ =⇒
(e1[v1/x], e2[v2/x]) ∈ E Jτ ′′K ρ}

V J∃α. τK ρ = {(pack τ1, v1 as · · · , pack τ2, v2 as · · ·) |
∃χ ∈ Rel(τ1, τ2).

(v1, v2) ∈ V JτK ρ, α 7→ (τ1, τ2, χ)}

V JαK ρ = χ where ρ(α) = (τ1, τ2, χ)

Logical Relations for Recursive Types?

V Jµα. τK ρ = {(fold v1, fold v2) |
(v1, v2) ∈ V Jτ [µα. τ/α]K ρ}

Problem: The definition is no longer well-founded!

Logical Relations for Recursive Types?

V Jµα. τK ρ = {(fold v1, fold v2) |
(v1, v2) ∈ V Jτ [µα. τ/α]K ρ}

Problem: The definition is no longer well-founded!

Step-Indexed Logical Relations (Appel-McAllester ’01)

Idea: Index logical relations by n ∈ N representing
“the number of steps left until the clock runs out.”
• Two terms are related “infinitely” iff they are n-related (for all n).

V Jµα. τK ρ = {(n, fold v1, fold v2) |
(n− 1, v1, v2) ∈ V Jτ [µα. τ/α]K ρ}

Intuitively, this makes sense because it takes a step of
computation to extract vi from fold vi.

Advantages of Step-Indexed Logical Relations

Easy to develop using only elementary mathematical constructions.

Applicable to “difficult” languages, e.g., with higher-order state:
• Imperative self-adjusting computation (Acar et al., POPL’08)
• Representation independence for “generative” ADTs (POPL’09)
• Parametricity in the presence of dynamic typing (ICFP’09)
• Compiler correctness (Benton et al., e.g., TLDI’09, ICFP’09)
• . . .

Comparison With Other Approaches

With more mathematically sophisticated approaches
(e.g., minimal invariance, FM-cpos, ultra-metric spaces):

8 Hard to construct, not as (obviously) widely applicable

4 Easy to develop high-level equational proof principles

With step-indexed logical relations:
4 Easy to construct, widely applicable

8 Hard to develop high-level equational proof principles

You get what you pay for!

Comparison With Other Approaches

With more mathematically sophisticated approaches
(e.g., minimal invariance, FM-cpos, ultra-metric spaces):

8 Hard to construct, not as (obviously) widely applicable

4 Easy to develop high-level equational proof principles

With step-indexed logical relations:
4 Easy to construct, widely applicable

8 Hard to develop high-level equational proof principles

You get what you pay for!

Problem #1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy,
but the user of the model shouldn’t have to deal with them.
• Important to develop clean, abstract, step-free proof principles

E.g. Appel-McAllester claim this extensionality property:
• f1 and f2 are infinitely related (e.g., related for any # of steps) iff

for all v1 and v2 that are infinitely related, f1v1 and f2v2 are, too.

Unfortunately, it is false!
• In fact, f1 and f2 are infinitely related iff, for any step level n,

for all v1 and v2 that are n-related, f1v1 and f2v2 are, too.

Problem #1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy,
but the user of the model shouldn’t have to deal with them.
• Important to develop clean, abstract, step-free proof principles

E.g. Appel-McAllester claim this extensionality property:
• f1 and f2 are infinitely related (e.g., related for any # of steps) iff

for all v1 and v2 that are infinitely related, f1v1 and f2v2 are, too.

Unfortunately, it is false!
• In fact, f1 and f2 are infinitely related iff, for any step level n,

for all v1 and v2 that are n-related, f1v1 and f2v2 are, too.

Problem #1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy,
but the user of the model shouldn’t have to deal with them.
• Important to develop clean, abstract, step-free proof principles

E.g. Appel-McAllester claim this extensionality property:
• f1 and f2 are infinitely related (e.g., related for any # of steps) iff

for all v1 and v2 that are infinitely related, f1v1 and f2v2 are, too.

Unfortunately, it is false!
• In fact, f1 and f2 are infinitely related iff, for any step level n,

for all v1 and v2 that are n-related, f1v1 and f2v2 are, too.

Problem #2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric,
i.e., they model approximation (≤), not equivalence (≡).
• We can define e1 ≡ e2 to mean e1 ≤ e2 ∧ e2 ≤ e1.

We would like a symmetric extensionality principle, e.g.,
• f1 ≡ f2 iff ∀v1, v2. we have that v1 ≡ v2 implies f1v1 ≡ f2v2.

But even ignoring Problem #1, this is false:
• To show f1 ≡ f2, we must show that v1 ≤ v2 implies f1v1 ≤ f2v2,

and that v2 ≤ v1 implies f2v2 ≤ f1v1.

Problem #2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric,
i.e., they model approximation (≤), not equivalence (≡).
• We can define e1 ≡ e2 to mean e1 ≤ e2 ∧ e2 ≤ e1.

We would like a symmetric extensionality principle, e.g.,
• f1 ≡ f2 iff ∀v1, v2. we have that v1 ≡ v2 implies f1v1 ≡ f2v2.

But even ignoring Problem #1, this is false:
• To show f1 ≡ f2, we must show that v1 ≤ v2 implies f1v1 ≤ f2v2,

and that v2 ≤ v1 implies f2v2 ≤ f1v1.

Problem #2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric,
i.e., they model approximation (≤), not equivalence (≡).
• We can define e1 ≡ e2 to mean e1 ≤ e2 ∧ e2 ≤ e1.

We would like a symmetric extensionality principle, e.g.,
• f1 ≡ f2 iff ∀v1, v2. we have that v1 ≡ v2 implies f1v1 ≡ f2v2.

But even ignoring Problem #1, this is false:
• To show f1 ≡ f2, we must show that v1 ≤ v2 implies f1v1 ≤ f2v2,

and that v2 ≤ v1 implies f2v2 ≤ f1v1.

Our Contributions

Define a relational modal logic, LSLR, for expressing step-indexed
logical relations without mentioning steps.

Define a step-free logical relation in LSLR for reasoning about
program (in-)equivalence in System F + recursive types.

Show logical relation is sound w.r.t. contextual equivalence by
defining a suitable “step-indexed” model of LSLR.

Develop a set of useful derivable rules concerning the logical relation.

Demonstrate the effectiveness of our approach by proving several
representative examples of contextual equivalences from the literature.

Outline

1 The Language Fµ

2 The Logic LSLR

3 Encoding a Logical Relation for Fµ in LSLR

4 Derivable Rules

Outline

1 The Language Fµ

2 The Logic LSLR

3 Encoding a Logical Relation for Fµ in LSLR

4 Derivable Rules

The Language Fµ

Types τ ::= α | unit | int | bool | τ1 × τ2 | τ1 + τ2 |
τ1 → τ2 | ∀α. τ | ∃α. τ | µα. τ

Prim Ops o ::= + | − | = | < | ≤ | . . .
Terms e ::= x | () | ±n | o(e1, . . . , en) |

true | false | if e then e1 else e2 |
〈e1, e2〉 | fst e | snd e | inlτ e | inrτ e |
case e of inl x1⇒e1 |inr x2⇒e2 |
λx : τ. e | e1 e2 | Λα. e | e [τ] |
pack τ, e as∃α. τ ′ | unpack e1 asα, x in e2 |
foldτ e | unfold e

Values v ::= x | () | ±n | true | false | 〈v1, v2〉 |
inlτ v | inrτ v | λx : τ. e | Λα. e |
pack τ1, v as∃α. τ | foldτ v

Outline

1 The Language Fµ

2 The Logic LSLR

3 Encoding a Logical Relation for Fµ in LSLR

4 Derivable Rules

The Logic LSLR (Basic Idea)

Start with Plotkin and Abadi’s “logic for parametric polymorphism”
(TLCA’93)
• Adapt it to reason operationally about CBV small-step semantics

Extend it with recursively defined relations
• Enables straightforward logical relation for recursive types
• To make sense of circularity, introduce “later” operator .A from

Appel, Melliès, Richards, and Vouillon’s “very modal model”
paper (POPL’07), which in turn was adapted from Gödel-Löb
logic of provability

The Logic LSLR (Syntax)

Rel. Var’s r, s ∈ RelVar
Fµ Ctxt’s Γ ::= · | Γ, α | Γ, x : τ | Γ, t : τ
Rel. Ctxt’s ∆ ::= · | ∆, r : VRel(τ1, τ2) | r : TRel(τ1, τ2)
Log. Ctxt’s Θ ::= · | Θ,A
Atomic Prop’s P ::= e1 = e2 | e1

∗7→ e2 | e1
07→ e2 | e1

17→ e2

Propositions A,B ::= P | > | ⊥ | A ∧ B | A ∨ B |
A ⊃ B | ∀Γ.A | ∃Γ.A |
∀∆.A | ∃∆.A | (e1, e2) ∈ R | .A

Relations R, S ::= r | (x1 : τ1, x2 : τ2).A |
(t1 : τ1, t2 : τ2).A | µr.R

LSLR Main Judgment

Γ; ∆; Θ ` A

Relational Axioms

(v1, v2) ∈ (x1 : τ1, x2 : τ2).A ≡ A[v1/x1, v2/x2]

(e1, e2) ∈ (t1 : τ1, t2 : τ2).A ≡ A[e1/t1, e2/t2]

(e1, e2) ∈ µr.R ≡ (e1, e2) ∈ R[µr.R/r]

Monotonicity

A ⊃ .A

Löb Rule

(.A ⊃ A) ⊃ A

Distributivity Laws

.(A ∧ B) ≡ .A ∧ .B

.(A ∨ B) ≡ .A ∨ .B
.(A ⊃ B) ≡ .A ⊃ .B
.∀Γ.A ≡ ∀Γ..A
.∀∆.A ≡ ∀∆..A
.∃Γ.A ≡ ∃Γ..A
.∃∆.A ≡ ∃∆..A

Outline

1 The Language Fµ

2 The Logic LSLR

3 Encoding a Logical Relation for Fµ in LSLR

4 Derivable Rules

Logical Relation for Values

V JαK ρ def= R, where ρ(α) = (τ1, τ2,R)

V JτbK ρ
def= (x1 : τb, x2 : τb). x1 = x2, where τb ∈ {unit, int,bool}

V Jτ ′ × τ ′′K ρ def= (x1 : ρ1(τ ′ × τ ′′), x2 : ρ2(τ ′ × τ ′′)).
∃x′1, x′′1 , x′2, x′′2 . x1 = 〈x′1, x′′1〉 ∧ x2 = 〈x′2, x′′2〉 ∧
(x′1, x

′
2) ∈ V Jτ ′K ρ ∧ (x′′1 , x

′′
2) ∈ V Jτ ′′K ρ

V Jτ ′ + τ ′′K ρ def= (x1 : ρ1(τ ′ + τ ′′), x2 : ρ2(τ ′ + τ ′′)).
(∃x′1, x′2. x1 = inl x′1 ∧ x2 = inl x′2 ∧ (x′1, x

′
2) ∈ V Jτ ′K ρ)

∨ (∃x′′1 , x′′2 . x1 = inr x′′1 ∧ x2 = inr x′′2 ∧ (x′′1 , x
′′
2) ∈ V Jτ ′′K ρ))

V Jτ ′ → τ ′′K ρ def= (x1 : ρ1(τ ′ → τ ′′), x2 : ρ2(τ ′ → τ ′′)).
∀y1, y2. (y1, y2) ∈ V Jτ ′K ρ ⊃ (x1y1, x2y2) ∈ E Jτ ′′K ρ

Logical Relation for Values (of Quantified Types)

V J∀α. τK ρ def= (x1 : ρ1(∀α. τ), x2 : ρ2(∀α. τ)).
∀α1, α2. ∀r : VRel(α1, α2).

(x1 [α1], x2 [α2]) ∈ E JτK ρ, α 7→ (α1, α2, r)

V J∃α. τK ρ def= (x1 : ρ1(∃α. τ), x2 : ρ2(∃α. τ)).
∃α1, α2, y1, y2. ∃r : VRel(α1, α2).

x1 = packα1, y1 as · · · ∧ x2 = packα2, y2 as · · · ∧
(y1, y2) ∈ V JτK ρ, α 7→ (α1, α2, r)

Logical Relation for Values (of Recursive Type)

V Jµα. τK ρ def
= µr.(x1 : ρ1(µα. τ), x2 : ρ2(µα. τ)).

∃y1, y2. x1 = fold y1 ∧ x2 = fold y2 ∧
.(y1, y2) ∈ V JτK ρ, α 7→ (ρ1(µα. τ), ρ2(µα. τ), r)

Outline

1 The Language Fµ

2 The Logic LSLR

3 Encoding a Logical Relation for Fµ in LSLR

4 Derivable Rules

Coincidence of Value and Term Relations

Γ; ∆; Θ ` (v1, v2) ∈ V JτK ρ
Γ; ∆; Θ ` (v1, v2) ∈ E JτK ρ

Extensionality

Γ, x1, x2; ∆; Θ, (x1, x2) ∈ V Jτ ′K ρ ` (v1x1, v2x2) ∈ E Jτ ′′K ρ
Γ; ∆; Θ ` (v1, v2) ∈ V Jτ ′ → τ ′′K ρ

Evaluation Rules

Γ; ∆; Θ ` e1
∗7→ e′1 Γ; ∆; Θ ` e2

∗7→ e′2
Γ; ∆; Θ ` (e′1, e

′
2) ∈ E JτK ρ

Γ; ∆; Θ ` (e1, e2) ∈ E JτK ρ

Γ; ∆; Θ ` (e1, e2) ∈ E JτK ρ
Γ, x1, x2; ∆; Θ, e1

∗7→ x1, e2
∗7→ x2, (x1, x2) ∈ V JτK ρ

` (E1[x1],E2[x2]) ∈ E Jτ ′K ρ′

Γ; ∆; Θ ` (E1[e1],E2[e2]) ∈ E Jτ ′K ρ′

Useful Rules Concerning the . Modality

Γ; ∆; Θ1,Θ2 ` B
Γ; ∆; Θ1, .Θ2 ` .B

Γ; ∆; Θ ` e1
17→ e′1 Γ; ∆; Θ ` e2

17→ e′2
Γ; ∆; Θ ` .(e′1, e

′
2) ∈ E JτK ρ

Γ; ∆; Θ ` (e1, e2) ∈ E JτK ρ

Γ; ∆; Θ, .A ` A
Γ; ∆; Θ ` A

Useful Rules Concerning the . Modality

Γ; ∆; Θ1,Θ2 ` B
Γ; ∆; Θ1, .Θ2 ` .B

Γ; ∆; Θ ` e1
17→ e′1 Γ; ∆; Θ ` e2

17→ e′2
Γ; ∆; Θ ` .(e′1, e

′
2) ∈ E JτK ρ

Γ; ∆; Θ ` (e1, e2) ∈ E JτK ρ

Γ; ∆; Θ, .A ` A
Γ; ∆; Θ ` A

Fixed-Point Induction

Fi = fun f (xi) is ei

Γ, x1, x2; ∆; Θ, (F1,F2) ∈ V Jτ ′ → τ ′′K ρ, (x1, x2) ∈ V Jτ ′K ρ
` (e1[F1/f], e2[F2/f]) ∈ E Jτ ′′K ρ

Γ; ∆; Θ ` (F1,F2) ∈ V Jτ ′ → τ ′′K ρ

What Else Is In the Paper

• Encoding of E JτK ρ in the logic
• More derivable rules (both equational and inequational)
• Model of the logic
• Proof of soundness of LR w.r.t. contextual equivalence
• Example proofs of contextual equivalences
• Comparison with related work

Future Work

• Generalize our approach to handle (higher-order) state
• We’ve already done this (paper under submission)

• Explore connection to bisimulation-based methods
(Sumii, Pierce, Sangiorgi, et al.)

• Mechanize our metatheory!

Thank You!

	The Language F
	The Logic LSLR
	Encoding a Logical Relation for F in LSLR
	Derivable Rules

