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1 The Language F*

1.1 Syntax
Types 7 u= alunit|int|bool |1 X | Ti+T2| T — T2
Vo.r | Ja.7 | pa. 7 | ref 7
Prim Ops 0 = +|-|=]<]|]< ...
Ezpressions e = z|(|l|n]|ole,...,en)]|
true | false | if ethene; elsees |
(e1,e2) | fste | snde |
inle | inre | caseeofinlzy = e |inrza = ez |
Ax:T.e|erex | Aa.e|eT |
pack 71,easJa. 7 | unpackej asa, zines |
rolle | unrolle | refe | le | e1:=e2 | e1==¢2
Values v u= ()|1]n]|true| false | (vi,v2) | inlv | inrv |
Az:T.e | Aa.e | packi,vasJa. 7 | rollv
Evaluation Contexts FE = []]|o(vi,...,vi—1, E,€i41,...,€n) |

if Ethene;elseesy |

(E,e2) | (v1,E) | fstE | snd E |

inl E | inrE | case Eofinlzy = ey |inrzs = ez |
Ee|vE|ET|

pack 71, Eas3a. 7 | unpack Fasa,xzinesz | roll E | unroll E |
ref B ||E | E:=e|v:=E| E==¢|v==

1.2 Dynamic Semantics

e e
iftruethene; elsees  ~ ey
if falsetheney elsees  ~> ey
fst (v1,02) ~ 1
snd (v1, v2) o vy
case (inlv)of inlzy = e1 |inrze = ea ~>  [v/z1]er
case (inrv) of inlz1 = e1 |inrze = e2 A [v/xz2]es
Az:T.e)v 2 [v/z]e
(Aa.e) T AN [T/ale
unpack (pack r,vas3Ja. 1) asa, zine 2 [t/a][v/z]e
unroll (roll v) Lo
l==1 > true
l==0' % false wherel#1
Ele] & E[¢] if e S ¢’
e~>" e
e/\[)n 6// 6// ,\ki) 6/
e~Ye e~ el



(hie) —— (W';¢)
I ¢ dom(h) h(l)=v l € dom(h)
(h; Elref v]) — (h[l — v]; E[l]) (h; E[N]) = (h; E[v]) (h; E[l:=v]) == (h[l — v]; E[()])
(hie) —" (W'5e)
(h 6) (h// //) (h”'e”) L (h/, el) (h 6) (h/ //) 6// ,\/)m 6/

m (h; e) lnt1 (h'5€) (h;e) —"tm (B/;¢e)

[(hse) 4 (05 ¢)
(hie) 47 (Wse') = TL (hye) —— ")

W n e T e L el "V (W;e)
I’ e’ (hye) I (W€
In. (h;e) ™

L (h//; e//)



1.3 Static Semantics

Variable Context I' == -|Ta|Tl,z:7
Heap Context ¥ ou= X7
FT T Tkr
= FINLa Flx:7
) T
B EX T
'~
ael Tk
I'Fa ' unit I'Fint T+ bool C'Frefr
'kmn 'k I'tn T'km 'kn 'k akFT1 TakFT NakFr
I'Em X1 'Emi+7m 'eEm —m I'EVa.1 I'-3a.7 'k po.r
I(z)=r"
)Yk ax:7 ;3 F () : unit T3S Fn:int
¥ F e: bool YXbker:r Y kFey:r
I'; ¥ F true : bool T'; ¥ F false : bool I'; X Fifetheneelsees : 7
Y kFer:m Y Fe:me Ii'YkFe:m X1 iYkFe:m xm
;2 F (e1,e2) : 71 X T2 ;Y kfste:m ;X Fsnde:
I'YkFe:mn 'Y kFe:m
;Y Finle:m + 7 'Y Finre: 4+ 7
Y kFe:m+1 ey :m;Xbker: 7 Tixs ;X bes: T
;X F caseeof inlzy = e1 |inrze = e2: 7
Nr:m;YkFe:m iXFerim—1 X kFex:m
Y FA:im.e: 1 — T2 'Y Ferex:r
No;XkFe:r 'Y Fe:Var I'kmn
Yk Aace:Va.r ;¥ kern :[m/alr
F'km Y ke [n/or 'Y ker: Ja.n Lkt Fa,z:m;8Fex: T
I'; ¥ F packmi,easda. 7 : Ja. 7 I'; ¥ F unpackejasa,zines : 7
;X ke [po. /a7 ;Y ke:pa.t ) =7 ;Yke:r
;Y krolle: po. 7 ;3 Funrolle : [pa. 7/a)T DS blrefr ;38 refe:refr
Y kFe:refr Y Feprefr Y kFex:r ;X Feprefr Y Feg:refr
YkFle:r I''Y Fep:=es:unit I''Y F e ==e2: bool



Fh  Fh:X|

FV(h)=10 FL(h) C dom(h) vl € dom(X). X+ h(l) : (1)
Fh Fh:¥

1.4 Contexts and Contextual Equivalence

Contexts C == []]|o(er,...,€i—1,C,€it1,...,€n) | if Cthene;elsees | if ethen Celse ey
if etheneyelseC | (C,e2) | (e1,C) | fstC | sndC | inlC | inrC |
caseCofinlzy = ey |inrza = ez | caseeofinlzy = C'|inrzs = ez |
caseeofinlzy = e |inrzeo = C | Az:7.C | Ce|eC | Aa.C | C1 |
pack 71, C as3a. 7 | unpack Casa, zines | unpacker asa, zinC' |
rollC | unrollC | ref C | IC | C:=e | e:=C | C==e| e==

FC: (k1) (I8 - )

rcr’ >CyY
FI]: (T8 k1)~ (T8 F7)

FC:(T;2F 1)~ (I'; % F bool) MY ke 7 ' Fep: 7
Fif Cthenejelsees : (38 F7) ~ (I3 2" = 77)

I'";%' e : bool FC: (T2 k1)~ (T, % k1) I Feg: 7
FifethenCelsees : (T; X F7) ~ (T; % F 1)

I'';¥ Fe: bool MY ke :7 FC: ;2 k1)~ (T;% 1)
FifetheneielseC: (T; X F7) ~ (T; % F 1)

FC: (T2 k1)~ (T2 F ) MY ke :m MY ke :m FC: (T2 k1)~ (T2 F )

F(C,e): (T8 F 7))~ I8 F 1 x 1) Fle,C): (T8 F 1) ~ (I, 5 F 7 X 72)
FO: (I35 1)~ (I';% F 7 x72) FC: (T2 F 1)~ (I %' F 7 X 72)
FfstC: (T;8F 1)~ (T, 5' F 1) FsndC: (T8 F 1)~ (I X 7o)

FC: (T2 k1)~ (T %' F ) FO: (T8 k 1)~ (I % F )
FinlC: (I;8 7)) ~ (I % F 4 ) FinrC: (T35 F7) ~ (T 5 F 1+ 72)

FCO: (T2 k1)~ (I5' F 7+ 1) Mz ;Y Fep o7 Mz Y Feg: 7
FcaseCofinlzy = e |inrze = ex: (T35 F 1) ~ (T'; 2 F 1)

I'YFe:m+m }—C:(F;EI—T)W(F/,xl:ﬁ;E/l—T’) IMoazo:m: X Fey: 7
Fcaseeofinlzy = Clinrzs = e2: (T; 5 7) ~ (I8 F 1)

I'YFe:m+m Iz ;2 Fey o7 FC:(F;EFT)W(F',xQ:TQ;E’FT')
Fcasecofinlzy = e1 |inrzs = C: (T; 2 F7) ~ (T8 F 1)




FC: (T2 k7))~ ([Mz:m; % F ) FC: ;2 k1)~ T8 Fr— 1) I''' Y Fes:m

FAz:m.C: (032 F 7))~ (I8 F 1y — 1) FCey: (M2 F 1)~ (I8 7))
Y bke:m—1 FC: ;3 k1)~ (T2 F ) FC: (T2 k1)~ (T, % F 1)
FerC: (T2 k1)~ (T, % F 1) FAa.C: (T;8F 1)~ (T2 FVa. 1)

FC:MZkT)~ (Y FYar) 'k
FOm: (08 F7) ~ (I % F [ /a)T’)

Mhn FC:MBEn)~ 53 F [/
Fpack7i,Cas3a. 7 : (I8 F 7) ~ (T'; 2+ Ja. )

FO: (T2 1)~ (I % F Ja. 1) 7 I oaz:m;% Fea: 7’
FunpackCasa,xzines : (I;5 F 7) ~ (I8 - 7)

;% Fep: 3am | N FO: (T2 k7)~ (I, a,z: ;5 F 1)
F unpacker asa, zinC : (T35 F 7) ~ (T2 = 7)

FO: (T2 7) ~ (I % F [pa. 7' /)T FO: (I8 1)~ (I8 F pa.t)
FrollC: (T;5F7) ~ (T8 - pa. 1) FunrollC: (T; 5 F 7) ~ (T, 2 F [pa. 7' /a]T")
FC: (T2 k1)~ (T, % F 1) FC: (T2 k1)~ (T; % Fref )
FrefC: (I;8 F 1) ~ (I'; 5 - ref ') FIC: (T35 F 1)~ (I8 - 7)

FCO: (T2 1)~ (I % Fref ') 'Y Fep:7
FC:=ex: (T35 F 1) ~ (T'; 2 F unit)

;% eq:refr FC:(T;2k7)~ (I8 F 1)
Fei:=C: (5 F7)~ (I'; Y | unit)

FC:(T;3 k1)~ (T'; S Fref ) ;% Feg:refr’
FC==¢ex: (32 F 1)~ (I";Z F bool)

;% e :refr’ FC:(I;2 k1)~ (I; % Fref )
Fei:=C: (% F7)~ (I";¥ I bool)

Definition 1.1 (Contextual Equivalence)
Let Y Fe:7and [ X Feq 7.
I8k e 2 eyir & VO Y 7 h FC: DSk 7) (X F7) A Fh:Y =
(h;Clea) = (M Cle2]) ¥



2 LADR

2.1 Well-formedness

Delayed Assertions H',J 1= e —;e| H' xJ' |H' Vv J |3X.H | OF

Delayed Formulas P',Q" == e;j=ey|e1~"ex|er~tex|eg~*ex | T| L]
PAQ |P'VQ | P =Q |VX.P |IX.P |VYR.P' | IR.P' |
ec P'|a|z.P | Val| Const, | Loc | Term; | >P

FXok z¢X FXok a¢X
F - ok X,z ok F X, a ok
FV(e)C X
Xt e: Term
FRok a¢R FRok p¢R
F - ok FR,a ok FR,p ok
X;RE L ok
X;RE-ok

pER pé¢dom(L) arity(p) =arity(a) F R,a ok
X;R,ab A:Rel(0) X;R,abk H:Asrt H delayed

X;RFEL,pxa.(A H) ok

X;R P ok

X;RF Py :Rel(0) -

X;RF P, : Rel(0)

X, RFDP,..

I—X;’R;E;Pok‘

., P, ok

FXok FRok X;RELok X;RFEPOok

FX;R; L;P ok

[ X RE P:Rel(n)|

XFe:Term XFes: Term

X;RE el =es: Rel(0)
XFep:Term XFey:Term XFEe:Term XF eg:Term XFep:Term XFey:Term

X;RE e ~* es: Rel(0) X; R ep ~0 ey : Rel(0) X;R ey~ ey : Rel(0)

X;RE T :Rel(0)
X;REP:Rel(0) X;REQ :Rel(0)

X;RE L:Rel(0)
X:RE P:Rel(0) X;RFEQ:Rel(0)

X;RFEPAQ:Rel(0)

X:REPVQ:Rel(0)



X;REP:Rel(0) X;REQ :Rel(0)
X;REP=Q:Rel0)
XX ok X, XLREP:Rel(0)  FX,X ok X,X;RFE P:Rel(0)

X; R+ VX'.P: Rel(0) X:R I+ 3X'.P: Rel(0)
FR,R ok X;R,R'+P:Rel(0) +FR,R ok X;R,R'F P:Rel(0)
X; R+ VR'.P: Rel(0) X;R+ 3IR'.P : Rel(0)

FR,aok X;R,at A:Rel(0) X;R,at H:Asrt H delayed
X;RE xa. (A, H) : Rel(0)

X;RFP:Rel(0)  X;RF P:Rel(0)
X;RFb>P:Rel(0) X;RF OP:Rel(0)
X;RER:Relln) XtFep:Term --- X+ e, : Term
X;RE (e1,...,en) € R:Rel(0)
a€R arity(a) =n pER arity(p) =n
X;REa:Rel(n) X;RFEp:Rel(n)
FX,21,...,2, 0k X,z1,...,2,; RE P:Rel(0)
X;RE (z1,...,2,).P : Rel(n)

FR,r ok arity(r)=n X;R,rt R:Rel(n) R contractive in r
X;RE pr.R: Rel(n)

X;RE R:Rel(2)
X;RE TR : Rel(2) X; R F Term,; : Rel(1) X;R E Val : Rel(1)
X;REH:Asrt X;RE J: Asrt
X;RtEH= J:Rel(0)

X;RI—H:Asrt‘

X;RE ey < eg: Asrt
X;REH:Asrt X;REJ: Asrt X;REH:Asrt X;REJ: Asrt

X;REH=xJ: Asrt X;REHVJ: Asrt
FX,X ok XX REH:Astt  X;RE P:Rel(0)
X;REIAX.H : Asrt X;REOP: Asrt



2.2 Additional Inference Rules

c-. CFHPVQ C,P+J C,QrJ CH3XP CX,P+J CH3IRP CR,PHJT

cCHJ c+J cC-rJ CHJ
CFP C+FQ CFPAQ CHPAQ
C,P-P CHT CFPAQ CHP CHQ
CFP CHQ

CFPVQ CFrPVQ
C,PFQ CFP=Q CFP

CEFP=Q CHQ
C,X+P CHEFVYX.P CkH~vy: X C,RFP CFVR.P CFp:R
CHVX.P Ck~oP CHVR.P Ctk P
Ckvy:X CkH~P CFp:R Ck P
CH3x.p CHIR.P

CFH=H C+-H = H"

CEH= B (ENTAIL-TRANS)

m (ENTAIL—REFL)

CFH +H, = (ENTAIL-WEAKEN)

CHHi = H| CrHy= Hj

ENTAIL-
CF Ity = Hi 1 *)

CFH +H, = Hy+ 1, (ENTAIL-%-COMM)

(ENTAIL-*-ASSOC-L)

C"Hl*(HQ*Hg,)S(Hl*Hg)*Hg

Ck (Hy * Hy) * Hy = Hy * (Hy * Hs) (ENTAIL-%-ASSOC-R)

ENTAIL-V-INTRO-L) ENTAIL-V-INTRO-R)

Cr IS VL Cr LS IV,
CrH = H CrHy= H
CrH VH,= H
Ch~: X C,X+-H=H'
CT A = 3x. PNTAI-SINTRO) - o

(ENTAIL-V-ELIM)

(ENTAIL-3-ELIM)

ENTAIL-<—-SEP
C|_€1‘—>i€2*6'1‘—>i6'23'3(€17é@l1)( )



2.3 Model

2.3.1 Interpretation of Absolute Propositions
|Aloe
ler =ead = e =e
T =T
I = 1
lAnBlo < A ABlS
lAvBls = 1Al v |Blo
|A= BJs i |Al6 = [ Blo
[vx.Alé ff vy e [X]. [vAls
|3x.Al6 = 3ye[X]. |hAlS
IVR.AI5 % vs e [R]. |A(5,0")
|13R.A|S j:i 36’ € [R]. |A](6,8)
lecAls = [Alse
lalde X S(a)e
_ _ def i
|z.Aloe = [A[e/z]|o
[Val|de def ¢ value
[Loc|de < ¢ e Loc

2.3.2 Properties

Lemma 2.1
W=p<xW

Proof: Follows easily from the definitions.

Lemma 2.2
1. oW OoOW

2. f W' DO W, then W JW.
3. If W O W, then bW’ DbW.
4. W' 3 W, then oW’ J>W.

5. UW” DO W' and W/ O W, then W D W.

6. EW"” JW'  and W I W, then W” I W.

Proof: Follows easily from the definitions.

Lemma 2.3

1. If W’ D pW, then there is W D W such that s = W,

2. If W’ J W, then there is wr J W such that W = W',

10



Proof: In each case define W/ := (W' k+1,W.dW .¢,W'.,TI), where

dom(Z) = dom(W'.Z)

I()=W'"Z() if + ¢ dom(W.7)
()= (W'Z().CP,W'Z(1).PL, |W.Z(¢).HL| w" +1) otherwise
O
Corollary 2.4 — -
If W’ 3 W, then there is W’ 3 9W such that bW’ = W',
Proof: Since W =< W by Lemma 2.1, the claim follows by Lemma 2.3. O
Lemma 2.5 . .
1. If W’ D <»W, then there is W/ O W such that <pW/ = W’.
2. If W’ 3 <>W, then there is W/ J W such that <cW’ = W".
Proof: In each case define W’ := W'k, W'.d, W' ., W' .,T), where
dom(Z) = dom(W'.7)
I()=W'Z() if © ¢ dom(W.Z)
I()=W"'Z().CP,W'Z(1).PL,|W.Z(¢).HL]w~ ) otherwise
O
Lemma 2.6
1. If W{ D> W; and bW; = bWy, then there is W4 O Wy such that bW| =W,
2. If W{ 3 W; and >W; = >Wo, then there is W4 J W5 such that oW, = Wi,
Proof: In each case define W} := (W/{.k, W/.d, W/.¢1, W].s2,7), where
dom(Z) = dom(W7.Z)
Z()=W{Z() if + ¢ dom(W5.7)
() = (W|.Z(+).CP,W{.Z(2).PL, |W.Z(¢). HL]w; 1) otherwise
O

Lemma 2.7
1. If P is delayed and >W; = >Wo, then [P]dW; = [P]dWsa.

2. If H is delayed and bWy = pWo, then [H]oW; = [H]0Ws.

Proof: Each by primary induction on W.k and secondary induction on the “size” of the formula.
By symmetry it suffices to show only one direction. The interesting cases are:

1. e Case P = P, = P, where P;, P, are delayed:
— Suppose [P = P2]oWh, W5 D Wa, and [P1]6W3.
— To show: [P2]oW3

11



If Wi.k = 0, there is nothing to show, so assume W3.k > 0.

— By Lemma 2.6 there is W| D W with sW| = pW3.

— Hence instantiating [Py = P;]0W; yields [Pe]0W] if we can show [Py]6W].

— By induction, the former is equivalent to [Pe]]0W5 and the latter to [P ]oW3.
Case P =pP":

— Suppose [>P']|6W, i.e., [P']o(>Wr).

— To show: [>P']6Wsa, i.e., [P']6(>W3)

— Since p>W; = pbWs, we are done by induction.

Case P = Term;:
— Suppose [Term;]6Wie, i.e., FL(e) C W.g;.
— To show: [Term;]éWae, i.e., FL(e) C Wa.g;
— Since bW; = bWy, we know Wi.g; = Wa.g;.

N
°

Case H = e —; ey: analogously to previous case
e Case H = OP where P is delayed:
— Suppose [OP]6W; and W5 I Ws.
— To show: [P]oW}
If Wi.k = 0, there is nothing to show, so assume W3.k > 0.
By Lemma 2.6 there is W{ J Wy with sW{ = >W3.
— Hence instantiating [OP]6W; yields [P]oW].
By induction, this is equivalent to [P]éW3.

O

Corollary 2.8

1. If P is delayed, then [P]6W = [P]o(<>W).

2. If H is delayed, then [H]6W = [H]é(a>W).
Proof: Since bW =r<p>W by Lemma 2.1, the claim follows by Lemma 2.7. O
Lemma 2.9
If [P]6W and W’ 3 W, then [{P]oW".
Proof: Follows easily from the definitions and Lemma 2.2. O

Lemma 2.10
If W 3 W, then [H]6W' D [H]6W.

Proof: By induction on the structure of H. If W.k = 0, then W’.k = 0 and so there is nothing to
show. Otherwise the only interesting cases are:
e Case H = e1 < eag:
[er —i ea]0W (hy, ha)
<= FL(e1),FL(e2) C W.; A eg,eq € Val A hi(er) =es
- FL(el),FL(62) Q W/.§i AN €1, € Val A hi(el) = €2
<~ [[61 —; 62]]5W/(h1, hg)

12



e Case H =0OP:

[OP]OW (hy, ha)
= [OP]éW
— YW I W. [P]sW”
= VYW’ JW'. [P]sW” by Lemma 2.2
= [OP]sW’
— [\:\P]](SW’(}M, hg)
U

Lemma 2.11
W' E (hyser) = (hoses) : U, W I W and W'k = W.k as well as W'.¢; = W.gp and W'.go = Wiga,
then Wt (hy;e1) = (hg;es) : .

Proof: Easy to verify using Lemma 2.2. O

Lemma 2.12
If W.k > 0, then [A]6W = |A]|J.

Proof: Easy induction. O

Lemma 2.13 (Substitution)
- (€16, a— ] AJO)W = [L[A/a][6W

2. [P](5, a| A|6)W = [P[A/a]]6W
3. [H] (5, a| A|6)W = [H[A/a]]6W
4. |B[(6,a—[Ald) = |B[A/d]|o

—_

Proof: By mutual induction, a primary one on W.k and a secondary one on the “size” of the
formula, where (2) uses (1) and (3) uses (2). O

Lemma 2.14
1. If hy,he i W, W I W, and W'.I|, = |W.Z|, |w' .k, then hy, hg :(, W'.

2. If hhhg : W, then hhhg >W.
Proof:

1. If W’.k = 0, this holds vacuously. So suppose W’'.k > 0 and thus W.k > 0. By assumption
we know that there are hi,... 7 hd, ... hY with

hi=hiW---why and hy = hi W--- W hY

such that o
Vie{l,...,n}. ©W,h{,hs) € WI(;).HL(W.Z(1;).CP)

where
S =11, tn.

13



It suffices to show:

Vie{l,...,n}. GW’ bt hb) € W .Z(1;).HL(W'.Z(1;).CP)

Suppose i € {1,...,n}.

Hence (bW, hi, hy) € W.Z(1;). HL(W.Z(1;).CP).

By Lemma 2.2 and definition of HeapRel, (W', b, hs) € W.Z(1;). HL(W.Z(1;).CP).
Hence (bW’  hi, hb) € (W.Z(v;) |w k- HL(W.Z(1;).CP).

Consequently, (5W’ hi hi) € W'.Z(1;). HL(W'.Z(1;).CP).

2. Follows easily from part (1) and the definitions.

O
Lemma 2.15
If [£]6Ww and W' 3 W, then [L]oW w.
Proof: By induction on the structure of £. Easy to verify using Lemma 2.2. O

Lemma 2.16
If [H]6W (hq, hs) and b} D hy and hb D ho, then [H]OW (R, hY).

Proof: By induction on the structure of H. If W.k = 0, there is nothing to show. Otherwise the
interesting cases are:

o Case H = e1 —; eg:
— We know h;(e1) = ez and need to show hj(e1) = es.
— This follows from h} D h;.

e Case H = H; x Hy:

— We know there are hi, h? with hy = hl W h? and hi, h3 with hy = hi W h3 such that
[H:J0W (A1, h3) and [Ha[6W (hy, h3).
— Let h{ = hilaom(n)\dom(h,)-
— Then [H]6W (k3 W h3, h3 W h3) by induction.
— Furthermore, h}! Wh? W h3 = hl.
e Case H =0P:

[OP)SW (R, he)
— [OP]sW
— [OP]6W (K, h})

Lemma 2.17 (Monotonicity of [P] wrt. D)
If [P]6We and W’ D W, then [P]sW'e.

14



Proof: By primary induction on W.k and secondary induction on the “size” of P. If W’'.k = 0,
then there is nothing to show. Otherwise the interesting cases are:

e Case P=P = P,:

— Suppose W’ 2 W' and [P J6W".

— Using Lemma 2.2, we can instantiate the assumption and get [P]dW"”. (If W".k = 0,
this holds trivially.)

o Case P=xa.(B,H):

— We know [p x a.(B, H)]|(d, p—pop(+))W{.}, for some ¢ and some p ¢ dom(J).

— By Lemma 2.2 we know W’ I W and thus Lemma 2.15 yields
[p o a.(B, H)](6, p—pop(:) W'{.}.
— Hence [x a.(B, H)]JoW’.

e Case P =0P":

— Suppose W’ D W'.
— By Lemma 2.2, W’ D W.
— Instantiating the assumption yields [P'|dW". (If W".k = 0, this holds trivially.)

e Case P =pP":

— We know [P']é(bW).
— By Lemma 2.2, bW’ D pW.
— Hence [P’]6(>W’) by induction, and thus [>P'JoW”.

e Case P =r:

— We know §(r)We.
— 0(r)W'e then follows from 8(r) € SemRel™% ().

e Case P =1R:

— Suppose W O W' and hy, he : W”.
— By Lemma 2.2, W’ D W.
— Instantiating the assumption yields W F (hy;e1) = (ha;e2) : [R]0.

e Case P = Term;:

— We know FL(e) C W.;.
— By assumption, W.q; C W'.;.
— Hence FL(e) € W'.; and thus [Term;[dW’(e).

e Case P=H = J:
— Suppose W D W' and [H]dW" (hy, ha).

15



— TS: [J]6W" (hy, ha)
— Since W” O W by Lemma 2.2, this follows by instantiating the assumption.

Lemma 2.18
If [P]oW, then [«P]é(>W).

Proof: Consider a single proposition P and assume [P]dW. If P is of the form >P’, we need to
show [P']|d(>W), which is equivalent to the assumption. Otherwise, we need to show [P]é(>W),
which follows from the assumption by Lemmas 2.2 and 2.17. O
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2.4 Soundness of the Inference Rules

Theorem 2.19
The following rule is sound:

Chei=e2 CF Jlei/x]
CkE Jlez/x]

REPLACE

Proof:
e Suppose (7,0, W,w1,ws) € [C].
o If W.k = 0, there is nothing to show.

e Otherwise the first premise yields ye; = ez and thus the claim follows from instantiating the
second premise.

O
Theorem 2.20
The following rule is sound:
C,X, R, P-J
Proof:
e Suppose (7,5, W,wy,ws) € [C, X, R, P].
e Let v/ :=7|c.x and &' :=d|c.%.
e It is easy to see that then (7', 0, W w1, w2) € [C].
e Thus the claim follows from instantiating the premise.
O

Theorem 2.21

The following rule is sound:
C-P C,P+HJ

CHJ

Proof:
e Suppose (v, 0, W,w1,ws) € [C].
e Instantiating the first premise yields [yP]oW.

e Consequently, (7,8, W,wi,ws) € [C,P] and thus the claim follows from instantiating the
second premise.

O
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Theorem 2.22
The following rule is sound:
cHP

CLIP L-WEAKEN

Proof:
e Suppose (7,0, W,wr,w2) € [C, L].

To show: [yP]dW

If W.k = 0, there is nothing to show, so assume W.k > 0.

Say £ =p1 xa.(B1,H1),...,pn xa.(By, Hy).

From [vy(C.L),yL]dWw; we know that there are ¢1, ..., ¢, such that

1. [v(C.L)]oWw and
2. [YLJoW {tay .. ytn}

where w] (= wy \ {t1,...,tn}

Tt is easy to see that then (v,d, W,wi,wa W {t1,...,tn}) € [C].

e Now instantiate the premise to get [yP]éW.

Theorem 2.23
The following rule is sound:

Proof:

e Suppose (7,8, W,w1,ws) € [C].

To show: [>yP]oW

If W.k = 0, there is nothing to show.
e Otherwise we need to show [yP]o(>W).

Instantiating the assumption yields [yP]dW.

The goal then follows from Lemmas 2.2 and 2.17.

Theorem 2.24
The following rule is sound:
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Proof:

e Suppose (7,0, W,wi,ws) € [C].

To show: [>yP]éW

If W.k = 0, there is nothing to show.

Otherwise we need to show [yP]é(bW).

We show (v, 8, bW, w1, ws) € [<C]:

— We need to show [v(C.L)[|d(>W)w; and [a~(C.P)|d(>W).
— The former follows from [y(C.£)[6W w1, Lemma 2.2, and Lemma 2.15.
— The latter follows from [y(C.P)[6W and Lemma 2.18.

Now instantiate the premise to get [yP]é(-W).

Theorem 2.25
The following rule is sound:
C,>P+P
CFHP

LOB
Proof:

e Suppose (7,0, W,w1,ws) € [C].

e We show [yP]oW by induction on W.k.

o Case W.k = 0: trivial

o Case W.k > 0:

— By induction we know [yP]é(-W).
— Hence it is easy to see that (v, d, W,w1,ws) € [C,>P].
— Instantiating the premise then yields the goal.

Theorem 2.26

The following rule is sound:
CHr(P=Q)
CkHpP =pQ

Proof:
e Suppose (7,6, W, w1,ws) € [C], W D W and [>yP]oW".
e To show: [>yQ]oW’
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If W'.k = 0, there is nothing to show.

Otherwise we need to show [yQ]é(>W').

If (>W').k = 0, there is nothing to show, so assume W'.k > 1 and thus W.k > 1.
We know [yP]s(>W").

Instantiating the premise yields [>(yP = vQ)]6W, i.e., [yP = vQ]I(>W).

By Lemma 2.2, >W’' D bW.

Hence we get [yQ[d(>W').

Theorem 2.27
The following rule is sound:

CF>P=1pQ
Ck>(P=Q)

Proof:

Suppose (7,8, W,wy,ws) € [C].

To show: [>(vP = vQ)]|0W

If W.k = 0, there is nothing to show.

Otherwise we need to show [yP = vQ]é(bW).

If (>W).k = 0, there is nothing to show, so assume W.k > 1.
Now suppose W’ 2O oW and [yP]oW".

To show: [yQ[dW’

If W'.k = 0, there is nothing to show, so assume W'.k > 0.
Instantiating the premise yields [>yP = >yQ]oW.

By Lemma 2.3 there is W D W with W = W',

Hence we get [[D'yQ]]M/I//\’ if we can show [[DvP]]M/I//\’.

Note that the former is equivalent to [yQ]dW’ (which is what we want to show) and the
latter to [yP]dW’ (which we assumed to hold).

O

Theorem 2.28
The following rule is sound:

CF>(PAQ)
CHF>PADQ
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Proof:

e Suppose (7,0, W,wi,ws) € [C].

To show: [>yP A>yQoW

If W.k = 0, there is nothing to show, so assume W.k > 0.

Instantiating the premise yields [>(yP A YQ)[|0W, i.e., [yP AvQ]o(>W).

Consequently, [yP]o(>W) and [yQ]é(bW). (If (>W).k = 0, this holds trivially.)

Hence [y PJ0W and [>yQ]6W and thus [>yP A >yQ[oW.

Theorem 2.29
The following rule is sound:
CF>PADQ

CFr(PAQ)
Proof:

e Suppose (7,4, W,w1,ws) € [C].

To show: [>(yP AyQ)|oW

If W.k = 0, there is nothing to show, so assume W.k > 0.

Instantiating the premise yields [>yP ApyQ[oW, i.e., [>yP]oW and [>yQ]oW.

Consequently, [YP]o(>W) and [yQ]é(>W).

Hence [yP AvQ[d(>W) and thus [>(vP A ~vQ)]dW.

Theorem 2.30
The following rule is sound:

CHr(PVQ)
CF>pPVPQ
Proof: As for conjunction.
Theorem 2.31
The following rule is sound:
CFrPVPQ
CH>(PVQ)

Proof: As for conjunction.
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Theorem 2.32

The following rule is sound:
CEpVYX.P
CHVXp>P

Proof:

e Suppose (7,4, W,w1,ws) € [C].

To show: [VAX .>yP]oW

If W.k = 0, there is nothing to show.

So assume W.k > 0 and suppose 7' € [X].

To show: [>(v,~")P]oW
e Instantiating the premise yields [PVX.yP]oW, i.e., [VX .4 P]5(>W).
Instantiating this yields [(vy,7")P]Jo(>W), i.e., [>(y,~")P]dW.

Theorem 2.33

The following rule is sound:
CEVYXP
ChH>VX.P

Proof:

e Suppose (7,0, W,wi,ws) € [C].

To show: [PVX.yP]éW

If W.k = 0, there is nothing to show.

Otherwise we need to show [VX.yPd(>W).

e So suppose v’ € [X].

To show: [(,~")P]é(>W)

Instantiating the premise yields [>(vy,~")P]oW, i.e., [(v,7)P]o(>W).

Theorem 2.34

The following rule is sound:
CFp>VR.P
C+FVYR.>P

Proof:

e Suppose (7,9, W,w1,w2) € [C].
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To show: [VR.>yP]éW

If W.k = 0, there is nothing to show.

So assume W.k > 0 and suppose §’ € [R].

To show: [>yP](8,6" W, i.e., [yP](6,8)(bW).

Instantiating the premise yields [PVR.yP]6W, i.e., [VR.yP]o(>W).
Again, if (W).k = 0, there is nothing to show.

Otherwise, instantiating [VR.yP]é(bW) yields [yP](d,d")(>W).

Theorem 2.35
The following rule is sound:

CHYRD>P
CHDVR.P

Proof:

Suppose (7, d, W,wy,ws) € [C].

To show: [PVR.yPJoW

If W.k = 0, there is nothing to show.

Otherwise we need to show [VR.yP]d(>W).

If (>W).k = 0, there is nothing to show.

Otherwise suppose ¢’ € [R].

To show: [yP](6,0")(>W)

Instantiating the premise yields [>yP] (8,6 )W, i.e., [yP](4,0")(>W).

Theorem 2.36
The following rule is sound:

CkFH>3IX.P
CFIX P
Proof: As for universal quantification.
Theorem 2.37
The following rule is sound:
CHI3iXrP
CkH>3X.P

Proof: As for universal quantification.
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Theorem 2.38
The following rule is sound:

CHprIR.P
CkHIR>P
Proof: As for universal quantification.
Theorem 2.39
The following rule is sound:
CHIR>P
CHpIR.P
Proof: As for universal quantification.
Theorem 2.40
The following rule is sound:
TC - O-INTRO
crop N

Proof:
e Suppose (7,4, W,w1,ws) € [C].
e To show: [OyP]oW.
o If W.k =0, there is nothing to show.
e Otherwise suppose W/ J W.
e To show: [yP]oW’
e We show (v,d, W', wy,dom(W'.Z)\ wy) € [{C]:

— We need to show [yC.L]6W'wy and [y{(C.P)]|oW".
— The former follows from [yC.L]dWw; and Lemma 2.15.
— The latter follows from [yC.P]6W and Lemma 2.9.

e Now instantiating the premise yields [yP]oW’.

Theorem 2.41
The following rule is sound:

U-INTRO-ABS

CrOA
Proof:
e Suppose (7,0, W,wq,ws) € [C].
o To show: [OvyAJoW

o If W.k = 0, there is nothing to show.
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Otherwise suppose W/ O W.

To show: [yA]éW’

If W'.k = 0, there is nothing to show.

e So assume W'.k > 0 and thus W.k > 0.

Instantiating the premise yields [yA]JéW.

By Lemma 2.12, this is equivalent to |yA|d, which in turn is equivalent to [yAJdW”.

Theorem 2.42
The following rule is sound:

CFt e € Term;
C F O(e € Term;)

U-INTRO-TERM

Proof:

e Suppose (7,8, W,wy,ws) € [C]

To show: [O(ve € Term,;)]|dW

o If W.k = 0, there is nothing to show.

e Otherwise suppose W’/ J W.

e To show: [ye € Term;[|6W’

e If W’ .k =0, there is nothing to show.

e Otherwise we need to show FL(ve) C W'.g;.

e Instantiating the premise yields [ye € Term;[0W, i.e., FL(ye) C W.g;.

e By definition of 3J we know W.g; C W'.g;.

Theorem 2.43
The following rule is sound:

Proof:
e Suppose (7,9, W,w1,ws) € [C].
o If W.k = 0, there is nothing to show.

e Otherwise we can instantiate the premise with W J W to get [yP]éW.
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Theorem 2.44

The following rule is sound:
CFr»>OdpP
C+ OxP

>O-SWAP
Proof:

e Suppose (7,0, W,w1,ws) € [C].

e To show: [O>yPoW

o If W.k =0, there is nothing to show.

e Otherwise suppose W/ J W.

e To show: [>yP]éW’

e If W'.k = 0, there is nothing to show.

o Otherwise we need to show [yP]é(>W").

¢ Instantiating the premise yields [OyP]é(bW).

e By Lemma 2.2, bW/ J>W.

e Hence [yP]o(>W"), i.e., [>yPJoW".

Theorem 2.45

The following rule is sound:
CkHOxP
CF»>OP

>O-SWAP
Proof:

hd Suppose (77 67 W Wi, WQ) € [[CH

e To show: [>OyP]oW

o If W.k =0, there is nothing to show.

Otherwise we need to show [OyP[é(>W).
e So suppose W’/ JbW.
e By Lemma 2.3 there is W D W with W = W,

Instantiating the premise yields [[D’yP}](SﬁV\’, i.e., [yP]oW'.
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Theorem 2.46

The following rule is sound:
CFeez.P
Cr Ple/z] oM

Proof:
e Suppose (7,0, W,wi,ws) € [C].

o If W.k = 0, there is nothing to show. Otherwise:

[ve € T.4P]oW
<~ [z.4P]W (ve)
< [yPlve/z]|6W
= [y(Ple/z])]oW

Theorem 2.47
The following rule is sound:
Creecur.R

CFee Rlur.R/r]

ELEM-p

Proof:
e Suppose (v, 0, W,w1,ws) € [C].
o If W.k = 0, there is nothing to show. Otherwise:

[ve € yR[uryR]]6W
= [yRlpr~yR]J6W (ve)
< [pryR]OW (ve)
< [ve € uryR]6W
<= [vy(e € ur.-R)|oW

Theorem 2.48
The following rule is sound:

pxa.(B,H)eCL Ckecyp
CHO(eep)

POP-MONO

Proof:
L4 Suppose (7767‘/1/;“)1’“)2) € [[CH
e To show: [O(~e € p)]dW
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If W.k = 0, there is nothing to show.

Otherwise suppose W/ I W.

To show: [ve € p]oW’

If W'.k = 0, there is nothing to show.

Otherwise we need to show [p]dW’(vye).

From the first premise we know that there is ¢ such that [p o< a.(yB,vH)]o6W{¢}.
Hence 6(p) = pop().

So it remains to show ve € W'.Z(¢).CP.

Instantiating the second premise yields [ve € p]éW, i.e., ve € W.Z(.).CP.

By definition of 3, W.Z(v).CP C W'.Z(1).CP.

Theorem 2.49
The following rule is sound:

pxa.(B,H)eCL CFHA=p
Ct+ B[A/a]

POP-LAW

Proof:

Suppose (7, §, W, w1, ws) € [C].

To show: [y(B[A/a])|0W

By Lemma 2.13 it suffices to show [yB](d, a— [yA]J6W)W.

If W.k = 0, there is nothing to show.

Otherwise, by Lemma 2.12, this reduces to showing |yB|(d, a—|vA|d).

From the first premise we know that there is ¢ such that [p x a.(yB,vH)]|dW{¢}.
Hence d(p) = pop(t).

We know W.Z(1).CP € W.I(1).PL, i.e., |vB|(d,a—W.Z(¢).CP).

It remains to show |yA|d = W.Z(.).CP.

This follows from instantiating the second premise with W 2 W.

Theorem 2.50
The following rule is sound:

pxa.(B,H)eC.L
CkHdaa=p

POP-SNAP
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Proof:

e Suppose (7,0, W,wi,ws) € [C].

To show: [Ja.ya = yp]|dW

o If W.k = 0, there is nothing to show, so assume W.k > 0.

e From the premise we know that there is ¢ such that [p < a.(yB,vH)]6W{.}.

e Hence d(p) = pop(r).

o Let ¢ := 6, a—W.Z(1).CP.

o It suffices to show [ya = yp]é'W.

o If W.k = 0, there is nothing to show.

e Otherwise this follows from the fact that W.Z(¢).CP = W'.Z(1).CP for any W' O W.

Theorem 2.51
The following rule is sound:

pxa. (B H")eC.L
CkVYa.B=B
Cr0O(Ma.B= (H& H))

Ckxa.(B,H)

X-INTRO

Proof:
e Suppose (v, d, W,w1,ws) € [C].
o If W.k =0, there is nothing to show.
e Otherwise we need to show [p x a.(yB,vH)](d, p—pop(t))W{.} for some ¢.
e From the first premise and [y(C.£)]dWw; we know [p x a.(yB’,vH")]6W{:} for some .

We need to show:

1. W.Z().PL={CP | |yB|d,a—CP)}
— We know implies W.Z(¢).PL = {CP | |vB’|(d, a— CP)}.
— It remains to show |yB’|(d,a— CP) = |yB| (4, a— CP), for any CP.
— This follows from instantiating the second premise and Lemma 2.12.

2. VCOP € W.Z(1).PL. YW’ JbW.
(W', hi, ha) € WI().HL(CP) <= [vH](S,a—CP)(<aW’)(hy, hs)

— We know VCP € W.Z(v).PL. VW' J W,
(W', hy, hy) € WI(1).HL(CP) <= [yH'](S,a—CP)(<«W")(hy, ho)
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It remains to show [yH'](d,a— CP)(«W') = [vH](d, a— CP)(«W'), for any CP €
W.Z(t).PL and W’ JbW.

— By symmetry it suffices to show only one direction.
— So suppose [vH'](d, a— CP)(<«W')(h1, ha).
— By Lemma 2.3 there is W/ J W with oW’ = W".
— Since ><W’' = W' by Lemma 2.1, Lemma 2.7 yields [yH'] (4, a— C’P)VV\’(hl7 hs).
— Part (1) and Lemma 2.12 let us instantiate the third premise to get
[vH & yH'|(3, a—CP)W (hy, hy).

— Consequently, [vH](J, a— C’P)V[//\’(hl, hg) and thus we get
[vH] (3, a— CP)(«W')(h1, ha) by Lemma 2.7 again.

Theorem 2.52
The following rule is sound:

Ckxa(B,H) Cppxa(B,H)FP
Vp' xa.(B'H')eC.L: C,Ya.B=B',0Va.B=(H& H))FP
CHP

X-ELIM

Proof:

e Suppose (7,8, W,wq,ws) € [C].

To show: [yP]éW
o If W.k = 0, there is nothing to show.
e So assume W.k > 0.

Instantiating the first premise yields [p o a.(yB,vH)]6'W {1} for some ¢, where § = &, p—pop(s).

e There are two cases:

1. tew

— From [y(C.L£)]6Ww; we then know [[ﬁ x a.(yB, fyﬁ)]] SW {1} for some poc a.(B, H) €
C.L.
— It suffices to show [[Va.yB = VE]] OW and [[D(Va.vB = (vH & fyﬁ))]] O0W, because
this lets us instantiate the third premise to get [yP]oW.
— We show the former:
s« From [p o a.(yB,vH)[0W{.} and [[f) x a.(yB, ’y]fl)]] oW {t} we know
|vB| (8, a— CP) = |yB| (8, a— CP) for any CP.
x It is easy to see that, together with Lemma 2.12, this implies [[Va.’yB = 73]] ow.
— We show the latter:
* Suppose W/ J W and let ¢’ := §, a— CP for some CP.

30



* To show: [[’yB = (yH & 'yﬂ)]] o'W’

x If W'.k = 0, there is nothing to show

* So assume W'.k > 0.

* Now suppose W O W' and [yB]o'W".
* To show: [[’yH 2= fyﬁ]] o'w

x If W”.k =0, there is nothing to show.
* So assume W".k > 0.

* By symmetry it suffices to show one direction.
* Suppose W D W' and [yH]§'W" (hy, hs).

x To show: H’ﬂ:]]] W' (hy, ha)

s« From [p o a.(yB, vH)]0W{.} and [[ﬁ x a.(’yB,’yfI)]] IW{i} we know
[VH]6' («W) = [[’yfi]] §'(«W) for any W J oW, if CP € W.Z(¢).PL.

* Note that [yB]6’'W" with Lemma 2.12 implies CP € W.Z..PL.

* Further note that W/ J W and thus W'’ J W by Lemma 2.2.

x Hence [yH]d' (apW"") = [[’yﬁ]] & (aW').

x Consequently, [YH]6'W"(hy, hy) and Lemma 2.8 yield [[’yf{]] O"W" (hy, ha).

2. 1€ w9

— Let w] := wy W{t} and wh := wa \ {¢}, so dom(W.T) = wi & wh.
Let 0" := §, p—pop(t).
— We show (v, 8", W,w/,w}) € [C,p,p x a.(B, H)]:

« This reduces to showing [p < a.(vB,vH)]é"W{.}.

s This in turn follows from [ o a.(yB,vH)]0W{¢} and the definition of §”.
— We now instantiate the second premise to get [yP]oW.

Theorem 2.53
The following rule is sound:

Chk (ef,eh) € TR
Chep~*e] Clkey~*ef
CH (61,62) €TR

T-EXPAND

Proof:
e Suppose (7,8, W,wq,ws) € [C].
e To show: [(ye1,ve2) € TYR]6W
o If W.k = 0, there is nothing to show.

e Otherwise suppose W/ O W and hy, hy : W',
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e To show: W' (hy;ver) = (ha;ves) : [YR]S

e FL(ve;) C W.g; C W'.; follows from the definition of D and the implicit assumption C F e; €
Term,;.

e Now assume W’'.d = — (the other direction is analogously).

e Suppose (hi;yer) |7 (h;el) where j < W'.k.

e Instantiating the first two premises yields W’ b (hy;ve)) & (ho;yes) : [YR]6 and ye; ~* ~el.

e The latter implies (hi;ye1) —7t (hi;ye}) for some j; and thus (hi;ye}) 777t (hf;ef) and
<y

e Consequently, there is hb, e, W such that:

W' k=W'k—j+

. W// | W/

- (ha;vea) | (hy; e5)

. [yR]oW" (e, €%)

N

O = W N

e Instantiating the third premise yields ye; ~* yeb, which implies (hy;yea) —* (ha;veh).
e Hence (ho;yea) | (h;eh).
o Let W":=p...0 W so:
——

71 times
Wk =Wk — =Wk —j
. W 3 W’ by Lemma 2.2
[vR]6W" (e}, ey) by Lemma 2.2 and Lemma 2.17
. i, hh : W by Lemma 2.14

=~ W N

Theorem 2.54
The following rule is sound:

Ct (ef,e5) € TR
Chel~Yer Cheh~Vey
Ct (e1,e2) €TR

T-REDUCE

Proof:
e Suppose (v, d, W,w1,ws) € [C].
o If W.k =0, there is nothing to show.

e Otherwise suppose W/ O W and hy, hy : W',
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e To show: W' (hy;ver) = (ha;ves) : [YR]S

e FL(ve;) C W.; C W'.; follows from the definition of D and the implicit assumption C F e; €
Term,.

e Now assume W’'.d = — (the other direction is analogously).
e Suppose (hi;ver) 7 (h;ef) where j < W'.k.
e Instantiating the first two premises yields W' = (hy;ye)) ~ (ha;veh) : [yR]6 and vej ~0 ~ve.
e The latter implies (hy;ve;) ——° (h1;ve1) and thus (hy;yel) U7 (R);ey).
e Consequently, there is hb, e, W such that:
W'k =W'k—j
W 3 W
(ho;ves) I (hy;es)
[vRISW" (€7, €3)
Lohy W

AN I A

e Instantiating the third premise yields yeh ~9 ves, which implies (ho;yeh) ——° (ha;yes).

e Hence (hg;yea) b (h;eh).

Theorem 2.55
The following rule is sound:

ACF (e),e5) € TR
Che ~lel Chey~le

CH (61,62) €TR

T-UNROLL

Proof:
e Suppose (7,9, W,w1,ws) € [C].
o If W.k =0, there is nothing to show.
e Otherwise suppose W' D W and hy, hy : W'.
o To show: W' F (hy;ve1) ~ (he;ves) : [YR]O

e FL(ve;) C W.; C W'.; follows from the definition of D and the implicit assumption C F e; €
Term,.

e Now assume W’'.d = — (the other direction is analogously).

e Suppose (hi;yer) |7 (h;el) where j < W'.k.
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Instantiating the second premise yields vye; ~»' e/, which implies (hy;ver) ——1 (h1;ve})
and thus (hy;yel) 771 (hy;ef) and 1 < j.

It is easy to see that (v, d,bW,w1,w2) € [<C].

Furthermore, >W’ 2 W by Lemma 2.2.

Note that j < W’.k and 1 < j imply (W').k > 0.

Instantiating the first premise accordingly yields bW’ b (hy;ve)) = (ha;veh) : [YR]0.
Consequently, there is hf, el , W such that:

W' k=W'k-1—-j+1=W'k—j
w | s/ (g W/)
(ho;vey) ) (hy;ey)
[vRJoW" (€7, €3)
N

AN O S .

Instantiating the third premise yields yeq ~+! vel, which implies (ho;yes) ——! (ha;yeb).
Hence (ha;ve2)dl (hh;el).

Theorem 2.56
The following rule is sound:

Ck(e1,e2) € R CH R:VRel
CF (e1,e2) €TR

T-RETURN

Proof:

Suppose (7,8, W, w1, ws) € [C].

If W.k = 0, there is nothing to show.

Otherwise suppose W' 2D W and hy, hy : W',

To show: W' (hi;y(Er[e1])) & (ha;y(Ezle2])) : [vR]6

FL(ve;) C W.; € W'.g; follows from the definition of O and the implicit assumption C b e; €
Term;.

Now assume W'.d = — (the other direction is analogously).
Suppose j < W’k and (h1;ver) U7 (h);€)).

Instantiating the first premise yields [yR]OW (ye1,vez) and thus [yR]6W'(ye1,ve2) by
Lemma 2.17.

Instantiating the second premise then implies that ve; and ey are values.
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Consequently, j = 0 and h} = hy and €] = ve;.
All in all, we have:
1L Wk=Wlk-j
2. Waw’
- (ha;ve2)d (ho;ve2)
4. [yR]OW' (e}, vea)
5. Bl hy: W

w

Theorem 2.57
The following rule is sound:

C l_ (61762) S TS Tcax17x27 (.%'171'2) S S '_ (El[flfl},EQ[fEQD S TR
Ck (El [61],E2[62]) S TR

T-BIND

Proof:

Suppose (7, §, W,wy,ws) € [C].

If W.k = 0, there is nothing to show.

Otherwise suppose W/ D W and hqy, hy : W'.

To show: W' (hy;7(Er[e])) =~ (he; v(Ezlez])) - [vR]6

FL(v(E;le;])) € W.g; € W' follows from the definition of O and the implicit assumption
CF E;le;] € Term;.

Now assume W’.d = — (the other direction is analogously).

Suppose j < W'k and (b3 y(Ex[ex))) ¥ (Y el).

This implics (hn:7(E11])) " (bg; (10)[ef]) and (i (vE[eh]) B9 (A ef) (for some
Ju < gyl by eq) with (hy;yer) I (hh;eq).

Instantiating the first premise with (hy1;yer) 7 (h);e}) yields h,eh, W' such that

Wk =Wk — 41,

. W// | W/

- (hasvea) I (ho; e5),

- [ySIOW" (¢}, ef), and

LRy W

Ot = W N

Let

I / /
- =7, T1krer, Tabr ey
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— wh:=dom(W".Z) \ wy

and note that dom(W"”.7) = wy & wh.

Note that j < W'.k and j; < j and W".k = W'.k — j; imply W".k > 0.

We show (7,8, W wy,wh) € [1C, 21, x2, (x1,22) € S]:

— [vC.L]6W"w, follows from [yC.L]6Ww, Lemma 2.2, and Lemma 2.15.
— [1yC.P]oW" follows from [yC.P]JdW, Lemma 2.2, and Lemma 2.9.

— [V ((z1,22) € S)JoW" is [(e], e5) € vS]oW", which is equivalent to [yS]dW" (e}, €5) and
thus already known.

Instantiating the second premise now yields W & (h; (vE1)[e}]) = (hh; (YE2)[eb]) : [yYR]6.

Instantiating this with (h}; (YE1)[e}]) 4779 (hY;€}) yields hY, ey, W' such that
W" ke =W"k—j+j (= W'k-—j),
W/// ; W// (; I/‘[//)7
(ha; (vE2)[ea]) ¥ (hz;ez) (and thus (ho;y(Esea])) § (R €2)),
[vRIoW™ (€7, €5), and

Yony W

MR

Theorem 2.58
The following rule is sound:
CL=pxa.(B,H) Cap=at {*H}e ~ey{R}
Ct (e1,e2) € TR

T-IMPURE

Proof:
e Suppose (7,4, W,w1,ws) € [C].
o If W.k = 0, there is nothing to show.
e Otherwise suppose W’/ D W and hy, hy : W'.
e To show: W' (hy;ver) = (ha;vesz) : [YR]d

o FL(ye;) C W; C W' follows from the definition of O and the implicit assumption C b e; €
Term;.

e If W’.k = 0, there is nothing more to show, so assume W'.k > 0.
e Say w1 ={t1,...,tnt and wa = {tpt1,-- -, lm}-
e From hy, hy : W' we know there is hy C hy and hy C ho with A, hy tgommr.z) W'

o Let wf :=dom(W'.7T)\ wy.
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Consequently, for i € {1,2} there is k' and h}*> with h, = k' & h/? such that A, hS :,, W’
and h'?, h wy W'

The former yields A7, Y™ with Y = B W W B such that (bW, A W) e
W' Z(v;).HL(W'.Z(1;).CP) for each j € {1,...,n}.

Note that from [y(C.L£)]0Ww;, Lemma 2.2, and Lemma 2.15 we know
[p; < a;.(vBj, vH;)|0(>W){¢;} for each j € {1,...,n}.

Since bW’ D bW by Lemma 2.2 we thus get [yH;](6, a;—W'.Z(1;).CP)(<sW') (R}, b7
for each j € {1,...,n}.

By Lemma 2.8, [vH,[ (8, a;—~W'.Z(1;).CPYW' (R hi7) for each j € {1,...,n}.
Let 6’ := 6, a—W'.Z(¢).CP, so [y(* H)]&'W’(h{, hY').

We show (v,d8", W' wy,wh) € [C,a,p = al:

— We need to show [yC.L]6W'wy and [y(C.P)]6'W’ and [p= a]d'W".
— The first follows by Lemma 2.2 and Lemma 2.15.
— The second follows by Lemma 2.17.

— The third follows from §'(a;) = W'.Z(¢;).CP and ¢'(p;) = pop(¢;) and the definition of
D.

We now instantiate the second premise to get W’ t (hy;ve1) = (he;vyes) : [YR]0

Theorem 2.59
The following rule is sound:

CHOP

m (ENTAIL—D—INTRO)

Proof:

Suppose (v, §, W, w1, ws) € [C].

To show: [yH = OyP]éW

If W.k = 0, there is nothing to show, so assume W.k > 0.
Now suppose W/ 2 W and [yH]6W'(hq, hs).

We need to show [OyP]JéW'(hy, hs).

If W’.k = 0, there is nothing to show, so assume W’.k > 0.

Hence we need to show [OyP]éW’, which follows from instantiating the premise and applying
Lemma 2.17.

O
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Theorem 2.60
The following rule is sound:

CrHH=0OP
C-H= H=x«0OP

(ENTAIL-STRENGTHEN)

Proof:
e Suppose (7,8, W,wq,ws) € [C].
e To show: [yH = vH % OyP]éW
o If W.k = 0, there is nothing to show, so assume W.k > 0.
e Now suppose W/ O W and [yH]6W’(hq, h2).
e We need to show [yvH % OyP]6W’(hy, h2).
e If W'.k = 0, there is nothing to show, so assume W'.k > 0.
e It suffices to show [YH]6W’(h1, h2) and [OyP]JoW".
e The former is already known.

e The latter follows from instantiating the premise.

Theorem 2.61
The following rule is sound:

C,0PFH= H
CFroP+H= H

(ENTAIL-O-ELIM)

Proof:
e Suppose (v, d, W,wq,ws) € [C].
e To show: [OyP xvH = vH']|6W
o If W.k = 0, there is nothing to show, so assume W.k > 0.
e Now suppose W/ O W and [OyP x yH]dW'(hy, ha).
o We need to show [yH']6W'(h1, ha).
e If W'.k = 0, there is nothing to show, so assume W'.k > 0.

e From [OvP « yH]0W'(hy, h2) we thus know [OyP]|oW’ and [yH]dW' (hq, ha)
(using Lemma 2.16).

o We show (7,8, W’ wy,dom(W'.Z)\ wp) € [C,OP]:
— It remains to show [yC.L]dW'.
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— This follows from [yC.L]dW, Lemma 2.2, and Lemma 2.15.

e Instantiating the premise now yields [yH']6W’(hq, h2).

Theorem 2.62
The following rule is sound:

ENTAIL-<—-VAL
Clkey ‘—>i623D(€1€LOC/\€1EVali/\egevali) ( )

Proof:

e Suppose (7,8, W,wq,ws) € [C].

To show: [ye; —; yea = O(vye; € Loc A yer € Val; A yea € Val;)]|dW
o If W.k = 0, there is nothing to show, so assume W.k > 0.

e Now suppose W/ 2O W and [ve; —; vea]|dW' (hq, ha).

e We need to show [O(vye; € Loc A vey € Val; A vea € Val)|dW’ (hq, ha).
e If W'.k = 0, there is nothing to show, so assume W'.k > 0.

e Now suppose W’ J W'.

e If W”.k =0, there is nothing to show, so assume W".k > 0.

e Hence we need to show [ye; € Loc]oW" and [ye; € Val;]0W” and [yes € Val;|dW", which
all follow from [ye; <—; yea]6W'(hq, he) with the help of Lemma 2.17.

O

Theorem 2.63
The following rule is sound:

C+ B[A/a]
C,p,pxa.(B,H),p=A+r{H} e1 = e {R}
C"{H} €1 X €y {R}

ISL-NEW

Proof:

e Suppose (7,6, W,w1,ws) € [C], W.k > 0, F h;, dom(h;) D W.g;, h; = htwh?, [yH]|SW (hi, hd),
and h3,h3 :,, W.

e To show: W I (hy;7ve1) = (hg;vez2) : [YR]
o Let

— &' := 4, p—pop(t) (where ¢ is fresh)
— CP :=|vA|d
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PL:={CP' | |yB|6,a—CP'}
— HL:= XCP'. {(W" hy,hb) | W' 3oW A [yH'](S,a— CP")(«W")(h},hb)}
— Wl i=w W}
- W= Wk, Wd,W.q1, Wss, W.ZI,u—(CP, PL, HL)))
o We show W' € World:
— It suffices to show CP € PL and monotonicity of HL.

— The former follows from the first premise and Lemma 2.13.

— For the latter suppose W' I3 W' and (W",h},h}) € HL, i.e., W' J W and
[VH'](6, a CP")(aW")(h}, h).

By Lemma 2.2 we have W' J pW.
It remains to show [yH'](8, a— CP")(<W"")(h}, hb).

— —
By Lemma 2.4 there is W 3 «W" with sW'"" = W'
Hence [yH'](S, aHCP')W( ', h%) by Lemma 2.10.
Lemma 2.8 now yields [yH'](d, a— CP")(« DT/I<7”)(h’17 h%).

-
— The claim then follows from sW'"" = W',

e W' D W is easy to see and thus W/ 3 W by Lemma 2.2.
o We show (7,0, W', wi,ws) € [C,p,pxa.(B,H'),p= A]:

— By assumption we know [y(C.L)|0Ww;.
— By Lemma 2.15 we get [v(C.L)]6'W'w;.
— Using Lemma 2.2 it is easy to verify that [p < a.(yB,vH’)]é'W’{.} holds by construction.
Consequently, [v(C.L,p x a.(B, H'))]6'W'w}.
— Also, [v(C.P)]o'W’ follows from [y(C.P)|dW, W' O W, and Lemma 2.17.
— It remains to show [p = yA]§’' W'’ (we show only one direction, the other is analogously):
x Suppose W D W’
x If W".k = 0, there is nothing to show.
* Otherwise we need to show [yA]dW"e, knowing [p]d’'W"e.
* Since §'(p) = pop(t) and W O W', the latter implies |yA|de.
% This in turn is equivalent to [yA]J0W"€ by Lemma 2.12.

e Furthermore, note that [yH]6'W’(hi, hd) by Lemma 2.10, and h?, h2 :,, W' by Lemma 2.14.
e We now instantiate the second premise to get W’ I (hy;ve1) = (ha;ves2) : [YR]4.

e Finally Lemma 2.11 yields the claim.
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Theorem 2.64
The following rule is sound:

CL=pxa(B,H) C-ApCA CHA\B[A/d]
C'=1C,p=A C+-H= *xH[A/a] C'F (e1,e2) € TR
CF{H}61%€2 {R}

ISL-UPD

Proof:

e Suppose (7,6, W,w1,ws) € [C], W.k > 0, F h;, dom(h;) D W.g;, h; = htwh?, [yH]|SW (hi, hd),
and h3,h3 :,, W.

e To show: W F (hy;yer) = (ha;ves) : [vR]d
o We know wy = {t1,...,tn} with [p; o< a;.(vBy, vH;)[0W{¢;} for all 4.
o Let W := (W.k,W.d,W.q;, W.g2,T), where

dom(Z) = dom(W.7)
Z() := (|JvA|6, W.Z(2).PL,W.Z(¢).HL) if 1 €wy
Z(v) :=WI() otherwise

o We show W' € World:

— It suffices to prove Z(t;).CP € Z(v;).PL for all i, i.e., |[vA;|6 € W.Z(v;).PL.
— Because of [p; x a;.(yB;,vH;)]6W{;}, this reduces to showing |vB;| (6, a;—|vA:|d).

— This follows from instantiating the assumption C - A B[A/a] and Lemma 2.13.
o We show W/ J W:

— It suffices to prove Z(;).CP 2 W.Z(;).CP for all i, i.e., |yA;|6 2 W.Z(¢;).CP.
— From instantiating C = Ap C A we get [p; C vA;]W.
— Instantiating this with W yields [p;]0W C [yA;]éW.
— Note that §(p;) = pop(r;) and thus [p;]6W = W.Z(s;).CP.
— Finally, [yA4;]6W = |vA;|d by Lemma 2.12.
e We show (7,0, W, wy,ws) € [C']:
— It is easy to see that [p; x a;.(yB;, vH;)]dW'{+;} holds for all ¢ by construction of Z in
terms of W.Z.
— Consequently, [yC'.L]0W w;.
— Also, [y(1C.P)]JoW’ follows from [v(C.P)]6W, W' I W, and Lemma 2.9.
It remains to show [p; = vA;J0W’ (we show only one direction, the other is analogously):
* Suppose W D W' and [p;]6W"e.
x If W”.k =0, there is nothing to show.
* Otherwise, since 0(p;) = pop(s;), this implies |yA;|de.
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x The latter is equivalent to [yA4;]6W"€ by Lemma 2.12.

e We show hy, hy : W'

We prove hi,hi :n, W' and h3,h3 :,, W', which, using the assumptions, implies the
claim.

The second property follows from the given h2, h3 :,, W by Lemma 2.14.

For the first property, note that [yH]6W (hi,h}) with Lemma 2.10 and C’' - H =
* H[A/a] imply the existence of h;*',... h;"" with h} = h;' @ -- & h™, such that
[V(Hi[Ai/a)I6W (hy" hy™").

It suffices to show (W', A", hy") € W' Z(1;). HL(W'.Z(1;).CP), i.e., W', hy" by €
W' .Z(v;). HL(|vAi]6).

Due to [p; o< a;.(yB;, vH;)[6W'{1;} this reduces to showing (>W').k < W'.k, which is
clear, and [yH;] (3, ai—|vAi|8)(<>W') (hy", hy).

This follows from [y(H;[A;/ai]))]0W’(hy", hy") by Lemmas 2.8 and 2.13.

e We now instantiate C' F (e1,e2) € TR to get W' F (hy;yer) = (ha;ves) : [yR]4.

e Finally, Lemma 2.11 yields the claim.

Theorem 2.65
The following rule is sound:

Proof:

CH{H}ei~eb, {R} Chel~"e] Chey~*é
CI—{H}elzeg {R}

EXPAND

e Suppose (7,8, W,wy,ws) € [C], W.k > 0,  h;, dom(h;) 2 W.g;, h; = hlwh?, [yH]6W (h}, hd),
and h?, h3 :,, W.

e To show: W (hy;ver) = (ha;vez) : [YR]d

o FL(ve;) C W; follows from the implicit assumption C F e; € Term;.

e Now assume W.d = — (the other direction is analogously).

e Suppose (hi;yer) |7 (h;e}) where j < W.k.

e Instantiating the first two premises yields Wt (hq;ve]) = (he;veh) : [YR]0 and yey ~* ~yei.

e The latter implies (hy;ye1) ——71 (hy;ye)) for some j; and thus (hy;vye)) 777 (hy;e!) and
1<

e Consequently, there is h}, e, W’ such that:

L W.k=Wk-j+i
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. Waw

- (ha;yep) 4 (h;ed)
- [YRIOW (€], e3)
NV YR

T = W N

e Instantiating the third premise yields ye; ~+* yeb, which implies (ho;yes) ——* (ha;yeh).
e Hence (ho;yea) | (hy;eh).
o Let W":=p...0 W, so:
——

J1 times
W k=Wk— =Wk —j
. W” 3 W by Lemma 2.2
. [7R]oW" (e, €e5) by Lemma 2.2 and Lemma 2.17
. i, hh W by Lemma 2.14

= W N =

Theorem 2.66
The following rule is sound:
CH{H}e|~ehb {R} Clrej~"e; Clreh~0ey
CF{H}€1%€2{R}

REDUCE

Proof:

e Suppose (7,8, W,wy,ws) € [C], W.k > 0,  h;, dom(h;) D W.g;, hy = hiwh?, [YH]6W (h, k),
and h3,h3 :,, W.

e To show: W I (hy;ye1) = (ha;ves2) : [YR]

e FL(ve;) C W.g; follows from the implicit assumption C | e; € Term;.

e Now assume W.d = — (the other direction is analogously).

e Suppose (hi;ver) | (h;ef) where j < W.k.

e Instantiating the first two premises yields W  (hy;ve}) & (ha;veh) : [YR]S and vej ~0 ~ve.
e The latter implies (hy;ve;) ——° (h1;ve1) and thus (hy;yel) U7 (R);ey).

e Consequently, there is h}, e, W’ such that:

W hk=W'k-j

W aIwW

- (ha;ves) | (hy;ey)
- [YRISW' (e, €5)

= W N =
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5. BLL Rl W
e Instantiating the third premise yields ve, ~+© yeq, which implies (hg;veh) ——° (ho;ves).

o Hence (hy;ves) |l (hi;eh).
Theorem 2.67
The following rule is sound:

CH{HYer Sy ¢ {H'Y C,CiF {H'} ¢, ~ ey {R}
CH {H} €1 X €9 {R}

STEP-L

Proof:
e Suppose (7,8, W,wi,ws) € [C], W.k > 0,  h;, dom(h;) 2 W.g;, h; = ht wh?, [YH]|SW (hi, hl)
and h3,h3 :,, W.
e To show: W I (hy;ye1) = (hg;ves) : [YR]
e FL(ve;) C W; follows from the implicit assumption C F e; € Term;.
e Case W.d = —:
— From the first premise we know C; = z,z € Val;.

— Suppose (hy;ver) 7 (hY;el) with j < Wk, i.e., (hi;7ve1) Lo (hY;ey).
— Instantiate the first premise with A! and I to get hl" with
« (hliyer) =1 (h}'17e}) and
s« [y H']J6W'(hY, hl), where
x v 1=, z—I[ and
* Wi=Wig = W.g W{l}],so W D W.
— Note that (h};ver) L (hl';~'¢,) implies (hy;yer) N (b} wh2;~'eh).
— This also means 7 > 1 and thus W’.k > 1.
— We show (v, 8,bW’ w1, ws) € [[Cmc,x € Val,||:
* This reduces to showing [y(C.L)]6(>W")w; and [y(C.P),l € Val; [§(>W).

* The former follows from [y(C.£)]6Ww1, Lemma 2.2, and Lemma 2.15.

% The latter follows from [y(C.P)][6W, Lemma 2.2, Lemma 2.17, and the construction
of W'.

Instantiating the second premise now yields bW’ F (bl & h2;~/¢!) & (hq;ves) : [yYR]0.

Since (hy;ve1) 239 (BY;el’), this implies (A} W h2;4/e)) Fi =1 (BY; el
Consequently, because j — 1 < (>W').k, there is by, e, W with:
1 Wk = @W)k—j+1(=Wk—j)
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LW DWW (W IW)
- (hasve2) | (hy;ey)

- [yR]6W" (e7, €5)

5. WY hY W

=W N

o Case W.d = +:

Suppose (ha;yes) I (hYy;ely) with j < W.k.
— Instantiate the first premise with h! and fresh [ to get h%' with

(hliver) —=1 (hi';7/¢}) and
[V H'|6W'(RY, hY), where
v =, r—Il and

W' =Wl := W w{l}].

It is easy to see that (7,8, W', wy,ws) € [[C,x,x € Vallﬂ.

EEE S .

Instantiating the second premise now yields W’ (bl W h2;+/e}) & (ho;yes) : [YR]0.

— Consequently, because j < W'.k, there is h{, e}, W" with:
L W'k=W'k—j(=Wk—j)

LW IW (W)

(W whtiye) U (s el)

- Y RIW (e €f)

. R RY W

— It remains to show (hy;ye1)d ( /1/§ 63’)-

T W N

— This follows since (hi;~ver) L (hY';~'¢}) implies (hy;ver) L (WY W h2;~eh).
O
Theorem 2.68
The following rule is sound:
CH{H}esrZoyeh {H'} C,Cot {H'} ey ~ ¢ {R} .
CH{H} e ~ey {R} i
Proof: Symmetric to rule STEP-L. O
Theorem 2.69
The following rule is sound:
CH{Hi} e 'i’l ey {H} CH{Hs}es '&2 ey {3} <C.Ci,Cob {H) + Hy} e) ~ ey {R} STEP-LR

CH {Hl *HQ} €1 X €9 {R}
Proof:
e Suppose (7,3, W,w1,ws) € [C], W.k > 0, F h;, dom(h;) D W.g;, h; = hl & h?,
[yH;y * vH3]6W (hi, hd) and h?, h3 @, W.
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To show: W F (hy;ve1) = (ho;ves) : [YR]
FL(ve;) C W.g; follows from the implicit assumption C F e; € Term;.

From [vH; * ’}/HQH‘(SW(‘}L}, hd) we know that there is A} and h)'? with h! = h}'' & h}? such
that [yH;J6W (hy", hy").

Assume W.d = — (the other direction is analogously).

From the first premise we know C; = x1,z1 € Val;.
Suppose (h1;ve1) 7 (hY;e) with j < Wik, i.e., (h1;ver) EEY (hY;€el).
Instantiate the first premise with hi’l and ] to get hi’l/ with

— (h"5yer) +t (B meh) and

- [[mH{ﬂcSWl(h%’l/,h%’l), where

- 7 =7, 21~ and

- Wy = Wle := Wy W{l1}].

From the second premise we know Cy = 3, xzo € Vals.
Instantiate the second premise with h; 2 and fresh I3 to get hé’Ql with
1o ’
— (hy?;ves) =1 (hy® s vyaeh) and
— [y HL)6Wa(hh2, ht?), where

— 9 1=y, x2—ly and
— Wy = W[§2 =Weu {E}]

Let v/ := v, 111, 29—l and W= >(W.k, W.d, W1 .g1, Wa.go, W.T).

It is easy to see that W’ € World and W' D >W.

We show (7,8, W', wy,ws) € [[<1C,:U1,:U1 € Valy, x9, 25 € Valgﬂ:

— This reduces to showing [y(C.L£)]6W'w; and [<y(C.P),l; € Valy,l> € Valy|§W'.
— The former follows from [y(C.£)]6W w1, Lemma 2.2, and Lemma 2.15.

— The latter follows from [y(C.P)]6W, Lemma 2.18, Lemma 2.2, Lemma 2.17, and the
construction of W”.

Let 7} = bt whb2 wh2 and B == bl whl? w2,
From h% h3 :,, W we get h?, h3 :,, W' by Lemma 2.14.
Note that (1! ver) ot (B y1€)) implies (hy;ver) ot (R 4'€}).

Consequently, W.k > 1 and thus W'.k > 0.
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e Furthermore we have [y H{ * 'y’Hé]]JW'(h%’ll&Jh%’Z, h%’lwh%’Zl) due to W’ J W; and Lemma 2.10.

It is also easy to see that F k] and dom(h}) D W'.g;.
e Hence we can instantiate the third premise to get W' F (h];v'e}) =~ (hh;~'eh) : [vR]4.

We know that (hf;~'e}) ===t (hY;el).

e Consequently, because j — 1 < W' .k, there is hi, e, W" with:
LW/ k=W'k-j+1(=Wk—j)
2. W W' (2 W)
3 (s eh) b (i)
4. [vRJOW" (e7, €3)
5. b bl W

It remains to show (hg;ves) | (hY;eh).

This follows since (hy%; ves) 2,1 (hi?¥ :y2€}) implies (ha;ves) 21 (R yaeh)

Theorem 2.70
The following rule is sound:
CFH=H CF{H'}e =ey{R}
CH {H} [ {R}

SEP-ENTAIL

Proof:

e Suppose (7,8, W,wy,ws) € [C], W.k > 0,  h;, dom(h;) D W.g;, hy = hiwh?, [YH]6W (h, k),
and h3,h3 :,, W.

e To show: W I (hy;ve1) = (ha;ves2) : [YR]
e Instantiating the first premise yields [yH']dW (hi, hd).

e Hence we can instantiate the second premise and get W I (hy;ve1) = (ho;ves) : [YR]9.

Theorem 2.71
The following rule is sound:
CHOP Cr{H=x«0OP} e =~ ey {R}
CH {H} (AR {R}

SEP-CUT

Proof:

L4 Suppose (’Ya 5; Vvahu-)?) € [[C]]7 Wk > 07 - hia dom(hz) 2 nga h‘l = ]’L%&Jh?, [[’YHH(SW(h%a h%)a
and h3,h3 :,, W.
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To show: W  (hy;ver) = (ha;ves) : [yYR]6

Instantiating the first premise yields [3yP]dW .
o Consequently, we have [yH x OyP]|dW (hi, hd).

Now instantiate the second premise to get W I (hy;ve1) = (ho;ves) : [YR]4.

Theorem 2.72
The following rule is sound:

C,DPF{H} €1 =X €y {R}

O-
CE{H+0OP} ey ~es (R} T

Proof:

e Suppose (7,0, W, w1, ws) € [C], W.k > 0, - h;, dom(h;) D W.;, hy = hl & hZ
[vH x OyP]6W (hi, h}), and h2, h3 :,, W.

To show: W F (hy;ver) = (ho;ves2) : [YR]
From [yH % OyP|6W (hi, hd) we get [YH]6W (hi, h}) (using Lemma 2.16) and [OyP]5W.

The latter implies that (v, d, W,w1,ws) € [C,OP].

e Hence we can instantiate the premise to get W (hy;ve1) = (ha;yea) : [vR]0.

Theorem 2.73
The following rule is sound:

CH{H } e =ey{R} ClF{Hs}es ~es{R}

-V
Cl—{Hl\/HQ} e1 ~ e {R} SEP

Proof:

e Suppose (7,3, W,w1,ws) € [C], W.k > 0, & h;, dom(h;) D W.g;, h; = hl & h?,
[vHy V yH26W (b1, hl), and k% A3 :,, W.

)
e To show: W F (hy;ver) = (ha;ves) : [vR]d
e From [yH; V yH]6W (hi, hd) we know that [yH]6W (hi, hi) or [yH2]0W (hi, h) holds.

e Instantiating the according premise yields W t (hy;ve1) = (ha;ves) : [vR]9.

Theorem 2.74

The following rule is sound:
C,XF{H} e ~ ey {R}
Cr{3X.H}ei~es (R} °

EP-3
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Proof:

e Suppose (7,0, W, w1, ws) € [C], W.k > 0, F h;, dom(h;) D W.g;, hy = hl & hZ,
[3X AH]SW (hi, hY), and h3 b3, W.

To show: W I (hi;ve1) = (ho;ves) : [yYR]0

From [3X.yH]6W (hi, hi) we know that there is 7/ : X such that [(y,~")H]6W (hi, hi).

Hence it is easy to see that ((v,'),d, W,w1,ws) € [C, X].

e Instantiating the premise then yields W F (hy;vyey) & (ha;ves) : [yR]4.

Theorem 2.75
The following rule is sound:
Clhe~ste
CH{H}er—; e {H}

UNROLL

Proof:
e Suppose (7,6, W,w1,ws) € [C], Wk > 0, and [yH]6W (hq, ha).
e Instantiating the premise yields [ye ~* e/ 6W.

e Hence we know ye ~+! ve’, which implies (hi;ye) = (hy;ye).

Theorem 2.76
The following rule is sound:

CheeVal; CHACVal; (' =ux,x¢€ Val;
C+ {H} Elrefe] <o E[x] {H %z <=y e % O(z ¢ A)}

ALLOC

Proof:
e Suppose (7,9, W,w1,ws) € [C], W.k > 0, and [yH]6W (hq, ha).
o Instantiating the first premise yields that ~ve is a value.
e Now suppose ! ¢ dom(h;) UW.g;.
e Consequently, (h;;y(E[ref e])) L (h; W{l — vye};vET]).
o Let h; :=h; W {l — ~e} and he; = h_;.
e It remains to show [yH % [ <; ve  O(l ¢ yA)J6W'(hy, hy), where W' = Wg; := W.g; w {I}].
e From [yH]dW (hy, he) we get [YH]IW'(hq, ha) by Lemma 2.10.
e Is is also clear that we have [l —; ve]dW'({l—~e}, D).
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e Hence it remains to show [O(I ¢ yA)|dW'(0,0), i.e., [O( & vA)|JdW".

e So suppose W J W' and W".k > 0 (otherwise there is nothing to show).
e Now suppose W D W" and [l € yA]6W"".

e If W'k = 0, there is nothing to show.

e Otherwise we know |l € yA|§ and thus [l € yA]6W by Lemma 2.12, and need to derive a
contradiction.

e From instantiating the second premise with we get [l € Val;]6W and thus [ € W.g;.

e This contradicts I ¢ dom(h;) U W.g;.

O
Theorem 2.77
The following rule is sound:
CrH= e =ic DEREF
CH{H} Elley] —; Eles] {H}
Proof:
e Suppose (7,6, W,w1,ws) € [C], Wk > 0, and [yH]6W (hq, ha).
e Instantiating the premise yields [ye; < vea]6W (hq, ha).
e Hence h;(ve1) = ves and vyey is a value.
o Consequently, (hi;y(E[le])) ==" (hi; v(Elez])).
O

Theorem 2.78
The following rule is sound:

Ct ey € Val;
ChH{H*e; —;eh} Eley:=ea] —; E[()] {H xe1 —; ea}

ASSIGN

Proof:
e Suppose (7,9, W,w1,ws) € [C], W.k > 0, and [vH * ve1 <—; ve5]0W (h1, h2).

From [yH * ye; <; veh]0W (h1, he) we know [yH]OW (hi, ki) and [yer —; veb]oW (b3, h3),
where h; = hl & h?.

Hence [ye; € Val;]6W and ve; € dom(h?) C dom(h;).

Instantiating the premise yields [yes € Val;JdW, so ey is a value.

€

e Consequently, (h;y(Eler :=e3])) —" (hi[yer — vea]; vE[()]).
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Let h; := h; [ye1 — ~ves] and By = h_;.

It remains to show [vH * vye; —; 762]]5W(ﬁ1, ﬁg)

Note that h; = h} W hZ[ver — vea).

Let h? := h2[ye; — ~eq] and h2; := h2,, so h; = h! W h2.

Hence it suffices to show [ye; <; yes]6W (h2, h2), which follows from [ye; € Val;]6W,
[vea € Val;JdW, and h? = h2[ye; — ~ea].

o1



3 Soundness of the Logical Relation

Lemma 3.1
If CF p(a) : VRel for all « € dom(p), then C - V[r]p : VRel.

Lemma 3.2
If CF p(a) : Type for all a € dom(p), then C - V[7]p: Type.

Corollary 3.3
If CF (v1,v2) € V[7]p and C F p(«) : Type for all « € dom(p), then C - O(vy,v2) € V][7]p.

Lemma 3.4 (Compatibility: Abstraction)
If 1C,z1, 29, (x1,22) € V[7]p F (e1,e2) € E[7']p and C + p(a) : Type for all @ € dom(p), then
CF Az (7).e1, \za:y2(7).e2) € E[T — T']p.

Proof: By rule [-RETURN it suffices to show C F (Ax1:91(7).e1, Ax2:y2(7).€2) € V[T — 7']p.
This means showing C + Az;:vi(7).e; € Val; (for ¢ € {1,2}) and C + O(Vzy,x2. (x1,22) €
Virlp = ((Az1:71(7).e1) z1, Aza:ye(7).e2) xz2) € E[7']p). The former follows from the implicit
assumption C + Az;:v;(7).e; € Term;. The latter reduces by rule O-INTRO to showing C; F
(Az1:y1(7).e1) 21, (Ax2:iv2(7).€2) 22) € E[7']p, where Ci = {C, 1,22, (x1,22) € V[7]p. Since we
know C; F z; € Val; and thus C; F (Ax;:(7).€;) x; ~* e; for i € {1,2}, this follows from the
assumption by rule T-EXPAND. O

Lemma 3.5 (Compatibility: Instantiation)
If CF (e1,e2) € E[Va.7]p and C F p(a) : Type for all a € dom(p), then C F (e1v1(7'), e2v2(7')) €

Elr[r'/allp-

Proof: By rule 1-BIND it suffices to show C; F (z171(7"), 22 v2(7") € E[r[r'/a]]p, where C; =
1C, 21, x2, (x1,22) € V[Va. 7] p. Unfolding the definition of V[Va. 7]p and using rule O-ELIM lets us
extend C; to Co := Cy, (1 71(7"), 22 v2(7")) € E[7](p, v—=V[7']p). By Lemma 2.13 we are done. [

Lemma 3.6 (Compatibility: Unpack)

If 1C, a1, o, 7,7+ Type, a1, 22, (x1,22) € V[r](p, 1) & (e},e3) € E[T]p and C + (e1,e2) €
E[Ba. 7]p and C F p(«) : Type for all « € dom(p), then

C | (unpack ey asaq,xy inel, unpack es as ag, 22 ineh) € E[r']p.

Proof: By rule 1-BIND it suffices to show C; I (unpack 2} asay, z1 in e}, unpack 25 as s, zo in€}) €
E[']p, where C; = 1C, z, xh, (2], 24) € V[3a. 7] p. Unfolding the definition of V[Ja. 7]p lets us ex-
tend Cq to Cy := Cy, 2 € Valy,zh, € Valy, g, an, o, o, w1, o, 7,7 : Type, 2} = (pack a1, x1 asaf), ah =
(pack ag, z2 as ahy), (z1,x2) € V[r](p,a—r). Note that we have Cy F z; € Val;, and thus Cy +
unpack 2} as oy, z;ine; ~* ¢e; for ¢ € {1,2}. Hence by rule T-EXPAND it suffices to show Cs
(e, ¢eh) € E[7'] p, which follows from the assumption. O

Lemma 3.7 (Compatibility: Unroll)
If CF (e1,e2) € Epa. 7] and C F p(«) : Type for all @ € dom(p), then C F (unroll ey, unrollez) €

Elrpa.t/a]p.
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Proof: By rule 1-BIND it suffices to show C; - (unroll zq, unroll z3) € E[r[ua.7/a]]p, where C; =
7C, 1, x2, (x1,22) € V[ua.7]p. Unfolding the definition of V[ua. 7]p lets us extend C; to Cy :=
Ci,z1 € Valy,zo € Valy,y1,y2,21 = rolly;, za = rollya,>(y1,92) € V[7](p, a—V]pa.7]p). Note
that we have Co I y; € Val; and thus Cy - unroll z; ~! y; for i € {1,2}. Hence by rules T-UNROLL
and T-RETURN it suffices to show <Ca F (y1,92) € V[r[pa.7/a]]p, which follows by Lemma 2.13
since <Cq contains (y1,y2) € V[7](p, a—V[ua. 7] p). O

Lemma 3.8 (Compatibility: Allocation)
IfCF (e1,e2) € E[r]p and C F p(a) : Type for all & € dom(p), then C - (ref ey, ref ea) € Efref 7] p.

Proof: We show Cy - (e1,e2) € E[T]p = (refer,ref ea) € E[ref 7]p, where Cy = C.X;C.R;-;C.P.
The original claim then follows by rules £L-WEAKEN and =--ELIM. Starting with rule T-BIND,
we need to show C; b (ref zq,ref 25) € Efref 7]p, where C; = 1Co, 21, x2, (x1,22) € V[7r]p. Us-
ing rule T-IMPURE, we enter the separation judgment and are required to show {OT} refz; =

ref xo {V[ref 7]p}. Since C; + {OT} refx; rc—n vi {yi —i x;} (where C* = y;,y; € Val;) by
rule ALLOC, we can apply rule STEP-LR such that it remains to show Cy F {y1 <—1 21 * y2 2
x2} y1 = yo {V[ref ]p} for Co = <Ci,y1,y2,91 € Valj,yo € Valy. Now, using rule ISL-NEW,
we create a new island p o a.(B, H) with constant population A, where A = {(y1,42)}, B =
(a = A), and H = Jz1,29. y1 —1 &1 * Y2 —2 To * O>(z1,22) € V[7]p, thus upgrading Cs to
Cs = Co,p,p xa.(B,H),p = A. Before we can switch back to the regular judgment using rule
ISL-UPD (without actually updating anything), we need to show that H is currently satisfied. This
follows easily from the current knowledge about the heap and the assumption (z1,z2) € V[7]p
together with rule MONO. Back in the regular judgment with C4 = tC3,p = A, we must show
(y1,y2) € E[refr]p. This follows from rules T-RETURN and, after unfolding the definition of
V[ref 7] p, ENTAIL-<>-VAL and x-INTRO. O

Lemma 3.9 (Compatibility: Assignment)
If CF (e1,e2) € Efref 7]p and C F (e3,eq) € E[7]p and C F p(a) : Type for all « € dom(p), then
CF (e1:=e3,e2:=¢4) € E[unit]p.

Proof: We show Cy b (e1,e3) € EJref 7]p = (es,e4) € E[7]p = (e1:=e€3,e2:=¢e4) € E[unit]p,
where Cy = C.X;C.R;-;C.P. The original claim then follows by rules L-WEAKEN and =-ELIM.
Starting with rule 7-BIND, we need to show Ci b (z1:=x3,22:=x4) € E[unit]p, where C; =
1Co, T1, T2, T3, 4, (x1,22) € V[ref 7]p, (x3,24) € V[7]p. The assumption about z; and z5 tells
us that o a.(..., H), where H = Jyy, ya. 1 <1 y1 * T3 2 y2 * O>(y1,y2) € V[7]p. With the help
of rule -ELIM and the fact that our £ is empty, we can extend C; to Cs := Cy,p,p xa.(...,H)
and hence use rule T-IMPURE to enter the separation judgment. Here we are required to show
{H} 21 :=23 = z2:=x4 {V[7]p} under C5 := C3,a,p = a. By combining rules ALLOC and STEP-LR,
we need to show {H'} () ~ () {V[r]p}, where H' = x; <1 23 * 3 <9 x4. In order to switch
back to the regular judgment using rule ISL-UPD, we are required to show that the heap law H is
still satisfied. This follows from H' and the assumption (x3,z4) € V[7]p together with rule MONO.
Consequently, it suffices to show ((), ()) € E[7]p under C4 := {C3, which follows by rule T-RETURN.

O

Lemma 3.10 (Compatibility: Reference Equality)
If CF (e1,e2) € EJref T]p and C F (e3,e4) € EJref 7]p and C F p(a) : Type for all a € dom(p), then
Ct (e1==-e3,ea==1¢e4) € E[bool]p.
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Proof: We show Cy F (e1,e2) € Efref7]p = (es,eq) € Efref7]p = (e1==-¢e3,ea==1¢4) €
E[bool]p, where Cy = C.X;C.R;-;C.P. The original claim then follows by rules £-WEAKEN and
=-ELIM. Starting with rule 1-BIND, we need to show C; - (21 == 3,22 ==1x4) € E[bool]p, where
C1 = 1Co, w1, T2, T3, T4, (x1,22) € V[ref 7] p, (x3,24) € V[ref 7]p. The assumptions about x1, xa, x3,
x4 tell us < a.(B1, Hy) and o a.(Bs, Hs), where B; = (a = {(z;,2;41)}) and H; = Jy;, yiv1. T <1
Yi * Tip1 2 Yir1 * O>(yi,yiv1) € V[r]p. With the help of rule «-ELIM and the fact that our
L is empty, we can extend C; to Cy := Cy,p1,p1 X a.(By, Hy). Since £ is now non-empty, an-
other application of that rule requires us to show (1 == 3,20 ==1x4) € E[bool]p twice—(1) under
Cs := Ca,p3,p3 x a.(Bs, Hs) and, separately, (2) under C} := Co,Va.B3s = Bj.

For (1) we use rule T-IMPURE to access the knowledge of how the heap looks like with respect
to the locations in question. That is, we need to show {H; * H3} 1 == 23 & xo == x4 {V[bool]p}.
By rule ENTAIL-—-SEP, H; * Hs implies 7 # x3 as well as x5 # x4. Consequently, we know
x1 ==1x3 ~ false as well as xo == x4 ~» false. Using rule EXPAND and then leaving the separation
judgment using rule ISL-UPD (without updating), it suffices to show (false, false) € E[bool]p. This
follows by rule T-RETURN.

For (2) we can derive {(z3,24)} = {(x1,22)} from Va.Bs = By, and thus z3 = x; and x4 = 5.
Consequently, we know x1 == x3 ~» true as well as xo == x4 ~ true. All we need from here on are
rules T-EXPAND and T-RETURN. O

Definition 3.11 (Logical Equivalence Judgment for Values)
Given I'; ¥ F vy : 7 and I'; ¥ - vy ¢ 7, we define

DSk ~% om0 XRLPF (o, 0) € Vrlp

where X', R, L, P, 11, 72, p are defined as in the case for terms.

Lemma 3.12 (Fundamental Property for Values)
IfI;¥Fo: T, then Iy Z'_U'Vv;ﬂ vIT.

Definition 3.13 (Wundertiite)
Suppose '=@,Z:7and X =1:0

canonic(k,d, T, %) := (X, R, L, P,v1, Y2, p, W, ) where

X = @y, 0o, T1, To
R:=7p
L:=poxa(a={{1,0)}, Ty, y2. | =1 y1 *1 =2 y2 x O>(y1,92) € V][o])
P :=r:Type, (z1,z2) € V[r]p,l € Valy,l € Valy
Vi = O QG T T
p = a—~T
W = (k,d,dom(X),dom(X),7)
dom(Z) := {e1,...,tn}
Z(ei) := ({(G; 1)} {{(ls, 1) }}, ACP. { (W, by, ha) € HeapAtom,, |

[(h1(l:), ha(li)) € V[o:][0W})
§ := pr—pop(1)
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Lemma 3.14
If (\R,L,P,0,0,0,W,d) = canonic(k, d, -, ), then (0,5, W, dom(W.Z),0) € [; R; L; P].

Proof: For this we need to show [L]dWdom(Z) and [P]oW. The latter is obvious. For the former,
we show:

[pi oca(a = {(li; 1)}, Fy1,y2. L =1 y1 * b =2 y2 + O>(y1,y2) € V[ou])[6W{e:}
This boils down to the fact that [(h](l;), h5(1;)) € V][o:]J0W’ is equivalent to

[By1, 2. li =1 y1 % i =2 y2 * O>(y1,y2) € V[o]]o(aW')(h], hy).

Lemma 3.15 (Heap Parametricity)
If-h:¥and (,R,L,P,0,0,0,W,d) = canonic(k,d,-, ), then h,h : W.

Proof: This boils down to showing h, h :qomw.z) W. If k = 0, there is nothing to show. Otherwise,
let h' = h|g,y, where we suppose X = [:0. We claim (5W,h',h") € W.Z(1;).HL(W.Z(v;).PL),
i.e., (bW,h' h') € HeapAtom, and [(h(l;),h(l;)) € V[o;]]0(>W). The former is obvious. For
the latter, note that ;X F h(l;) : X(I;), for which the Fundamental Property for Values yields
SRy Ly P (h(l),h(l;)) € V]o;]. By Lemmas 3.14 and 2.17 we are done. O

Lemma 3.16 (Adequacy)
If ;X F e =" ey:7and - h: X, then (hye) ) iff (h;ez) .

Proof: Suppose (h;ei) |} (the other direction is symmetric). Let (-, R,L,P,0,0,0,W,5) =
canonic(j + 1,—,%). By unfolding the definition of ~9 we know ;R;L;P F (e1,e2) € E[7].
By Lemma 3.14, [(e1,e2) € E[7]]0W. Since h,h : W by Heap Parametricity, this yields W F
(h;e1) = (h;ez) : [V[7]]é. Finally, since j < W.k, we learn (h;ez2){. O

Theorem 3.17 (Soundness w.r.t. Contextual Equivalence)
;Y ke =% ey :7, then IS Feq =% ey : 7.

Proof: Suppose H C : (X F 7) ~ (¥ F 7/) and F h : ¥'. By Congruence, ;%' F
Cler] =9 Cles] : 7. By Adequacy, (h; Cler]) I iff (h; Cles]) . 0
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4 Examples

4.1 Name Generators

Consider:

7 = Ja.(unit — a) X (@ x a — bool)

letz =ref Oin packint, (\_.++x, \y.fsty=sndy) asT

€1

es := packrefunit, (A_.ref (), \y.fsty ==sndy) as T

To prove these ADTs equivalent, we want to show - (e, e2) € E[7].
By 1-IMPURE, we have to show - {O0T} e; = e3 {V[7]}. By rules STEP-L, ALLOC and EXPAND,
we need to show
CiF{z =10} e, mex {V[r]}

where €] is the body of the let and C; = z;-; ;2 € Val;.
Using rule 1SL-NEW we introduce an island p whose population is a partial bijection between the
natural numbers that will be generated by e} and the set of locations allocated by es:

B := 3n.3bC Loc.bij(a,{1,...,n},b)
H := 3n.(z =1 n)=*0(max(dom(a),n) Arng(a) C Valy)
The population law B states that a is a bijective relation of the form {1—ly,...,n—l,}.} The

heap law H then verifies that the state of x always is the maximum 7 in the domain of the
current population, and that its locations are all valid in the current world. The latter property
is important later to show that newly allocated references will always be fresh with respect to the
current population. Given A = () for the initial population, it is easy to verify that C; + B[A/q].
Consequently, we can now define C = C1,p,p x a.(B, H),p = () and need to show

Co k- {z =1 0} €] = ex {V[7]}

Both expressions are values, so we want to apply rule ISL-UPD (and [-RETURN, using mono-
tonicity of the logical relation) to reduce the problem to

Cs (6’1,62) S V[[T]]

where C3 = {C2,p = 0. To do so, we first need to prove Ca - B[/a], which follows as before, and
Cs b2 <1 0= H[D/a]. The latter consists of eliminating the existential in H with n = 0 and
then showing both parts of the separating conjunction. The first, x <1 0, is immediate from the
assumption, while the second part is a propositional formula that we can prove separately and then
cut into the entailment.

Now, we unroll the definition of V[Ja.7] and pick

r:= (x1,22).x1 € Valy Axy € Valo A (z1,22) €p

We have to show C3 - r : Type — which follows straightforwardly from rule POP-MONO. Now let
p = av—r. By the definition of V[’ x 7"']p, we still have to show

IThe bij predicate as well as the other notation in B and H can be defined in our logic.
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1. C3F (AoA+z, A_ref () € V]unit — afp
2. C3F (M\y.fsty=sndy, A\y.fsty==sndy) € V[a x a — bool]p

Let us first turn to (1). We unroll the definition of V[7" — 7”], and apply the introduction rules
for O, V and =, producing the goal

Ca F (AoA+x) y1, (A-ref () y2) € TV[unit — afp

where Cqy = 1Ca, y1, Y2, (Y1,y2) € V[unit]p (note that {C3 = {C3). By 7-EXPAND, T-IMPURE and
SEP-3, and expanding the ++ notation, we have to show the equivalence

Cs H{x —1 n+0OP} (z:=z+ 1;lz) = ref () {V[a]p}

where C5 = C4,a,n,p = a and P is the boxed proposition in H. We can step through the left
computation using rules STEP-L and EXPAND and reach

Csh{zx—1n+1«0P}n+1=ref () {V[a]p}

The right side is more tricky, because we have to derive an appropriate freshness property for the new
location. We first move OP to the context (rule O-sHIFT), producing Cs = Cs, O(max(dom(a),n) A
rng(a) C Valy). From there we can derive Cg F rng(a) C Vals and then apply rules ALLOC and
STEP-R to get the goal

Cory+ {o =1 n+ Ly = () D(y ¢ me(a)) * OP} n+ 1~ y {V[alp}

By SEP-ENTAIL and ENTAIL-—-VAL, we can further strengthen the heap assertion to include y € Loc.

Now that the new names have been generated, we update the island with the new population
A=aU{(n+1,y)}, using rule 1SL-UPD. To do so, we first have to show Cs - p C A, which is
easy given the assumption p = a in the context. Then we have to show that the population law
still holds, i.e., Cg - In’.3b C Loc. bij(A, {1,...,n'},b). Assuming a suitable set of admissible rules
about bijections, this can be derived by picking n’ = n + 1 and b = rng(a) U {y}, and using the
assumption max(dom(a),n). It also requires the assumptions y € Loc and y ¢ rng(a), which we
can extract from the heap assertion (rule O-sHIFT). Likewise, we have to prove that the final heap
assertion entails the heap law H[A/a] under the environment C; = {Cg,p = A. Choosing n + 1 for
the existential variable n in H, the first half, x <1 n + 1, follows directly from the heap assertion.
The rest can again be derived using only propositional logic.

The final step in this part is to show C; - (n+1,y) € 1V[a]p. In order to apply rule [-RETURN,
a proof for C7 F V[a]p : Type is required — which we already proved above, modulo weakening.
The rest then is by straightforward propositional reasoning, given the updated population p = A
in C7 and our definition of r in terms of p.

For part (2) we start as before, yielding the goal

Ci+ ((\yfsty=sndy) y1, (\y.fsty ==sndy) y2) € TV[bool]p

with C} = 1C2,y1, 92, (y1,y2) € V[a x af]. We can unfold the definitions of V[r’ x 7] and V[a] in
the context and eliminate the respective existential, producing

Cy = 1Co,y1, Y2, Y1, Y5, U1, ¥, 1=y, v ), ¥2=(va, ¥5 ), (Y1, ¥a) € 7, (v, y5) € 7.
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Now y1, y2 in the judgment can be replaced by the respective pairs, and by T-EXPAND we are left
with

Ci - (y1 =91, ya==1ys) € 1V[bool] p.
At this point, the proof essentially boils down to the absolute proposition

Ya,y1, 91, v5, Y5 - B = (Y1, 45) € a = (yi,y5) € a =
3b € {true, false}. (y; =91 ~ b) = (yh ==y4 ~ b)

Expanding out the definition of B, this can be proved by straightforward means in the meta logic
and thus be assumed as an axiom.

4.2 Landin’s Knot

We want to prove that Landin’s Knot — the construction of a fixpoint using backpatching — works.
That is, we want to prove the equivalence between the following two expressions of type 71 — T3:

er = letz=ref (Az.L)in(z:=(Aa.let f=lyine);!2)
es = fixf(z).e

where fix is a standard cbv fixpoint operator, which can be defined in our language as follows:

fix f(z).e = Azx.(unrollv)vzx
where v = roll A\f'.(Af.\z.e) (Az.(unroll f') f' z)

We need to show F (e1,es) € E[11 — 7], or, by rule T-IMPURE, F {O0T} e; = es {V[r1 — 7]}
By applying STEP-L several times, we can reduce this to showing {z <1 F} F =~ ey {V[r1 — 2]},
where F' is the function value assigned to z in e;.

By rule 1SL-NEW we introduce an island p that records the fact that y will contain F, forever.
That is, we choose H = z <1 F as the heap law. We do not need the population for this proof,
so we pick B =T and A = (). By rules ISL-UPD and T-RETURN, it remains to be shown that
(F,e2) € V[r1 — 72] under the extended context.

At this point, we invoke rule LOB to prove the equivalence of F' and e; under the “coinductive”
assumption >(F, ez) € V[ — 72]. Unfolding the definition of V[r' — 7”], we assume y1, y2 with
(y1,y2) € V[r1] and apply T-IMPURE again, such that we now have to show {z —1 F} Fy; ~
e2y2 {V[m2]}. Note how our island re-establishes the crucial assertion about y pointing to F.

‘We use EXPAND to reach the point where both expressions have to make an essential step:

{z =1 F} (let f=1zine[y1/z]) = (unrollv) vys {V[2]}

Now we can apply STEP-LR, using DEREF on the left and UNROLL on the right, yielding, after further
reduction

{z =1 F} e[F/fllyi /2] = elea/ flly2/x] {VIT]}

which we have to prove in an earlier world — removing the >-operator from the assumption (F), e3) €
V[r — 72] that was introduced by rule LOB.

We apply ISL-UPD once more (boxing and unboxing the monotonous assumptions (y1,y2) € V[m1]
and (F,es) € V[r1 — 72] to have them survive) so that the goal becomes (e[F/ f][y1/z], e[e2/ f]ly=/x]) €
V[r2]. By applying [-REDUCE twice this can be expanded to (Af.A\x.e) Fy1, (Af.xze) eaya) € V[72].
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Now use the introduction rules for implication and O twice, discharging the assumptions (y1,y2) €
V[m1] and (F,e3) € V[r1 — 72]. With the definition of V[r' — 7”'] this gives

(A z.e,\fAx.e) € V[(T1 = 1) =11 — T2

which holds by the Fundamental Property.
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