Logical Step-Indexed Logical Relations

Derek Dreyer

Max Planck Institute for Software Systems Saarbrücken, Germany

LICS 2009
 UCLA

August 12, 2009
Joint work with Amal Ahmed and Lars Birkedal

Logical Relations

$$
\mathcal{V} \llbracket \text { nat } \rrbracket \rho=\{(n, n) \mid n \in \mathbb{N}\}
$$

$$
\mathcal{V} \llbracket \tau^{\prime} \rightarrow \tau^{\prime \prime} \rrbracket \rho=\left\{\left(\lambda x \cdot e_{1}, \lambda x \cdot e_{2}\right) \mid\right.
$$

$$
\forall v_{1}, v_{2}
$$

$$
\begin{aligned}
& \left(v_{1}, v_{2}\right) \in \mathcal{V} \llbracket \tau^{\prime} \rrbracket \rho \Longrightarrow \\
& \left.\left(e_{1}\left[v_{1} / x\right], e_{2}\left[v_{2} / x\right]\right) \in \mathcal{E} \llbracket \tau^{\prime \prime} \rrbracket \rho\right\}
\end{aligned}
$$

$\mathcal{V} \llbracket \exists \alpha . \tau \rrbracket \rho=\left\{\left(\operatorname{pack} \tau_{1}, v_{1} \operatorname{as} \cdots, \operatorname{pack} \tau_{2}, v_{2} \operatorname{as} \cdots\right) \mid\right.$ $\exists \chi \in \operatorname{Rel}\left(\tau_{1}, \tau_{2}\right)$.

$$
\left.\left(v_{1}, v_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \rho, \alpha \mapsto\left(\tau_{1}, \tau_{2}, \chi\right)\right\}
$$

$\mathcal{V} \llbracket \alpha \rrbracket \rho=\chi \quad$ where $\rho(\alpha)=\left(\tau_{1}, \tau_{2}, \chi\right)$

Logical Relations for Recursive Types?

$$
\begin{aligned}
& \mathcal{V} \llbracket \mu \alpha . \tau \rrbracket \rho=\left\{\left(\text { fold } v_{1}, \text { fold } v_{2}\right) \mid\right. \\
& \left.\left(v_{1}, \nu_{2}\right) \in \mathcal{V} \llbracket \tau[\mu \alpha . \tau / \alpha] \rrbracket \rho\right\}
\end{aligned}
$$

Logical Relations for Recursive Types?

$$
\begin{aligned}
& \mathcal{V} \llbracket \mu \alpha . \tau \rrbracket \rho=\left\{\left(\text { fold } v_{1}, \text { fold } v_{2}\right) \mid\right. \\
& \left.\left(v_{1}, v_{2}\right) \in \mathcal{V} \llbracket \tau[\mu \alpha . \tau / \alpha] \rrbracket \rho\right\}
\end{aligned}
$$

Problem: The definition is no longer well-founded!

Step-Indexed Logical Relations (Appel-McAllester '01)

Idea: Index logical relations by $n \in \mathbb{N}$ representing "the number of steps left until the clock runs out."

- Two terms are related "infinitely" iff they are n-related (for all n).

$$
\begin{aligned}
\mathcal{V} \llbracket \mu \alpha . \tau \rrbracket \rho= & \left\{\left(n, \text { fold } v_{1}, \text { fold } v_{2}\right) \mid\right. \\
& \left.\left(n-1, v_{1}, v_{2}\right) \in \mathcal{V} \llbracket \tau[\mu \alpha . \tau / \alpha] \rrbracket \rho\right\}
\end{aligned}
$$

Intuitively, this makes sense because it takes a step of computation to extract v_{i} from fold v_{i}.

Advantages of Step-Indexed Logical Relations

Easy to develop using only elementary mathematical constructions.
Applicable to "difficult" languages, e.g., with higher-order state:

- Imperative self-adjusting computation (Acar et al., POPL'08)
- Representation independence for "generative" ADTs (POPL'09)
- Parametricity in the presence of dynamic typing (ICFP'09)
- Compiler correctness (Benton et al., e.g., TLDI'09, ICFP'09)
- ...

Comparison With Other Approaches

With more mathematically sophisticated approaches
(e.g., minimal invariance, FM-cpos, ultra-metric spaces):

X Hard to construct, not as (obviously) widely applicable

With step-indexed logical relations:
\checkmark Easy to construct, widely applicable

Comparison With Other Approaches

With more mathematically sophisticated approaches (e.g., minimal invariance, FM-cpos, ultra-metric spaces):

X Hard to construct, not as (obviously) widely applicable
\checkmark Easy to develop high-level equational proof principles
With step-indexed logical relations:
\checkmark Easy to construct, widely applicable
X Hard to develop high-level equational proof principles

You get what you pay for!

Problem \#1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy, but the user of the model shouldn't have to deal with them.

- Important to develop clean, abstract, step-free proof principles

Problem \#1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy, but the user of the model shouldn't have to deal with them.

- Important to develop clean, abstract, step-free proof principles
E.g. Appel-McAllester claim this extensionality property:
- f_{1} and f_{2} are infinitely related (e.g., related for any \# of steps) iff for all v_{1} and v_{2} that are infinitely related, $f_{1} v_{1}$ and $f_{2} v_{2}$ are, too.

Problem \#1: Step-Index Arithmetic Pervades Proofs

Steps make constructing the model easy, but the user of the model shouldn't have to deal with them.

- Important to develop clean, abstract, step-free proof principles
E.g. Appel-McAllester claim this extensionality property:
- f_{1} and f_{2} are infinitely related (e.g., related for any \# of steps) iff for all v_{1} and v_{2} that are infinitely related, $f_{1} v_{1}$ and $f_{2} v_{2}$ are, too.

Unfortunately, it is false!

- In fact, f_{1} and f_{2} are infinitely related $i f f$, for any step level n, for all v_{1} and v_{2} that are n-related, $f_{1} v_{1}$ and $f_{2} v_{2}$ are, too.

Problem \#2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric, i.e., they model approximation (\leq), not equivalence (\equiv).

- We can define $e_{1} \equiv e_{2}$ to mean $e_{1} \leq e_{2} \wedge e_{2} \leq e_{1}$.

Problem \#2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric, i.e., they model approximation (\leq), not equivalence (\equiv).

- We can define $e_{1} \equiv e_{2}$ to mean $e_{1} \leq e_{2} \wedge e_{2} \leq e_{1}$.

We would like a symmetric extensionality principle, e.g.,

- $f_{1} \equiv f_{2}$ iff $\forall v_{1}, v_{2}$. we have that $v_{1} \equiv v_{2}$ implies $f_{1} v_{1} \equiv f_{2} v_{2}$.

Problem \#2: Lack of Equational Proof Principles

Step-indexed logical relations are fundamentally asymmetric, i.e., they model approximation (\leq), not equivalence (\equiv).

- We can define $e_{1} \equiv e_{2}$ to mean $e_{1} \leq e_{2} \wedge e_{2} \leq e_{1}$.

We would like a symmetric extensionality principle, e.g.,

- $f_{1} \equiv f_{2}$ iff $\forall v_{1}, v_{2}$. we have that $v_{1} \equiv v_{2}$ implies $f_{1} v_{1} \equiv f_{2} v_{2}$.

But even ignoring Problem \#1, this is false:

- To show $f_{1} \equiv f_{2}$, we must show that $v_{1} \leq v_{2}$ implies $f_{1} v_{1} \leq f_{2} v_{2}$, and that $v_{2} \leq v_{1}$ implies $f_{2} v_{2} \leq f_{1} v_{1}$.

Our Contributions

Define a relational modal logic, LSLR, for expressing step-indexed logical relations without mentioning steps.

Define a step-free logical relation in LSLR for reasoning about program (in-)equivalence in System F + recursive types.

Show logical relation is sound w.r.t. contextual equivalence by defining a suitable "step-indexed" model of LSLR.

Develop a set of useful derivable rules concerning the logical relation.
Demonstrate the effectiveness of our approach by proving several representative examples of contextual equivalences from the literature.

Outline

(1) The Language F^{μ}
(2) The Logic LSLR
(3) Encoding a Logical Relation for F^{μ} in LSLR
(4) Derivable Rules

Outline

(1) The Language F^{μ}
(2) The Logic LSLR
(3) Encoding a Logical Relation for F^{μ} in LSLR
(4) Derivable Rules

The Language F^{μ}

Types $\quad \tau::=\alpha \mid$ unit \mid int \mid bool $\left|\tau_{1} \times \tau_{2}\right| \tau_{1}+\tau_{2} \mid$ $\tau_{1} \rightarrow \tau_{2}|\forall \alpha . \tau| \exists \alpha . \tau \mid \mu \alpha . \tau$
Prim Ops $o::=+|-|=|<|\leq| \ldots$
Terms $e::=x|()| \pm n\left|o\left(e_{1}, \ldots, e_{n}\right)\right|$
true \mid false \mid if e then e_{1} else $e_{2} \mid$
$\left\langle e_{1}, e_{2}\right\rangle \mid$ fst $e \mid$ snd $e\left|\operatorname{inl}_{\tau} e\right| \operatorname{inr}_{\tau} e \mid$
case e of inl $x_{1} \Rightarrow e_{1} \mid$ inr $x_{2} \Rightarrow e_{2} \mid$
$\lambda x: \tau . e\left|e_{1} e_{2}\right| \Lambda \alpha . e|e[\tau]|$ pack τ, e as $\exists \alpha . \tau^{\prime} \mid$ unpack e_{1} as α, x in $e_{2} \mid$ fold $_{\tau} e \mid$ unfold e
Values $v::=x|()| \pm n \mid$ true \mid false $\left|\left\langle v_{1}, v_{2}\right\rangle\right|$ $\operatorname{inl}_{\tau} v\left|\operatorname{inr}_{\tau} v\right| \lambda x: \tau . e|\Lambda \alpha . e|$ pack τ_{1}, v as $\exists \alpha . \tau \mid f o l d_{\tau} v$

Outline

(1) The Language F^{μ}
(2) The Logic LSLR
(3) Encoding a Logical Relation for F^{μ} in LSLR
(4) Derivable Rules

The Logic LSLR (Basic Idea)

Start with Plotkin and Abadi's "logic for parametric polymorphism" (TLCA'93)

- Adapt it to reason operationally about CBV small-step semantics

Extend it with recursively defined relations

- Enables straightforward logical relation for recursive types
- To make sense of circularity, introduce "later" operator $\triangleright A$ from Appel, Melliès, Richards, and Vouillon's "very modal model" paper (POPL'07), which in turn was adapted from Gödel-Löb logic of provability

The Logic LSLR (Syntax)

Rel. Var's $\quad r, s \in$ RelVar
F^{μ} Ctxt's $\quad \Gamma::=\quad-|\Gamma, \alpha| \Gamma, x: \tau \mid \Gamma, t: \tau$
Rel. Ctxt's $\quad \Delta \quad::=\quad \cdot\left|\Delta, r: V \operatorname{Rel}\left(\tau_{1}, \tau_{2}\right)\right| r: \operatorname{TRel}\left(\tau_{1}, \tau_{2}\right)$
Log. Ctxt's $\quad \Theta \quad::=\quad \cdot \mid \Theta, A$
Atomic Prop's $\quad P \quad::=e_{1}=e_{2}\left|e_{1} \stackrel{*}{\mapsto} e_{2}\right| e_{1} \stackrel{0}{\mapsto} e_{2} \mid e_{1} \stackrel{1}{\mapsto} e_{2}$
Propositions $\quad A, B \quad::=P|\top| \perp|A \wedge B| A \vee B \mid$
$A \supset B|\forall \Gamma . A| \exists \Gamma . A$
$\forall \Delta . A|\exists \Delta . A|\left(e_{1}, e_{2}\right) \in R \mid \triangleright A$
Relations $\quad R, S \quad::=\quad r \mid\left(x_{1}: \tau_{1}, x_{2}: \tau_{2}\right) \cdot A$
$\left(t_{1}: \tau_{1}, t_{2}: \tau_{2}\right) . A \mid \mu r . R$

LSLR Main Judgment

$$
\Gamma ; \Delta ; \Theta \vdash A
$$

Relational Axioms

$$
\begin{gathered}
\left(v_{1}, v_{2}\right) \in\left(x_{1}: \tau_{1}, x_{2}: \tau_{2}\right) \cdot A \equiv A\left[v_{1} / x_{1}, v_{2} / x_{2}\right] \\
\left(e_{1}, e_{2}\right) \in\left(t_{1}: \tau_{1}, t_{2}: \tau_{2}\right) \cdot A \equiv A\left[e_{1} / t_{1}, e_{2} / t_{2}\right] \\
\quad\left(e_{1}, e_{2}\right) \in \mu r \cdot R \equiv\left(e_{1}, e_{2}\right) \in R[\mu r \cdot R / r]
\end{gathered}
$$

Monotonicity

$A \supset \triangleright A$

Löb Rule

$$
(\triangleright A \supset A) \supset A
$$

Distributivity Laws

$$
\begin{aligned}
\triangleright(A \wedge B) & \equiv \triangleright A \wedge \triangleright B \\
\triangleright(A \vee B) & \equiv \triangleright A \vee \triangleright B \\
\triangleright(A \supset B) & \equiv \triangleright A \supset \triangleright B \\
\triangleright \forall \Gamma \cdot A & \equiv \forall \Gamma . \triangleright A \\
\triangleright \forall \Delta \cdot A & \equiv \forall \Delta . \triangleright A \\
\triangleright \exists \Gamma \cdot A & \equiv \exists \Gamma . \triangleright A \\
\triangleright \exists \Delta . A & \equiv \exists \Delta . \triangleright A
\end{aligned}
$$

Outline

(1) The Language F^{μ}
(2) The Logic LSLR
(3) Encoding a Logical Relation for F^{μ} in LSLR
(4) Derivable Rules

Logical Relation for Values

$\mathcal{V} \llbracket \alpha \rrbracket \rho \stackrel{\text { def }}{=} R$, where $\rho(\alpha)=\left(\tau_{1}, \tau_{2}, R\right)$
$\mathcal{V} \llbracket \tau_{b} \rrbracket \rho \stackrel{\text { def }}{=}\left(x_{1}: \tau_{b}, x_{2}: \tau_{b}\right) . x_{1}=x_{2}$, where $\tau_{b} \in\{$ unit, int, bool $\}$

$$
\left.\begin{array}{rl}
\mathcal{V} \llbracket \tau^{\prime} \times \tau^{\prime \prime} \rrbracket \rho \stackrel{\text { def }}{=}\left(x_{1}: \rho_{1}\left(\tau^{\prime} \times \tau^{\prime \prime}\right), x_{2}: \rho_{2}\left(\tau^{\prime} \times \tau^{\prime \prime}\right)\right) . \\
& \exists x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime} \cdot x_{1}=\left\langle x_{1}^{\prime}, x_{1}^{\prime \prime}\right\rangle \wedge x_{2}=\left\langle x_{2}^{\prime}, x_{2}^{\prime \prime}\right\rangle \wedge \\
& \left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in \mathcal{V} \llbracket \tau^{\prime} \rrbracket \rho \wedge\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right) \in \mathcal{V} \llbracket \tau^{\prime \prime} \rrbracket \rho
\end{array}\right) . \begin{aligned}
& \mathcal{V} \llbracket \tau^{\prime}+\tau^{\prime \prime} \rrbracket \rho \stackrel{\text { def }}{=}\left(x_{1}: \rho_{1}\left(\tau^{\prime}+\tau^{\prime \prime}\right), x_{2}: \rho_{2}\left(\tau^{\prime}+\tau^{\prime \prime}\right)\right) . \\
&\left(\exists x_{1}^{\prime}, x_{2}^{\prime} \cdot x_{1}=\operatorname{inl} x_{1}^{\prime} \wedge x_{2}=\operatorname{inl} x_{2}^{\prime} \wedge\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in \mathcal{V} \llbracket \tau^{\prime} \rrbracket \rho\right) \\
& \vee\left.\left(\exists x_{1}^{\prime \prime}, x_{2}^{\prime \prime} \cdot x_{1}=\operatorname{inr} x_{1}^{\prime \prime} \wedge x_{2}=\operatorname{inr} x_{2}^{\prime \prime} \wedge\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right) \in \mathcal{V} \llbracket \tau^{\prime \prime} \rrbracket \rho\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{V} \llbracket \tau^{\prime} \rightarrow \tau^{\prime \prime} \rrbracket \rho \stackrel{\text { def }}{=}\left(x_{1}: \rho_{1}\left(\tau^{\prime} \rightarrow \tau^{\prime \prime}\right), x_{2}: \rho_{2}\left(\tau^{\prime}\right.\right. & \left.\left.\rightarrow \tau^{\prime \prime}\right)\right) . \\
\forall y_{1}, y_{2} .\left(y_{1}, y_{2}\right) \in \mathcal{V} \llbracket \tau^{\prime} \rrbracket \rho & \supset\left(x_{1} y_{1}, x_{2} y_{2}\right) \in \mathcal{E} \llbracket \tau^{\prime \prime} \rrbracket \rho
\end{aligned}
$$

Logical Relation for Values (of Quantified Types)

$$
\begin{aligned}
& \mathcal{V} \llbracket \forall \alpha . \tau \rrbracket \rho \stackrel{\text { def }}{=}\left(x_{1}: \rho_{1}(\forall \alpha . \tau), x_{2}: \rho_{2}(\forall \alpha . \tau)\right) \\
& \forall \alpha_{1}, \alpha_{2} . \forall r: \operatorname{VRel}\left(\alpha_{1}, \alpha_{2}\right) \\
&\left(x_{1}\left[\alpha_{1}\right], x_{2}\left[\alpha_{2}\right]\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho, \alpha \mapsto\left(\alpha_{1}, \alpha_{2}, r\right)
\end{aligned}
$$

$\mathcal{V} \llbracket \exists \alpha . \tau \rrbracket \rho \stackrel{\text { def }}{=}\left(x_{1}: \rho_{1}(\exists \alpha . \tau), x_{2}: \rho_{2}(\exists \alpha . \tau)\right)$.

$$
\exists \alpha_{1}, \alpha_{2}, y_{1}, y_{2} . \exists r: \operatorname{VRel}\left(\alpha_{1}, \alpha_{2}\right)
$$

$$
x_{1}=\operatorname{pack} \alpha_{1}, y_{1} \text { as } \cdots \wedge x_{2}=\operatorname{pack} \alpha_{2}, y_{2} \text { as } \cdots \wedge
$$

$$
\left(y_{1}, y_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \rho, \alpha \mapsto\left(\alpha_{1}, \alpha_{2}, r\right)
$$

Logical Relation for Values (of Recursive Type)

$$
\begin{aligned}
\mathcal{V} \llbracket \mu \alpha . \tau \rrbracket \rho \stackrel{\text { def }}{=} & \mu r .\left(x_{1}: \rho_{1}(\mu \alpha . \tau), x_{2}: \rho_{2}(\mu \alpha . \tau)\right) \\
& \exists y_{1}, y_{2} \cdot x_{1}=\mathrm{fold} y_{1} \wedge x_{2}=\text { fold } y_{2} \wedge \\
& \triangleright\left(y_{1}, y_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \rho, \alpha \mapsto\left(\rho_{1}(\mu \alpha . \tau), \rho_{2}(\mu \alpha . \tau), r\right)
\end{aligned}
$$

Outline

(1) The Language F^{μ}
(2) The Logic LSLR
(3) Encoding a Logical Relation for F^{μ} in LSLR
(4) Derivable Rules

Coincidence of Value and Term Relations

$$
\frac{\Gamma ; \Delta ; \Theta \vdash\left(v_{1}, v_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \rho}{\Gamma ; \Delta ; \Theta \vdash\left(v_{1}, v_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho}
$$

Extensionality

$$
\frac{\Gamma, x_{1}, x_{2} ; \Delta ; \Theta,\left(x_{1}, x_{2}\right) \in \mathcal{V} \llbracket \tau^{\prime} \rrbracket \rho \vdash\left(v_{1} x_{1}, v_{2} x_{2}\right) \in \mathcal{E} \llbracket \tau^{\prime \prime} \rrbracket \rho}{\Gamma ; \Delta ; \Theta \vdash\left(v_{1}, v_{2}\right) \in \mathcal{V} \llbracket \tau^{\prime} \rightarrow \tau^{\prime \prime} \rrbracket \rho}
$$

Evaluation Rules

$$
\begin{gathered}
\Gamma ; \Delta ; \Theta \vdash e_{1} \stackrel{*}{\mapsto} e_{1}^{\prime} \quad \Gamma ; \Delta ; \Theta \vdash e_{2} \stackrel{*}{\mapsto} e_{2}^{\prime} \\
\Gamma ; \Delta ; \Theta \vdash\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho \\
\Gamma ; \Delta ; \Theta \vdash\left(e_{1}, e_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho \\
\\
\Gamma ; \Delta ; \Theta \vdash\left(e_{1}, e_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho
\end{gathered}
$$

$\Gamma, x_{1}, x_{2} ; \Delta ; \Theta, e_{1} \stackrel{*}{\mapsto} x_{1}, e_{2} \stackrel{*}{\mapsto} x_{2},\left(x_{1}, x_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \rho$

$$
\frac{\vdash\left(E_{1}\left[x_{1}\right], E_{2}\left[x_{2}\right]\right) \in \mathcal{E} \llbracket \tau^{\prime} \rrbracket \rho^{\prime}}{\Gamma ; \Delta ; \Theta \vdash\left(E_{1}\left[e_{1}\right], E_{2}\left[e_{2}\right]\right) \in \mathcal{E} \llbracket \tau^{\prime} \rrbracket \rho^{\prime}}
$$

Useful Rules Concerning the \triangleright Modality

$$
\begin{gathered}
\frac{\Gamma ; \Delta ; \Theta_{1}, \Theta_{2} \vdash B}{\Gamma ; \Delta ; \Theta_{1}, \triangleright \Theta_{2} \vdash \triangleright B} \\
\Gamma ; \Delta ; \Theta \vdash e_{1} \stackrel{1}{\longmapsto} e_{1}^{\prime} \quad \Gamma ; \Delta ; \Theta \vdash e_{2} \stackrel{1}{\mapsto} e_{2}^{\prime} \\
\Gamma ; \Delta ; \Theta \vdash \triangleright\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho \\
\Gamma ; \Delta ; \Theta \vdash\left(e_{1}, e_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho \\
\frac{\Gamma ; \Delta ; \Theta, \triangleright A \vdash A}{\Gamma ; \Delta ; \Theta \vdash A}
\end{gathered}
$$

Useful Rules Concerning the \triangleright Modality

$$
\begin{gathered}
\frac{\Gamma ; \Delta ; \Theta_{1}, \Theta_{2} \vdash B}{\Gamma ; \Delta ; \Theta_{1}, \triangleright \Theta_{2} \vdash \triangleright B} \\
\Gamma ; \Delta ; \Theta \vdash e_{1} \stackrel{1}{\mapsto} e_{1}^{\prime} \quad \Gamma ; \Delta ; \Theta \vdash e_{2} \stackrel{1}{\mapsto} e_{2}^{\prime} \\
\Gamma ; \Delta ; \Theta \vdash \triangleright\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho \\
\Gamma ; \Delta ; \Theta \vdash\left(e_{1}, e_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rho \\
\frac{\Gamma ; \Delta ; \Theta, \triangleright A \vdash A}{\Gamma ; \Delta ; \Theta \vdash A}
\end{gathered}
$$

Fixed-Point Induction

$$
F_{i}=\mathrm{fun} f\left(x_{i}\right) \text { is } e_{i}
$$

$$
\begin{gathered}
\Gamma, x_{1}, x_{2} ; \Delta ; \Theta,\left(F_{1}, F_{2}\right) \in \mathcal{V} \llbracket \tau^{\prime} \rightarrow \tau^{\prime \prime} \rrbracket \rho,\left(x_{1}, x_{2}\right) \in \mathcal{V} \llbracket \tau^{\prime} \rrbracket \rho \\
\vdash\left(e_{1}\left[F_{1} / f\right], e_{2}\left[F_{2} / f\right]\right) \in \mathcal{E} \llbracket \tau^{\prime \prime} \rrbracket \rho
\end{gathered} \Gamma
$$

What Else Is In the Paper

- Encoding of $\mathcal{E} \llbracket \tau \rrbracket \rho$ in the logic
- More derivable rules (both equational and inequational)
- Model of the logic
- Proof of soundness of LR w.r.t. contextual equivalence
- Example proofs of contextual equivalences
- Comparison with related work

Future Work

- Generalize our approach to handle (higher-order) state
- We've already done this (paper under submission)
- Explore connection to bisimulation-based methods (Sumii, Pierce, Sangiorgi, et al.)
- Mechanize our metatheory!

Thank You!

