
Principal Type Schemes for Modular Programs

Derek Dreyer and Matthias Blume

Toyota Technological Institute at Chicago
{dreyer,blume}@tti-c.org

Abstract. Two of the most prominent features of ML are its expres-
sive module system and its support for Damas-Milner type inference.
However, while the foundations of both these features have been studied
extensively, their interaction has never received a proper type-theoretic
treatment. One consequence is that both the official Definition and the
alternative Harper-Stone semantics of Standard ML are difficult to imple-
ment correctly. To bolster this claim, we offer a series of short example
programs on which no existing SML typechecker follows the behavior
prescribed by either formal definition. It is unclear how to amend the
implementations to match the definitions or vice versa. Instead, we pro-
pose a way of defining how type inference interacts with modules that
is more liberal than any existing definition or implementation of SML
and, moreover, admits a provably sound and complete typechecking algo-
rithm via a straightforward generalization of Algorithm W. In addition
to being conceptually simple, our solution exhibits a novel hybrid of the
Definition and Harper-Stone semantics of SML, and demonstrates the
broader relevance of some type-theoretic techniques developed recently
in the study of recursive modules.

1 Introduction

The standard way of defining the static semantics of languages with type in-
ference is to give a set of declarative Curry-style typing rules that assign types
to untyped terms. Since these rules are typically written in a nondeterministic
fashion, it is not prima facie decidable whether a term can be assigned a type.
The most canonical example of such a type system is that of Hindley and Milner
(HM) [14], which is at the core of higher-order, typed languages like ML and
Haskell. For HM, there exists a well-known type inference algorithm, Damas
and Milner’s Algorithm W [1], that is sound and complete with respect to it.
Soundness means that if type inference succeeds, it returns a valid typing. Com-
pleteness means that if a valid typing exists, then type inference will succeed. To
achieve completeness, Algorithm W relies on the fact that, in HM, all well-typed
terms e have a principal type scheme, i.e., a type τ that is in some sense more
general than any other type that e could be assigned.

The Definition of Standard ML [15] (SML for short) provides a declarative
semantics of the language, including both the core language and the module
system. It is often assumed that this combination can be typechecked effectively
via a straightforward extension of Algorithm W . In this paper we observe that

2 Derek Dreyer and Matthias Blume

functor F (X: sig type t end) = struct
val f = id id

end
structure A = F (struct type t = int end)
structure B = F (struct type t = bool end)

Fig. 1. Common preamble for examples (a) and (b).

val = A.f 10

val = B.f false

Fig. 2. Example (a).

val = A.f 10

val = B.f "dude"

Fig. 3. Example (b).

this is not so. As we will explain, all existing implementations of SML differ from
the Definition—and from one another—in rather subtle ways when it comes to
the interaction of type inference and modules. In particular, this occurs when the
value restriction forces certain module-level val-bindings to be monomorphic.

The value restriction [10, 21], which is important for ensuring type safety,
limits the set of val-bindings that may be assigned polymorphic types to those
whose right-hand sides are syntactic values, i.e., terms that are syntactically
known to be free of effects. For example, consider

val f = id id

where id is the identity function fn x => x. According to the declarative se-
mantics of SML, f can be assigned any (monomorphic) type τ → τ where τ is a
type that is well-formed at the point where f is defined. However, it cannot be
given the polymorphic type ∀α.α → α because id id is not a syntactic value.

Example (a). The situation changes if f is defined in the body of a functor.
Consider the code in Figures 1 and 2. The value restriction forces the type of f
in functor F to be monomorphic. Since A is an instantiation of F, and since A.f is
applied to an integer, one might expect that the type of f must be int → int,
in which case the application of B.f to false would be ill-typed. In fact, though,
there exists another solution: f can also be given the type X.t → X.t, in which
case the type of A.f is int → int, the type of B.f is bool → bool, and the
program typechecks. In essence, by appearing in the body of a functor with an
abstract type argument, f can turn into an (explicit) polymorphic function.

This example has profound implications for the use of Damas-Milner type
inference in typechecking modular programs. When f is typechecked by Algo-
rithm W , the algorithm returns a principal type scheme α → α, where α is a
unification variable (u-var) that may be instantiated to a particular type later
on. However, when the typechecker leaves the body of functor F, the u-var α

must become a Skolem function parameterized over the abstract type compo-
nents of F’s argument, in this case the type t. When A.f is applied to int, we
learn not that α = int, but rather that α(int) = int. Similarly, when B.f is
applied to false, we learn that α(bool) = bool. Together, these two equations
determine that the only possible instantiation of α is the identity function λt.t.

Principal Type Schemes for Modular Programs 3

In general, finding solutions to these kinds of constraints requires a form of
higher-order unification. While it is possible that the fragment of higher-order
unification required is decidable, no SML typechecker implements it. As a result,
no existing SML implementation accepts Example (a). . . that is, except MLton.

1.1 Generalized Functor Signatures

The MLton compiler for SML takes an unusual approach to the typechecking
of programs with functors. Although it is well-known that MLton is a whole-
program compiler that achieves great performance gains through defunctoriza-
tion, it is perhaps less well-known that MLton performs defunctorization during

typechecking. That is, after typechecking a functor such as F in Example (a),
MLton inlines the definition of F at every point where F is applied before pro-
ceeding to typecheck the rest of the program. This has the effect that the def-
inition of F is re-typechecked at every application, and each copy of F may be
assigned a different signature. In the case of Example (a), this means that in the
first copy of F, its binding for f may be assigned type int → int, and in the
second copy of F, its binding for f may be assigned type bool → bool.

Example (b). While MLton’s approach to typechecking functors results in
the acceptance of Example (a), it also results in the acceptance of similar pro-
grams that are not well-typed according to the Definition. Consider Example (b)
in Figures 1 and 3. Since B.f is now applied to a string instead of a boolean,
there is no single type for f that would make the program typecheck. Put another
way, there is no solution to the unification problem α(int) = int ∧ α(bool) =
string. However, since MLton inlines F prior to typechecking the definition of
B, it is happy to assign f the type string → string in the second copy of F.

We prefer MLton’s behavior to that prescribed by the Definition for several
reasons. First, it does not require any higher-order unification and is therefore
simpler and easier to implement. Second, it is more liberal than the Definition
in a way that is perfectly type-safe. Third, it is arguably more intuitive. Given
that the type X.t and the definition of f are completely unrelated, we feel it is
very odd that Example (a) type-checks under the Definition but Example (b)
does not. That said, the MLton approach has the serious drawback that it needs
to know all uses of F, i.e., it needs access to the whole program.

To overcome this limitation of MLton’s approach, we observe that ML-
ton’s inlining of functors is analogous to the well-known explanation of let-
polymorphism (e.g., see Pierce’s textbook [18]), in which let x = e1 in e2 is
well-typed if and only if e1 and e2[e1/x] are. Inlining the definition of x has
the same effect as binding x in the context with a generalized polymorphic type
for e1. Similarly, to mimic the inlining of a functor F, we need to bind F in the
context with a generalized functor signature, i.e., a signature that takes implicit

type arguments in addition to the usual explicit module arguments. In the case
of Examples (a) and (b), we would like to assign F the signature

(X: sig type t end) → ∀α. sig val f : α → α end

At each application of F, the type argument α could then be implicitly instanti-
ated with a new type τ , thus enabling both Examples (a) and (b) to typecheck.

4 Derek Dreyer and Matthias Blume

functor G () = struct
datatype t = V

val f = id id

end
structure C = G()

val = C.f C.V

Fig. 4. Example (c).

functor G () = struct
val f = id id

datatype t = V

end
structure C = G()

val = C.f C.V

Fig. 5. Example (d).

The reason that it is sound to permit this kind of implicit polymorphic gen-
eralization at the definition of F—i.e., the reason it does not violate the value
restriction—is that functor bindings are bindings of syntactic values.

1.2 Abstract Data Types and Dependencies

The idea of generalized functor signatures sketched above is at the heart of the
type system we present in Sections 2 and 3. However, functors are not the only
complication that modular ML programs introduce into the HM type system.
Another such complication is ML’s facility for defining abstract data types.

Example (c). Consider the code in Figure 4. In this case, the body of
functor G defines an abstract data type t, as well as a value V of type t, prior
to its binding for f. Consequently, the application of C.f to C.V is well-typed
according to the Definition, since f could have been assigned the type t → t.

We run into an interesting problem, though, if we attempt to typecheck this
example using a generalized functor signature for G. In particular, the obvious
generalized signature that one would expect to assign to G is the following:

() → ∀α. sig datatype t = V val f : α → α end

In order to typecheck the definition of C in such a way that the subsequent
application (C.f C.V) will be well-typed, the application of G must instantiate
G’s implicit parameter α with the type C.t. But C.t is not in scope until after
G has been applied, so how can C.t be passed as an argument to G?!

One way to view this problem is as a variation on the original problem that we
observed with typechecking Example (a). In parameterizing G’s signature over α,
we failed to account for the possibility that α might refer to t. In other words, one
might argue, the parameter α should really be a Skolem function, and f’s type
should be α(t) → α(t). This observation is not very encouraging, though, since it
only seems to lead us back to the need for higher-order unification. Fortunately,
as we will explain shortly in Section 2, we have an alternative solution to this
dilemma that does not require higher-order unification.

Example (d). Lastly, let us consider the code in Figure 5, which is the
same as that in Figure 4 save that the order of the bindings of t and f has been
switched. Because of this switch, Example (d) is not legal SML, for t is not in
scope at the point where f is defined.

The fact that the Definition treats Examples (c) and (d) differently means
that a faithful implementation of SML must track the potential dependencies

Principal Type Schemes for Modular Programs 5

Example Definition Reject All No-HOU/No-track MLton Our Approach

(a) ✓ ✕ ✕ ✓ ✓

(b) ✕ ✕ ✕ ✓ ✓

(c) ✓ ✕ ✓ ✓ ✓

(d) ✕ ✕ ✓ ✕ ✓

Fig. 6. Comparison of behaviors of different semantics and implementations on Ex-
amples (a)-(d). Definition: This reflects the behavior of both the Definition and the
Harper-Stone alternative semantics of SML [6]. Reject All: SML/NJ, the ML Kit, TILT,
SML.NET, and Hamlet reject all examples. No-HOU/No-track : Poly/ML, Alice, and
Moscow ML fail to accept Example (a) and fail to reject Example (d). (Actually,
Moscow ML rejects (d) in batch mode but accepts it in interactive mode.) MLton fails
to reject Example (b). Our Approach is more liberal than any of the existing definitions
or implementations, and it is easy to implement correctly.

between unification variables (u-vars) and the abstract types that are in scope
when the u-vars are introduced. This tracking adds a layer of complexity to
the type inference algorithm that, when combined with the problems we have
observed concerning type inference and functors, seems to be tricky to get right.
As evidence of this, we note that, with the exception of MLton (and Moscow
ML when run in batch mode), no implementation of SML correctly handles both
Examples (c) and (d) according to the Definition (see Figure 6). Furthermore,
as the design we propose below will demonstrate, having a declarative semantics
that permits Example (d) to typecheck is not only perfectly type-safe—it makes
the typechecking algorithm much easier to specify.

1.3 The SML/NJ Approach

As we have seen, it is difficult to implement type inference for SML correctly. A
number of existing implementations reject all four examples presented above—
even though Examples (a) and (c) are legal SML—and for at least one compiler
(namely, SML/NJ), the rejection of these examples is the result of a deliberate
implementation decision [12]. Specifically, SML/NJ’s policy is that no unification
variables created during type inference are permitted to escape to the module
level, even if subsequent code determines how they must be instantiated. This
policy has the benefit of being consistent and predictable, and since program-
mers are not exactly clamoring for the rather contrived Examples (a)-(d) to be
accepted anyway, one may wonder why it has not been adopted more widely.

In fact, there are several reasons why we find SML/NJ’s reject-all approach
unsatisfactory. First and foremost, a consequence of this policy that is well-
known to be irritating to many programmers is that one cannot write a side-
effecting module binding val x = ref nil and have the SML/NJ typechecker
infer the specific type of x from later use within the module—one is forced to
write a type annotation on x.

Second, SML/NJ’s semantics is based on the algorithmic notion of unification
variables escaping to the module level. In order to give a declarative account of
SML/NJ’s semantics, the typing rule for a module-level val-binding would have

6 Derek Dreyer and Matthias Blume

to demand that the expression being bound have a unique type in the case that
it is not a syntactic value. Since uniqueness is a higher-order statement about
the set of all possible typing derivations for a given term, formulating such a
rule requires care in order to ensure that the typing judgment is well-founded.

We believe it is straightforward to show that such a higher-order rule makes
sense, provided that the static semantics of the core language does not depend
on that of the module language (i.e., that module definitions cannot appear
within core terms). This assumption is valid for Standard ML. It is also true for
Extended ML [7], in whose formalization Kahrs et al. employ similar higher-order
rules with different motivation. However, from a language design standpoint, this
condition is unnecessarily limiting. Several implementations of Standard ML
(e.g., Moscow ML and Alice ML) extend the language with features such as
first-class modules [20] and the ability to write module bindings within let-
expressions, which introduce interdependencies between the core and module
languages. It is unclear whether the natural declarative account of SML/NJ’s
semantics is well-founded in the presence of such extensions.

2 Our Approach

Instead of attempting to prohibit any interaction between core type inference
and module type checking, we propose a way of understanding and defining the
semantics of type inference in the presence of modules that is more liberal than
any existing definition or implementation of SML. In fact, our formalization of
type inference (Section 3) embraces the interaction with modules in the sense
that polymorphic generalization and instantiation (typically viewed as strictly
core-language notions) are treated as coercions between the core and module
languages. Moreover, our approach admits a provably sound and complete type-
checking algorithm via a straightforward generalization of Algorithm W . This
is the first (positive) result that we are aware of concerning the interaction of
ML-style modules and Damas-Milner type inference.

One key element of our approach is the idea of classifying functors using
generalized functor signatures (GFS’s), which we sketched at the end of Section 1.
We will characterize their semantics precisely in Section 3.

The second key element of our approach concerns the treatment of abstract
data types. As explained in Section 1, the problem with Example (c) is that we
need access to the abstract type C.t, generated by the functor application G(),
ahead of time so that we can use it to instantiate G’s implicit type argument.
To make this possible, we use ideas and formal techniques from a type system
developed recently by Dreyer [2] (in the study of recursive modules) that provides
precisely the feature we are looking for: forward references to abstract types.

Traditionally, abstract data types are modeled by values of existential type
(∃α.τ), which must be “unpacked” in order to obtain a fresh abstract type α
and a value x of type τ representing the (operations on) values of type α [16].
In Dreyer’s system, the type name α may be created ahead of time, before the
package defining α and the (operations on) values of type α is even available.
This is motivated by the goal of modeling recursive module programming, in
which the abstract type components of a module may be “forward-declared”.

Principal Type Schemes for Modular Programs 7

To see how Dreyer’s approach is useful in typechecking Example (c), let us
first consider the declarative module typing judgment that we will formalize in
Section 3. This judgment has the form ∆ ; Γ ` mod : Σ with α ↓, and can be read:
“In type context ∆ and term/module context Γ, module mod can be assigned
signature Σ and, when evaluated, will define the abstract types α.”1 (Note:

We use α as a semantic representation of the abstract types defined by mod—
the α are not permitted to appear syntactically in mod itself.) An invariant of
this judgment is that the variables α must be bound in the type context ∆—
i.e., they must already have been created prior to the evaluation of mod . In
order to ensure that abstract types are defined exactly once, we follow Dreyer
in employing techniques reminiscent of a linear type system. In particular, we
have several different binding forms for type variables that indicate whether or
not they have been defined. In the typing judgment given above, α are assumed
to be bound in ∆ as undefined (written α ↑K), and the evaluation of mod has
the effect of changing the bindings of α to defined (written α ↓K).

As for Example (c): Under the approach to declarative module typing we have
sketched above, since the binding structure C = G() results in the definition
of an abstract type C.t, the typing of this binding must occur in a context where
C.t, represented semantically by some α, is already bound (as undefined). Since
α must appear in the context of the binding, it is no problem to instantiate G’s
implicit argument using α, and thus Example (c) will be deemed well-typed.

Concerning Example (d): As we argued in Section 1, we believe it is perfectly
legitimate for Example (d) to be accepted, and our declarative module typing
judgment affirms this stance. Specifically, since the body of functor G—let’s call
it mod—defines an abstract type t, it must be that the semantic type variable
α representing t is bound as undefined in the initial context under which mod

is typechecked. As a result, α is in scope throughout all of mod , including the
binding for f, regardless of the order in which t and f are bound. (Admittedly,
this has the somewhat odd effect that f is assigned a type with which the pro-
grammer could not have annotated f explicitly. However, due to the so-called
avoidance problem [11], this situation already arises in SML in other contexts.)

In summary, the main benefit of using this style of declarative typing judg-
ment is that we are freed from worrying about the relative order in which unifi-
cation variables and ADT’s are introduced into scope during type inference.

Finally, since our approach to module typing is based on a type system, which
has been proven type-safe by Dreyer using standard syntactic methods, it is quite
easy to show that our approach is type-safe. Following Harper and Stone [6], we
do not give a dynamic semantics directly for our ML-style module language,
but rather by elaboration (aka evidence translation) into an internal language
type system (IL). In the case of the Harper-Stone alternative formalization of
SML, that IL is a variant of Harper-Lillibridge/Leroy’s module type system [5,
9]. The IL we employ here is a variant of Dreyer’s type system for recursive
modules (minus the recursion) [3]. The details of this translation are given in
Appendix C.

1 We adopt the notation E to mean a (possibly empty) ordered list E1, . . . , En.

8 Derek Dreyer and Matthias Blume

Label Seq’s `s ::= ε | `.`s

Paths P ::= X.`s

Kinds K, L ::= T | Tn →T
Type Con’s con , typ ::= P | α | typ → typ | λ(α).typ | con(typ)
Terms exp ::= P | x | λx.exp | exp1(exp2) | exp : typ | let X=mod in exp
Values val ::= P | x | λx.exp | val : typ

Signatures sig ::= [[K]] | [[= con : K]] | [[∀(α).typ]] | [[` . X : sig]] | (X : sig
1
)→ sig

2

Modules mod ::= P | [con] | [exp] | [` . X =mod] | λ(X : sig).mod | P1(P2) |
let X=mod1 in mod2 | mod :> sig | mod : sig

Fig. 7. External language syntax

Our ability to prove type safety in a straightforward manner is a clear ad-
vantage of our approach over the ad hoc formal approach adopted by the Defini-
tion [15], as well as improvements to the Definition style such as Russo’s [19]. As
we will see in the next section, however, there are several aspects of our declar-
ative typing judgment that are more reminiscent of the Definition than they are
of the Harper-Stone semantics. Our design thus exhibits a viable hybrid of two
approaches to defining SML that are often viewed as incompatible.

3 Declarative Semantics

Figure 7 presents the syntax of our external (i.e., source-level) SML-like lan-
guage. In order to provide a clean formal account of the essential issues, our
formalism pares away some of the syntactic complexities of real SML programs.

First, we model type and value bindings in modules as a special case of
module bindings, in which the module being bound is an atomic type or term
module, i.e., a module containing a single type or term component. The signature
[[K]] models an opaque specification of an atomic type module [con] whose type
(constructor) component con has kind K. The signature [[= con : K]] models a
transparent specification of an atomic type module whose type component is
manifestly equal to con of kind K. The signature [[∀(α).typ]] models a value

specification, classifying atomic term modules [exp] whose term component exp

has type ∀(α).typ. (Note that if α = ∅, this degenerates from a polymorphic type
to a monomorphic type.)

Second, we follow Harper and Lillibridge [5] and model structures as records
[` .X =mod], each of whose components has both a distinct external name
(a label `) and a distinct internal name (a variable X). The label is used to
refer to the component from the outside of the module, whereas the variable
is used to refer to the component in subsequent bindings within the structure.
Thus, each X is bound in the context of the subsequent bindings and may be
alpha-varied. For simplicity, we adopt the ML convention that projections are
not permitted from arbitrary modules. The only projection form is the path P,
which consists of zero or more projections from a module variable X. (Note: We
will usually drop the trailing “.ε” from a path, e.g., writing X instead of X.ε.)

Third, we model the classic distinction between “polytypes” and “mono-
types” as a special case of the distinction between signatures and types. In other

Principal Type Schemes for Modular Programs 9

IL Type Con’s A, τ ::= α | τ1 → τ2 | λ(α).τ | A(τ)

IL Signatures Σ ::= [[= A : K]] | [[τ]] | [[` : Σ]] | Σ1 →Σ2 |
∀(α).Σ | ∀(α ↓K).Σ | ∃(α ↓K).Σ

Type Contexts ∆ ::= ∅ | ∆, α ↑K | ∆, α ↓K | ∆, α

Term/Module Contexts Γ ::= ∅ | Γ, x : τ | Γ, X : Σ

Interpretation of type constructors: ∆ ; Γ ` con ; A : K

∆ ; Γ ` P : [[= A : K]]

∆ ; Γ ` P ; A : K
(1)

Other rules in Figure 12 (Appendix A). . .

Interpretation of signatures: ∆; Γ ` sig ; ∃(α ↓K).Σ

∆ ; Γ ` [[K]] ; ∃(α ↓K).[[= α : K]]
(2)

∆ ; Γ ` con ; A : K

∆ ; Γ ` [[= con : K]] ; ∃().[[= A : K]]
(3)

∆ ; Γ ` typ ; τ : T

∆ ; Γ ` [[∀().typ]] ; ∃().[[τ]]
(4)

∆, α ; Γ ` typ ; τ : T

∆ ; Γ ` [[∀(α).typ]] ; ∃().∀(α).[[τ]]
(5)

∆ ; Γ ` [[]] ; ∃().[[]]
(6)

∆ ; Γ ` sig1 ; ∃(α1 ↓K1).Σ1

∆, α1 ↓K1 ; Γ, X1 : Σ1 ` [[` . X : sig]] ; ∃(α ↓K).[[` : Σ]]

∆ ; Γ ` [[`1 . X1 : sig
1
, ` . X : sig]]

; ∃(α1 ↓K1, α ↓K).[[`1 : Σ1, ` : Σ]]

(7)

∆ ; Γ ` sig
1

; ∃(α1 ↓K1).Σ1 ∆, α1 ↓K1 ; Γ, X : Σ1 ` sig
2

; ∃(α2 ↓K2).Σ2

∆; Γ ` (X : sig
1
)→ sig

2
; ∃().∀(α1 ↓K1).Σ1 →∀().∃(α2 ↓K2).Σ2

(8)

Fig. 8. Interpretation of signatures

words, polymorphic generalization occurs when a core-level value val is encap-
sulated in an atomic term module [val], and polymorphic instantiation happens
implicitly when a module path P is used as a core-level expression. This approach
deconstructs so-called “let-polymorphism” into its orthogonal component parts.
The classic let-polymorphic construct, let x = exp

1
in exp

2
, is encodable in our

language as “let X = [exp
1
] in {x 7→X}exp

2
”.2

Concerning the remaining constructs: Functors are modeled as λ-abstractions.
Functor applications restrict the functor and its argument to be paths, but the
more general SML-style “P(mod)” can be encoded using module-level let as
“let X =mod in P(X)”. The two sealing constructs, mod :> sig and mod : sig ,
model SML’s opaque and transparent signature ascription, respectively.

Figure 8 defines the semantic interpretation of external-language (EL) signa-
tures in terms of internal-language (IL) signatures. The IL is a variant of Dreyer’s
type system for recursive modules [3], but it is not necessary to be familiar with
the whole IL in order to understand how IL signatures are used to interpret EL
signatures. The basic idea is that, in IL signatures, abstract type components
are modeled as type variables, and their scope is made explicit through the use
of universal and existential quantifiers. In fact, IL signatures are very close, both
conceptually and formally, to the semantic objects employed by the Definition.

2 We use {x 7→X} to denote the capture-avoiding substitution of X for x.

10 Derek Dreyer and Matthias Blume

Declarative typing for terms: ∆ ; Γ ` exp : τ

∆; Γ ` P : [[τ]]

∆ ; Γ ` P : τ
(9)

∆ ; Γ ` P : ∀(α).[[τ]] ∆ ` δ : α

∆ ; Γ ` P : δτ
(10)

x : τ ∈ Γ
∆ ; Γ ` x : τ

(11)

∆ ` τ1 : T ∆ ; Γ, x : τ1 ` exp : τ2

∆ ; Γ ` λx.exp : τ1 → τ2

(12)
∆ ; Γ ` exp1 : τ2 → τ ∆; Γ ` exp2 : τ2

∆ ; Γ ` exp1(exp2) : τ
(13)

∆ ; Γ ` exp : τ

∆ ; Γ ` typ ; τ : T

∆ ; Γ ` exp : typ : τ
(14)

∆, α ↑K; Γ ` mod : Σ with α ↓
∆, α ↓K ; Γ, X : Σ ` exp : τ α # FTV(τ)

∆ ; Γ ` let X =mod in exp : τ
(15)

Declarative typing for modules: ∆; Γ ` mod : Σ with α ↓

We omit “with α ↓” if α = ∅ (i.e., if mod does not define any abstract types).

X : Σ ∈ Γ
∆ ; Γ ` X : Σ

(16)
∆ ; Γ ` P : [[. . . , ` : Σ, . . .]]

∆ ; Γ ` P.` : Σ
(17)

∆ ; Γ ` con ; A : K

∆ ; Γ ` [con] : [[= A : K]]
(18)

∆ ; Γ ` exp : τ

∆ ; Γ ` [exp] : [[τ]]
(19)

∆, α ; Γ ` val : τ

∆ ; Γ ` [val] : ∀(α).[[τ]]
(20)

∆ ; Γ ` [] : [[]]
(21)

∆ ; Γ ` mod1 : Σ1 with α1 ↓
∆ @α1 ↓ ; Γ, X1 : Σ1 ` [` . X =mod] : [[` : Σ]] with α ↓

∆ ; Γ ` [`1 . X1 =mod1, ` . X =mod] : [[`1 : Σ1, ` : Σ]] with α1, α ↓
(22)

∆ ; Γ ` sig ; ∃(α1 ↓K1).Σ1

∆, α1 ↓K1, β, α2 ↑K2 ; Γ, X : Σ1 ` mod : Σ2 with α2 ↓

∆ ; Γ ` λ(X : sig).mod : ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2

(23)

∆ ; Γ ` P1 : ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2 ∆ ; Γ ` P2 : Σ

∆ ` Σ � ∃(α1 ↓K1).Σ1 ; δ1 ∆ ` δ : β ∆ ` δ2 : α2 ↑K2

∆ ; Γ ` P1(P2) : δδ1δ2Σ2 with δ2α2 ↓
(24)

∆ ; Γ ` mod1 : Σ1 with α1 ↓
∆ @ α1 ↓ ; Γ, X : Σ1 ` mod2 : Σ2 with α2 ↓

∆; Γ ` let X =mod1 in mod2 : Σ2 with α1, α2 ↓
(25)

∆ ; Γ ` sig ; ∃(α ↓K).Σ ∆, β ↑L ; Γ ` mod : Σ′ with β ↓
∆, β ↓L ` Σ′ � ∃(α ↓K).Σ ; δ′ ∆ ` δ : α ↑K

∆ ; Γ ` mod :> sig : δΣ with δα ↓
(26)

∆ ; Γ ` sig ; ∃(α ↓K).Σ ∆ ; Γ ` mod : Σ′ with β ↓
∆ @β ↓ ` Σ′ � ∃(α ↓K).Σ ; δ′

∆ ; Γ ` mod : sig : δ′Σ with β ↓
(27)

Fig. 9. Declarative typing rules for terms and modules

As we explained in Section 2, type variables α that represent abstract type
components of modules may be bound in type contexts ∆ as undefined (α ↑K)
or as defined (α ↓K). Type contexts provide an additional binding form (written
just α), which is used to represent the implicit type arguments to polymorphic

Principal Type Schemes for Modular Programs 11

functions (and generalized functors). This third binding form is necessary be-
cause implicit type arguments may be instantiated with types that are either
defined or undefined (see Example (c)). All type variables of this third kind
are assumed to have base kind T. Term/module contexts, as one would expect,
bind term variables x to types τ , and module variables X to signatures Σ. We
adopt the convention that contexts are unordered and that commas join together
contexts whose domains are disjoint.

The signature interpretation judgment has the form ∆ ; Γ ` sig ; ∃(α ↓K).Σ,
which means that α (of kinds K) represent the opaque type components of EL
signature sig , and Σ is essentially sig with its opaque components defined trans-
parently in terms of α. For example, sig type t val v : t end would be in-
terpreted as ∃(α ↓T).[[t : [[=α :T]], v : [[α]]]].

Most of the rules for interpreting signatures are straightforward. One point of
note is in Rule 8 for functor signatures. While the ∀→∃ interpretation of SML’s
generative functors is entirely standard (see Russo’s thesis [19]), the “∀().” that
precedes the existential in the result signature is unusual. In fact, this is simply
a degenerate instance of a generalized functor signature (GFS), which may in
the general case use the universal quantifier preceding the existential to bind a
set of implicit type variables. (For example, see Rule 23, discussed below.)

Figure 9 shows the declarative typing rules for terms and modules. In Sec-
tion 2 we explained the interpretation of the module typing judgment, and the
interpretation of the term typing judgment is the standard one. Before consid-
ering the inference rules in detail, let us first define some notation:

We say that A is defined in ∆, written ∆ ` A ↓ K, if ∆ ` A : K and
FTV(A) ⊆ {α | α ↓K ∈ ∆}. We will write ∆ @ α ↓ to mean ∆\{α ↑K | α ∈ α}]
{α ↓K | α ∈ α}. We assume and maintain the invariant that all types are kept in
β-normal form. (Thus, type substitutions are assumed to implicitly β-normalize.)

Definition 3.1 (Well-Formed Type Substitution).
A type substitution δ mapping ∆ to ∆′ is well-formed, written ∆′ ` δ : ∆, if:

1. dom(δ) ⊆ dom(∆)
2. ∀α ↑K ∈ ∆. ∃β ↑K ∈ ∆′. β = δα
3. ∀α1 ↑K1 ∈ ∆. ∀α2 ↑K2 ∈ ∆. (δα1 = δα2) ⇒ (α1 = α2)
4. ∀α ↓K ∈ ∆. ∆′ ` δα ↓ K
5. ∀α ∈ ∆. ∆ ` δα : T

Conditions (2) and (4) ensure that substitutions preserve the (un-)definedness of
type variables, and condition (3) ensures that undefined variables do not become
aliased under substitution. Condition (5) ensures that no restrictions are placed
on the types that can be substituted for implicit variables.

Rule 10 performs polymorphic instantiation when coercing a module path
P to the term level. Given a path P of polytype signature ∀(α).[[τ]], the second
premise of the rule nondeterministically guesses a substitution δ for the implicit
type arguments α, which is then applied to the type τ . Rule 20 performs poly-
morphic generalization when coercing a value val to the module level. It acts as
a dual to Rule 10 in that it nondeterministically guesses a set of implicit α to
be added to the context during the typing of val .

12 Derek Dreyer and Matthias Blume

Rules 21 and 22 define typing for structures. Regarding the latter, there are
two points of note. First, all the abstract types defined by the structure (namely,
α1 and α) are assumed to be bound as undefined in the initial typing context ∆.
Thus, they are in scope throughout the whole structure. Second, note that once
the first module binding (mod 1) is typechecked, the remainder of the structure
is typechecked in a context where α1 are considered defined (namely, ∆ @ α1 ↓).
This ensures that the remainder of the structure will not attempt to redefine α1.
The typing of module-level let (Rule 25) is nearly identical.

Rule 23 defines typing for functors λ(X : sig).mod . The second premise adds
three sets of type variables to the context when typing the functor body. The
α1 represent the abstract type components of the functor argument, which are
assumed to be defined. The β represent the implicit type variables over which
the functor is polymorphically generalized (in much the same way as the α
in Rule 20). The α2 represent the undefined abstract type components that
the functor body mod will define itself. Although the choice of α2 to add to
the context appears to be nondeterministic, the completeness theorem for type
inference will show that there is only one way to choose them.

Rule 24 defines typing for functor applications P1(P2). After checking that P1

has a valid GFS and that P2 has some signature Σ, it uses the signature matching
judgment ∆ ` Σ � ∃(α1 ↓K1).Σ1 ; δ1 to determine whether Σ is coercible to
P1’s argument signature. The signature matching judgment, which is defined
formally in Figure 13 (Appendix A), returns a substitution δ1 representing the
manifest definitions that Σ provides for the abstract type components α1 of P1’s
argument signature. This δ1 has the property that ∆ ` δ1 : α1 ↓K1. The details
of signature matching are largely similar to those in existing accounts of SML.

The fourth premise of Rule 24 nondeterministically guesses a substitution
for P1’s implicit type arguments β (in much the same way as the polymorphic
instantiation in Rule 10). Since the functor application will result in the definition
of a set of abstract types of the shape specified in P1’s result signature (i.e., in
the shape of α2 ↓K2), the last premise of Rule 24 requires that such a set of
abstract types already exist, undefined, in the context ∆. These abstract types
are denoted by δ2α2.

Finally, Rules 26 and 27 define typing for opaque and transparent sealing, re-
spectively. In both rules, the signature Σ′ of the module mod is matched against
the interpretation ∃(α ↓K).Σ of the ascribed signature sig . This results in a sub-
stitution δ′, which conveys how mod implements the abstract type components
α of sig . In the case of opaque sealing, this information is irrelevant, since the
signature of the sealed module keeps the α abstract (albeit renamed by δ, whose
role is similar to that of δ2 in Rule 24). In the case of transparent sealing, the
substitution δ′ obtained from signature matching is applied to Σ in the signature
of the sealed module, thus allowing mod ’s definitions for the α to leak out.

In both sealing rules, mod is permitted to define a set of abstract types β.
However, Rule 26 adds β to the context ∆ when typechecking mod , whereas
Rule 27 assumes β are already present in ∆. The reason for this is as follows. If
mod is opaquely sealed, then β cannot escape the scope of the sealed module—

Principal Type Schemes for Modular Programs 13

Signature inference for modules: ∆; Γ ` mod ⇒ ∃(α ↓K).(Σ; θ)

We omit “∃(α ↓K).” if α ↓K = ∅ (i.e., if mod does not define any abstract types).

∆ ; Γ ` P : Σ

∆ ; Γ ` P ⇒ (Σ; id)
(28)

∆ ; Γ ` con ; A : K

∆ ; Γ ` [con] ⇒ ([[= A : K]]; id)
(29)

∆ ; Γ ` [] ⇒ ([[]]; id)
(30)

∆ ; Γ ` exp ⇒ (τ ; θ) exp not a val

∆ ; Γ ` [exp] ⇒ ([[τ]]; θ)
(31)

∆ ; Γ ` val ⇒ (τ ; θ) α = UV(τ)\UV(θΓ)

∆ ; Γ ` [val] ⇒ (∀(α).[[τ]]; θ)
(32)

∆ ; Γ ` mod1 ⇒ ∃(α1 ↓K1).(Σ1; θ1)

∆, α1 ↓K1 ; θ1Γ, X1 : Σ1 ` [` . X=mod] ⇒ ∃(α ↓K).([[` : Σ]]; θ2)

∆ ; Γ ` [`1 . X1 =mod1, ` . X=mod] ⇒ ∃(α1 ↓K1, α ↓K).([[`1 : θ2Σ1, ` : Σ]]; θ2θ1|Γ)
(33)

∆ ; Γ ` sig ; ∃(α1 ↓K1).Σ1 ∆, α1 ↓K1 ; Γ, X : Σ1 ` mod ⇒ ∃(α2 ↓K2).(Σ2; θ)
α = UV(Σ2)\UV(θΓ) α1, α2 # FTV(θ)

∆ ; Γ ` λ(X : sig).mod ⇒ (∀(α1 ↓K1).Σ1 →∀(α).∃(α2 ↓K2).Σ2; θ)
(34)

∆ ; Γ ` P1 : ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2 ∆ ; Γ ` P2 : Σ

∆ ` Σ � ∃(α1 ↓K1).Σ1 ⇒ (δ; θ) α fresh

∆ ; Γ ` P1(P2) ⇒ ∃(α2 ↓K2).({β 7→α}θδΣ2; θ)
(35)

∆ ; Γ ` mod1 ⇒ ∃(α1 ↓K1).(Σ1; θ1)

∆, α1 ↓K1 ; θ1Γ, X : Σ1 ` mod2 ⇒ ∃(α2 ↓K2).(Σ2; θ2)

∆ ; Γ ` let X=mod1 in mod2 ⇒ ∃(α1 ↓K1, α2 ↓K2).(Σ2; θ2θ1|Γ)
(36)

∆ ; Γ ` sig ; ∃(α ↓K).Σ ∆ ; Γ ` mod ⇒ ∃(β ↓L).(Σ1; θ1)

∆, β ↓L ` Σ1 � ∃(α ↓K).Σ ⇒ (δ; θ2) β # FTV(θ2θ1|Γ)

∆ ; Γ ` mod :> sig ⇒ ∃(α ↓K).(Σ; θ2θ1|Γ)
(37)

∆ ; Γ ` sig ; ∃(α ↓K).Σ ∆ ; Γ ` mod ⇒ ∃(β ↓L).(Σ1; θ1)

∆, β ↓L ` Σ1 � ∃(α ↓K).Σ ⇒ (δ; θ2)

∆ ; Γ ` mod : sig ⇒ ∃(β ↓L).(δΣ; θ2θ1|Γ)
(38)

Fig. 10. Inference rules for modules

i.e., β are local abstract types, which are thus introduced into scope locally by
Rule 26. If mod is transparently sealed, then β can leak out into the signature of
the sealed module, and must therefore be bound in the surrounding context ∆.

4 Type Inference Algorithm

The type inference algorithm for our language is based closely on Algorithm W .
We employ unification variables (u-vars), written α, in the usual way. In par-
ticular, we do not explicitly bind u-vars in the context ∆. The u-vars appearing
free in an expression E, which we write as UV(E), are all taken to have kind T.

The inference judgment for terms has the familiar form ∆ ; Γ ` exp ⇒ (τ ; θ).
Here, ∆, Γ, and exp are considered inputs. τ is the principal type scheme of exp,
meaning that any other type that one can assign to exp declaratively must be
a u-var substitution instance of τ . Lastly, θ is an idempotent u-var substitution

14 Derek Dreyer and Matthias Blume

Signature subsumption: ∆ ` Σ1 v Σ2

∆ ` [[= A : K]] v [[= A : K]]
(39)

∆ ; X : Σ ` X : τ

∆ ` Σ v [[τ]]
(40)

∆, α ; X : Σ ` X : τ

∆ ` Σ v ∀(α).[[τ]]
(41)

∆ ` [[]] v [[]]
(42)

∆ ` Σ1 v Σ′

1 ∆ ` [[` : Σ]] v [[` : Σ′]]

∆ ` [[`1 : Σ1, ` : Σ]] v [[`1 : Σ′

1, ` : Σ′]]
(43)

∆, α1 ↓K1, β′, α2 ↓K2 ` δ : β ∆, α1 ↓K1, β′, α2 ↓K2 ` δΣ2 v Σ′

2

∆ ` ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2 v ∀(α1 ↓K1).Σ1 →∀(β′).∃(α2 ↓K2).Σ
′

2

(44)

Fig. 11. Signature subsumption

whose domain is a subset of UV(Γ). (In some rules, this is enforced by explicitly
writing θ|Γ, which denotes θ with its domain restricted to UV(Γ).) It represents
the minimal substitution that must be applied to Γ in order to make exp well-
typed. The rules for this judgment are standard (see Figure 14 in Appendix A).

Figure 10 defines the inference judgment for modules, which has the form
∆ ; Γ ` mod ⇒ ∃(α ↓K).(Σ; θ). Here, ∆, Γ, and mod are considered inputs.
The α ↓K represent the abstract types that mod wants to define. Unlike the
declarative judgment, inference does not make any assumption that α are bound
(as undefined) in the input context ∆.

Σ is the principal signature scheme of mod , meaning that any other signature
that one can assign to mod declaratively must be “less general” than some u-var
substitution instance of Σ. In traditional presentations of HM, “less general” is
characterized by means of a subsumption relation on polytypes. Since polytypes
in our language are just a special case of signatures, we generalize subsumption
to be a relation on signatures. Defined in Figure 11, the judgment ∆ ` Σ1 v Σ2

says that Σ1 is more general than Σ2. Note that Rules 40 and 41 exploit the
polymorphic instantiation offered by the declarative Rules 9 and 10.

As in the inference judgment for terms, θ is the minimal substitution to be
applied to Γ in order to make mod well-typed. An important point is that the free
variables of θ may include the abstract types α defined by mod . This is critical
because it enables forward references to abstract types. For example, suppose
that, as a result of inference for an earlier binding in the program, a variable X is
bound in Γ with [[β→β]]. If during inference for mod the u-var β is unified with
one of the α defined by mod , then that constitutes a forward reference from the
signature of X to an abstract type defined later in the program, and we want it
in general to be accepted (for the reasons explained in Section 2).

That said, there are instances in which forward references must be prohibited
in order to ensure soundness of type inference. One such instance is the inference
rule for functors (Rule 34), which includes a side condition stipulating that the
abstract type components of the argument and result (α1 and α2, respectively)
do not appear in the free variables of the output substitution θ. This restriction
is necessitated by the fact that α1 and α2 are local abstract types that are only
in scope within the body of the functor. Indeed, the declarative rule for functors
(Rule 23) imposes the same restriction—when typechecking the functor body it

Principal Type Schemes for Modular Programs 15

adds α1 and α2 to ∆ instead of assuming that they were already bound in it to
begin with. This has the effect that the typing of earlier bindings in the program
cannot make forward references to α1 and α2.

We have verified manually that the type inference algorithm is sound and
complete with respect to the declarative semantics. Here we state the soundness
and completeness theorems in abbreviated form (only giving the cases concerning
modules, and with some of the side conditions elided). The full theorem state-
ments, together with relevant auxiliary judgments, are given in Appendix B.

Theorem 4.1 (Soundness).
Assuming certain side conditions on Γ and mod ,
if ∆ ; Γ ` mod ⇒ ∃(α ↓K).(Σ; θ), then ∆, α ↑K ; θΓ ` mod : Σ with α ↓.

Theorem 4.2 (Completeness).
Assuming certain side conditions on Γ, Γ′, θ, and mod ,
if ∆′ ⊇ ∆, α ↑K and ∆′ ` θΓ v Γ′ and ∆′ ; Γ′ ` mod : Σ with α ↓,
then ∆ ; Γ ` mod ⇒ ∃(α ↓K).(Σ′; θ′)
and there exists θ′′ such that θ′′θ′Γ = θΓ and ∆′ ` θ′′Σ′ v Σ.

The premise ∆′ ` θΓ v Γ′ in the completeness statement refers to the natu-
ral generalization of signature subsumption to context subsumption. We use it
here to build a weakening property of declarative derivations directly into the
induction hypothesis, so as to avoid having to prove it separately.

5 Related and Future Work

Russo describes a type inference algorithm for ML with higher-order and first-
class modules, in which he uses alternating ∃∀-quantification to track the scoping
restrictions on abstract types imposed by The Definition [19]. This technique
is also known as unification under a mixed prefix [13]. Although Russo states
soundness and completeness conjectures, he does not attempt to prove them,
and the implementation of his algorithm in Moscow ML rejects Example (a).

Many researchers have investigated the problem of type inference for a wide
spectrum of languages in the design space between Hindley-Milner and System F.
For example, Odersky and Läufer consider the problem of type inference in the
presence of abstract data types and higher-order polymorphism [17]. Their type
system relies on programmer-provided type annotations for handling polymor-
phic function arguments and existentials. It does not, however, include explicit
type abstractions, and thus cannot directly model ML functors. Due to the pres-
ence of programmer-declared existential types, their inference algorithm, like
Russo’s, has to perform unification under a mixed prefix.

For future work, we are interested in extending our type system and its
inference algorithm to more complete languages, in particular to full SML, as
well as to languages with applicative functors [8]. The most prominent example
of such a language is OCaml. Currently, the OCaml compiler rejects all four of
our examples with error messages similar to TILT’s. This comes as no surprise
since, applicative functors aside, the typecheckers of both compilers are based
closely on the Harper-Lillibridge/Leroy type system [5, 9].

16 Derek Dreyer and Matthias Blume

The problems concerning type inference and modules that we have explored
in this work were originally discovered during the development of a modular
account of Haskell-style type classes in ML [4]. Therefore, we hope to be able
to adapt the techniques developed in this paper in order to obtain a similar
soundness and completeness result for modular type classes.

References

1. Luis Damas and Robin Milner. Principal type schemes for functional programs.
In POPL ’82.

2. Derek Dreyer. Recursive type generativity. To appear in Journal of Functional
Programming. Original version appeared in ICFP ’05.

3. Derek Dreyer. Practical type theory for recursive modules. Technical Report TR-
2006-07, University of Chicago, Department of Computer Science, August 2006.

4. Derek Dreyer, Robert Harper, and Manuel M. T. Chakravarty. Modular type
classes. In POPL ’07.

5. Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In POPL ’94.

6. Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML.
In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language, and Interaction:
Essays in Honor of Robin Milner. MIT Press, 2000.

7. Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction. Theoretical Computer Science, 173(2):445–484, 1997.

8. Xavier Leroy. Applicative functors and fully transparent higher-order modules. In
POPL 95.

9. Xavier Leroy. Manifest types, modules, and separate compilation. In POPL ’94.
10. Xavier Leroy. Polymorphic Typing of an Algorithmic Language. PhD thesis, Uni-

versité Paris 7, 1992.
11. Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Sys-

tems. PhD thesis, Carnegie Mellon University, May 1997.
12. David MacQueen, 2006. Private communication.
13. Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,

14:321–358, 1992.
14. Robin Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System Sciences, 17:348–75, 1978.
15. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition

of Standard ML (Revised). MIT Press, 1997.
16. John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.

Transactions on Programming Languages and Systems, 10(3):470–502, 1988.
17. Martin Odersky and Konstantin Läufer. Putting type annotations to work. In

POPL ’96, pages 54–67.
18. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
19. Claudio V. Russo. Types for Modules. PhD thesis, University of Edinburgh, 1998.
20. Claudio V. Russo. First-class structures for Standard ML. Nordic Journal of

Computing, 7(4):348–374, 2000.
21. Andrew K. Wright. Polymorphic references for mere mortals. In ESOP ’92.

Principal Type Schemes for Modular Programs 17

Interpretation of type constructors: ∆ ; Γ ` con ; A : K

∆ ; Γ ` P : [[= A : K]]

∆ ; Γ ` P ; A : K
(1)

α :T ∈ ∆
∆ ; Γ ` α ; α : T

(45)
∀i ∈ {1, 2} : ∆ ; Γ ` typ

i
; τi : T

∆ ; Γ ` typ1 → typ2 ; τ1 → τ2 : T
(46)

∆, α ; Γ ` typ ; τ : T α = α1, . . . , αn

∆ ; Γ ` λ(α).typ ; λ(α).τ : Tn →T
(47)

∆ ; Γ ` con ; λ(α).τ : Tn →T typ = typ
1
, . . . , typ

n

∀i ∈ 1..n : ∆ ; Γ ` typ
i
; τi : T δ = {αi 7→ τi | i ∈ 1..n}

∆; Γ ` con(typ) ; δτ : T
(48)

Fig. 12. Interpretation of type constructors

Matching an EL (translucent) signature: ∆ ` Σ1 � ∃(α ↓K).Σ2 ; δ

∆ ` δ : α ↓K ∆ ` Σ1 � δΣ2

∆ ` Σ1 � ∃(α ↓K).Σ2 ; δ
(49)

Matching an IL (transparent) signature: ∆ ` Σ1 � Σ2

∆ ` [[= A : K]] � [[= A : K]]
(50)

∆ ; X : Σ ` X : τ

∆ ` Σ � [[τ]]
(51)

∆, α ; X : Σ ` X : τ

∆ ` Σ � ∀(α).[[τ]]
(52)

Σ′ = [[` : Σ]]

∆ ` Σ′ � [[]]
(53)

∆ ; X : Σ′ ` X.`1 : Σ′

1 ∆ ` Σ′

1 � Σ1 ∆ ` Σ′ � [[` : Σ]]

∆ ` Σ′ � [[`1 : Σ1, ` : Σ]]
(54)

∆, α′

1
↓K′

1
` Σ′

1 � ∃(α1 ↓K1).Σ1 ; δ1 ∆, α′

1
↓K′

1
, α2 ↑K2 ` δ : β

∆, α′

1
↓K′

1
, α2 ↓K2 ` δδ1Σ2 � ∃(α′

2
↓K′

2
).Σ′

2 ; δ2

∆ ` ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2 � ∀(α′

1
↓K′

1
).Σ′

1 →∀().∃(α′

2
↓K′

2
).Σ′

2

(55)

Fig. 13. Declarative rules for signature matching

A Other Declarative and Inference Rules

Figure 12 defines the interpretation of EL type constructors in terms of IL type
constructors. Figure 13 defines the declarative rules for signature matching. Fig-
ure 14 defines the type inference rules for terms. Figure 15 defines the inference
rules for signature matching.

One point of note: Rule 64, the inference rule for matching an EL signature,
appears superficially to be nondeterministic. Like the corresponding declarative
rule (Rule 49), its first premise guesses a substitution δ with which to fill in the
abstract type components α of Σ2. However, it is easy to prove that, for both
rules, there is only one way to choose δ. The reason is that, by an invariant
of typechecking—formalized below in the last rule of Figure 16—we know that
for each β ∈ α, there is a label sequence `s that leads us to a type component
in Σ2 that is transparently equal to α. Consequently, in order for the signature
matching to succeed, the only possible definition of δβ is the one found by looking
up the corresponding `s component of Σ1.

18 Derek Dreyer and Matthias Blume

Type inference for terms: ∆ ; Γ ` exp ⇒ (τ ; θ)

∆ ; Γ ` P : [[τ]]

∆ ; Γ ` P ⇒ (τ ; id)
(56)

∆ ; Γ ` P : ∀(α).[[τ]] α fresh

∆ ; Γ ` P ⇒ ({α 7→α}τ ; id)
(57)

x : τ ∈ Γ

∆ ; Γ ` x ⇒ (τ ; id)
(58)

α fresh ∆ ; Γ, x : α ` exp ⇒ (τ ; θ)

∆ ; Γ ` λx.exp ⇒ (θα→ τ ; θ|Γ)
(59)

∆ ; Γ ` exp
1
⇒ (τ1; θ1) ∆ ; θ1Γ ` exp

2
⇒ (τ2; θ2) α fresh mgu(θ2τ1, τ2 →α) = θ3

∆; Γ ` exp
1
(exp

2
) ⇒ (θ3α; θ3θ2θ1|Γ)

(60)

∆ ; Γ ` typ ; τ : T ∆ ; Γ ` exp : τ ⇒ θ

∆ ; Γ ` exp : typ ⇒ (τ ; θ)
(61)

∆ ; Γ ` mod ⇒ ∃(α ↓K).(Σ; θ1)

∆, α ↓K; θ1Γ, X : Σ ` exp ⇒ (τ ; θ2) α # FV(τ) ∪ FTV(θ2θ1|Γ)

∆ ; Γ ` let X =mod in exp ⇒ (τ ; θ2θ1|Γ)
(62)

Type inference for terms with a target type: ∆ ; Γ ` exp : τ ⇒ θ

∆ ; Γ ` exp ⇒ (τ ′; θ1) mgu(τ ′, τ) = θ2

∆ ; Γ ` exp : τ ⇒ θ2θ1|Γ
(63)

Fig. 14. Inference rules for terms

Matching an EL (translucent) signature: ∆ ` Σ1 � ∃(α ↓K).Σ2 ⇒ (δ; θ)

∆ ` δ : α ↓K ∆ ` Σ1 � δΣ2 ⇒ θ

∆ ` Σ1 � ∃(α ↓K).Σ2 ⇒ (δ; θ)
(64)

Matching an IL (transparent) signature: ∆ ` Σ1 � Σ2 ⇒ θ

∆ ` [[= A : K]] � [[= A : K]] ⇒ id
(65)

∆ ; X : Σ ` X : τ ⇒ θ

∆ ` Σ � [[τ]] ⇒ θ
(66)

∆, α ; X : Σ ` X : τ ⇒ θ α # FTV(θ)

∆ ` Σ � ∀(α).[[τ]] ⇒ θ
(67)

Σ′ = [[` : Σ]]

∆ ` Σ′ � [[]] ⇒ id
(68)

∆ ; X : Σ′ ` X.`1 : Σ′

1 ∆ ` Σ′

1 � Σ1 ⇒ θ1

∆ ` θ1Σ
′ � [[` : Σ]] ⇒ θ2

∆ ` Σ′ � [[`1 : Σ1, ` : Σ]] ⇒ θ2θ1

(69)

∆, α′

1
↓K′

1
` Σ′

1 � ∃(α1 ↓K1).Σ1 ⇒ (δ1; id) α fresh

∆, α′

1
↓K′

1
, α2 ↓K2 ` {β 7→α}δ1Σ2 � ∃(α′

2
↓K′

2
).Σ′

2 ⇒ (δ2; θ) α′

1
, α2 #FTV(θ|Σ2

)

∆ ` ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2 � ∀(α′

1
↓K′

1
).Σ′

1 →∀().∃(α′

2
↓K′

2
).Σ′

2 ⇒ θ|Σ2

(70)

Fig. 15. Inference rules for signature matching

Principal Type Schemes for Modular Programs 19

Synthesis signatures: ∆ ` Σ ⇑

∆ ` A ↓ K

∆ ` [[= A : K]] ⇑
∆ ` τ : T
∆ ` [[τ]] ⇑

∆, α ` τ : T

∆ ` ∀(α).[[τ]] ⇑

∆ ` Σ ⇑

∆ ` [[` : Σ]] ⇑

∆ ` ∃(α1 ↓K1).Σ1 ⇓ ∆, α1 ↓K1, β ` Σ2 ⇑

∆ ` ∀(α1 ↓K1).Σ1 →∀(β).Σ2 ⇑

∆, α ↓K ` Σ ⇑

∆ ` ∃(α ↓K).Σ ⇑

Analysis signatures: ∆ ` Σ ⇓

∆ ` A ↓ K

∆ ` [[= A : K]] ⇓

∆ ` τ ↓ T

∆ ` [[τ]] ⇓

∆, α ↓T ` τ ↓ T

∆ ` ∀(α).[[τ]] ⇓

∆ ` Σ ⇓

∆ ` [[` : Σ]] ⇓

∆ ` ∃(α1 ↓K1).Σ1 ⇓ ∆, α1 ↓K1 ` Σ2 ⇓

∆ ` ∀(α1 ↓K1).Σ1 →∀().Σ2 ⇓

∆, α ↓K ` Σ ⇓ ∀β ↓L ∈ α ↓K. ∃`s. ∆, α ↓K ; X : Σ ` X.`s : [[= β : L]]

∆ ` ∃(α ↓K).Σ ⇓

Fig. 16. Synthesis and analysis signatures

B Soundness and Completeness

Some definitions:
We say that E is ground, written gnd(E), if UV(E) = ∅.
We say that θ grounds E if ∀α ∈ UV(E). gnd(θα).
We say that θ is well-formed in ∆, written ∆ ` θ ok, if ∀α ∈ dom(θ). ∆ ` θα : T.
We write ∆ ` θ : E if ∆ ` θ ok and dom(θ) ⊆ UV(E).
We write ∆ ` Γ ⇑ if ∀x : τ ∈ Γ. ∆ ` τ : T and ∀X : Σ ∈ Γ. ∆ ` Σ ⇑.
We write ∆ ` Γ1 v Γ2 if dom(Γ1) = dom(Γ2) and ∀x ∈ dom(Γ1). Γ1(x) = Γ2(x)

and ∀X ∈ dom(Γ1). ∆ ` Γ1(X) v Γ2(X).
We write ↑(∆) to denote {α | α ↑K ∈ ∆}, and ↓(∆) to denote {α | α ↓K ∈ ∆}.
We write basis∆(A) to denote {α ∈ FTV(A) | α 6∈ ↓(∆)}.

Proposition B.1 (Properties of Auxiliary Judgments).

1. If ∆ ` Σ ⇓, then ∆ ` Σ ⇑ and gnd(Σ).
2. If ∆ ` θ ok and ∆ ` J (where J ∈ {Σ ⇑, Σ ⇓}), then ∆ ` θJ .
3. If ∆′ ` δ : ∆ and ∆ ` J (where J ∈ {Σ ⇑, Σ ⇓, Σ1 v Σ2}), then ∆′ ` δJ .
4. If α ⊆ ↑(∆) and ∆ ` J (where J ∈ {Σ ⇑, Σ ⇓, Σ1 v Σ2}), then ∆ @ α ↓ ` J .

Proposition B.2 (Properties of Declarative Semantics).
Suppose ∆ ` Γ ⇑.

1. If ∆ ; Γ ` con ; A : K and FTV(con) ⊆ dom(∆),
then ∆ ` A : K and basis∆(A) ⊆ FTV(con).

2. If ∆ ; Γ ` sig ; ∃(α ↓K).Σ and FTV(sig) = ∅, then ∆ ` ∃(α ↓K).Σ ⇓.
3. If ∆ ; Γ ` exp : τ and FTV(exp) = ∅, then ∆ ` τ : T.
4. If ∆ ; Γ ` mod : Σ with α ↓ and FTV(mod) = ∅,

then α ⊆ ↑(∆) and ∆ @α ↓ ` Σ ⇑.

20 Derek Dreyer and Matthias Blume

Proposition B.3 (U-var Substitution for Declarative Semantics).
Suppose ∆ ` Γ ⇑ and ∆ ` θ ok.

1. If ∆ ; Γ ` con ; A : K and FTV(con) ⊆ dom(∆), then ∆ ; θΓ ` con ; A : K.
2. If ∆ ; Γ ` sig ; ∃(α ↓K).Σ and FTV(sig) = ∅,

then ∆ ; θΓ ` sig ; ∃(α ↓K).Σ.
3. If ∆ ; Γ ` exp : τ and FTV(exp) = ∅, then ∆ ; θΓ ` exp : θτ .
4. If ∆ ; Γ ` mod : Σ with α ↓ and FTV(mod) = ∅,

then ∆ ; θΓ ` mod : θΣ with α ↓.
5. If ∆ ` Σ1 � ∃(α ↓K).Σ2 ; δ and ∆ ` Σ1 ⇑ and ∆ ` ∃(α ↓K).Σ2 ⇓,

then ∆ ` θΣ1 � ∃(α ↓K).Σ2 ; δ.
6. If ∆ ` Σ1 � Σ2 and ∆ ` Σ1 ⇑ and ∆ ` Σ2 ⇓, then ∆ ` θΣ1 � Σ2.

Theorem B.4 (Soundness of Inference).
Suppose ∆ ` Γ ⇑ and FTV(exp) = FTV(mod) = ∅.

1. If ∆ ; Γ ` exp ⇒ (τ ; θ), then ∆ ; θΓ ` exp : τ

and ∆ ` θ : UV(Γ)\UV(τ ; θ) and UV(τ ; θ)\UV(Γ) fresh.
2. If ∆ ; Γ ` exp : τ ⇒ θ and ∆ ` τ : T and gnd(τ),

then ∆ ; θΓ ` exp : τ and ∆ ` θ : UV(Γ)\UV(θ) and UV(θ)\UV(Γ) fresh.
3. If ∆ ; Γ ` mod ⇒ ∃(α ↓K).(Σ; θ), then ∆, α ↑K ; θΓ ` mod : Σ with α ↓

and ∆, α ↑K ` θ : UV(Γ)\UV(Σ; θ) and UV(Σ; θ)\UV(Γ) fresh.
4. If ∆ ` Σ1 � ∃(α ↓K).Σ2 ⇒ (δ; θ) and ∆ ` Σ1 ⇑ and ∆ ` ∃(α ↓K).Σ2 ⇓,

then ∆ ` θΣ1 � ∃(α ↓K).Σ2 ; δ and ∆ ` θ : UV(Σ1) and gnd(θ).
5. If ∆ ` Σ1 � Σ2 ⇒ θ and ∆ ` Σ1 ⇑ and ∆ ` Σ2 ⇓,

then ∆ ` θΣ1 � Σ2 and ∆ ` θ : UV(Σ1) and gnd(θ).
6. If mgu(τ1, τ2) = θ and ∆ ` τ1 : T and ∆ ` τ2 : T,

then ∆ ` θ : UV(τ1; τ2)\UV(θ) and UV(θ) ⊆ UV(τ1; τ2).
Furthermore, if either gnd(τ1) or gnd(τ2), then gnd(θ).

Theorem B.5 (Completeness of Inference).
Assume that all the declarative derivations appearing below are ground.
Suppose that ∆ ` Γ ⇑ and ∆′ ⊇ ∆ and ∆′ ` θ ok and θ grounds Γ
and ∆′ ` Γ′ ⇑ and ∆′ ` θΓ v Γ′.

1. If ∆′ ; Γ′ ` con ; A : K and FTV(con) ⊆ dom(∆),
then ∆ ; Γ ` con ; A : K.

2. If ∆′ ; Γ′ ` sig ; ∃(α ↓K).Σ and FTV(sig) = ∅,
then ∆ ; Γ ` sig ; ∃(α ↓K).Σ.

3. If ∆′ ; Γ′ ` exp : τ and FTV(exp) = ∅,
then ∆ ; Γ ` exp ⇒ (τ ′; θ′) and there exists θ′′ such that
∆′ ` θ′′ ok and θ′′ grounds (θ′Γ; τ ′) and θ′′θ′Γ = θΓ and θ′′τ ′ = τ .

4. If ∆′ ; Γ′ ` exp : τ and FTV(exp) = ∅ and ∆ ` τ : T,
then ∆ ; Γ ` exp : τ ⇒ θ′ and there exists θ′′ such that
∆′ ` θ′′ ok and θ′′ grounds θ′Γ and θ′′θ′Γ = θΓ.

5. If ∆′ ⊇ ∆, α ↑K and ∆′ ; Γ′ ` mod : Σ with α ↓ and FTV(mod) = ∅,
then ∆ ; Γ ` mod ⇒ ∃(α ↓K).(Σ′; θ′) and there exists θ′′ such that
∆′ ` θ′′ ok and θ′′ grounds (θ′Γ; Σ′) and θ′′θ′Γ = θΓ and ∆′ ` θ′′Σ′ v Σ.

6. If ∆′ ` Σ′

1 � ∃(α ↓K).Σ2 ; δ and ∆ ` ∃(α ↓K).Σ2 ⇓
and Γ = X : Σ1 and Γ′ = X : Σ′

1,
then ∆ ` Σ1 � ∃(α ↓K).Σ2 ⇒ (δ; θ′) and θθ′Σ1 = θΣ1.

7. If ∆′ ` Σ′

1 � Σ2 and ∆ ` Σ2 ⇓ and Γ = X : Σ1 and Γ′ = X : Σ′

1,
then ∆ ` Σ1 � Σ2 ⇒ θ′ and θθ′Σ1 = θΣ1.

Principal Type Schemes for Modular Programs 21

Evidence translation for terms: ∆; Γ ` exp : τ ; e

∆ ; Γ ` P : [[τ]]

∆ ; Γ ` P : τ ; Val(P)

∆ ; Γ ` P : ∀(α).[[τ]] ∆ ` δ : α

∆ ; Γ ` P : δτ ; Val(P[δα])
x : τ ∈ Γ

∆ ; Γ ` x : τ ; x

∆ ` τ1 : T ∆ ; Γ, x : τ1 ` exp : τ2 ; e

∆ ; Γ ` λx.exp : τ1 → τ2 ; λx : τ1.e

∆ ; Γ ` exp1 : τ2 → τ ; e1 ∆ ; Γ ` exp2 : τ2 ; e2

∆; Γ ` exp1(exp2) : τ ; e1(e2)

∆ ; Γ ` exp : τ ; e

∆ ; Γ ` typ ; τ : T

∆; Γ ` exp : typ : τ ; e

∆, α ↑K ; Γ ` mod : Σ with α ↓ ; M

∆, α ↓K; Γ, X : Σ ` exp : τ ; e α # FTV(τ)

∆ ; Γ ` let X=mod in exp : τ

; Val(new α ↑K in let X =M in [e])

Evidence translation for modules: ∆ ; Γ ` mod : Σ with α ↓ ; M

We omit “with α ↓” if α = ∅ (i.e., if mod does not define any abstract types).

X : Σ ∈ Γ
∆ ; Γ ` X : Σ ; X

∆; Γ ` P : [[. . . , ` : Σ, . . .]] ; P

∆ ; Γ ` P.` : Σ ; P.`

∆ ; Γ ` con ; A : K

∆ ; Γ ` [con] : [[= A : K]] ; [A]

∆ ; Γ ` exp : τ ; e

∆ ; Γ ` [exp] : [[τ]] ; [e]

∆, α ; Γ ` val : τ ; e

∆; Γ ` [val] : ∀(α).[[τ]] ; Λ(α).[e] ∆ ; Γ ` [] : [[]] ; []

∆ ; Γ ` mod1 : Σ1 with α1 ↓ ; M1

∆ @ α1 ↓ ; Γ, X1 : Σ1 ` [` . X=mod] : [[` : Σ]] with α ↓ ; [` . X= M]

∆ ; Γ ` [`1 . X1 =mod1, ` . X =mod] : [[`1 : Σ1, ` : Σ]] with α1, α ↓
; [`1 . X1 =M1, ` . X= M]

∆ ; Γ ` sig ; ∃(α1 ↓K1).Σ1

∆, α1 ↓K1, β, α2 ↑K2 ; Γ, X : Σ1 ` mod : Σ2 with α2 ↓ ; M

∆ ; Γ ` λ(X : sig).mod : ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2

; Λ(α1 ↓K1).λ(X : Σ1).Λ(β).Λ(α2 ↑K2).M

∆ ; Γ ` P1 : ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2 ∆ ; Γ ` P2 : Σ

∆ ` Σ � ∃(α1 ↓K1).Σ1 ; (δ1; F) ∆ ` δ : β ∆ ` δ2 : α2 ↑K2

∆; Γ ` P1(P2) : δδ1δ2Σ2 with δ2α2 ↓ ; P1[δ1α1](F(P2))[δβ][δ2α2]

∆ ; Γ ` mod1 : Σ1 with α1 ↓ ; M1

∆ @α1 ↓ ; Γ, X : Σ1 ` mod2 : Σ2 with α2 ↓ ; M2

∆ ; Γ ` let X=mod1 in mod2 : Σ2 with α1, α2 ↓ ; let X= M1 in M2

∆ ; Γ ` sig ; ∃(α ↓K).Σ ∆, β ↑L ; Γ ` mod : Σ′ with β ↓ ; M

∆, β ↓L ` Σ′ � ∃(α ↓K).Σ ; (δ′; F) ∆ ` δ : α ↑K

∆; Γ ` mod :> sig : δΣ with δα ↓
; new β ↑L in let X= M in let Y = F(X) in set δα := δ′α in Y : δΣ

∆; Γ ` sig ; ∃(α ↓K).Σ ∆ ; Γ ` mod : Σ′ with β ↓ ; M

∆ @β ↓ ` Σ′ � ∃(α ↓K).Σ ; (δ′; F)

∆ ; Γ ` mod : sig : δ′Σ with β ↓ ; let X =M in F(X)

Fig. 17. Evidence translation for terms and modules

22 Derek Dreyer and Matthias Blume

Matching an EL (translucent) signature: ∆ ` Σ1 � ∃(α ↓K).Σ2 ; (δ; F)

∆ ` δ : α ↓K ∆ ` Σ1 � δΣ2 ; F

∆ ` Σ1 � ∃(α ↓K).Σ2 ; (δ; F)

Matching an IL (transparent) signature: ∆ ` Σ1 � Σ2 ; F

∆ ` [[= A : K]] � [[= A : K]] ; λX.X

∆ ; X : Σ ` X : τ ; e

∆ ` Σ � [[τ]] ; λX.[e]

∆, α ; X : Σ ` X : τ ; e

∆ ` Σ � ∀(α).[[τ]] ; λX.Λ(α).[e]

Σ′ = [[` : Σ]]

∆ ` Σ′ � [[]] ; λX.[]

∆ ; X : Σ′ ` X.`1 : Σ′

1 ∆ ` Σ′

1 � Σ1 ; F1 ∆ ` Σ′ � [[` : Σ]] ; λX.[`= M]

∆ ` Σ′ � [[`1 : Σ1, ` : Σ]] ; λX.[`1 =F1(X.`1), ` =M]

∆, α′

1
↓K′

1
` Σ′

1 � ∃(α1 ↓K1).Σ1 ; (δ1; F1) ∆, α′

1
↓K′

1
, α2 ↑K2 ` δ : β

∆, α′

1
↓K′

1
, α2 ↓K2 ` δδ1Σ2 � ∃(α′

2
↓K′

2
).Σ′

2 ; (δ2; F2)

∆ ` ∀(α1 ↓K1).Σ1 →∀(β).∃(α2 ↓K2).Σ2 � ∀(α′

1
↓K′

1
).Σ′

1 →∀().∃(α′

2
↓K′

2
).Σ′

2

; λF.Λ(α′

1
↓K′

1
).λ(X : Σ′

1).

new α2 ↑K2 in let Y =F[δ1α1](F1(X))[δβ][α2] in let Z = F2(Y) in

Λ().Λ(α′

2
↑K′

2
).set α′

2
:= δ2α′

2
in Z : Σ′

2

Fig. 18. Evidence translation for signature matching

C Evidence Translation

Figures 17 and 18 define an evidence translation for our language, i.e., a type-
directed translation of well-typed EL programs into well-typed IL programs that
is based on a particular declarative typing of the EL program. The IL we use
is a slight variant of Dreyer’s type system for recursive modules [3], which has
been proven type-safe by standard syntactic methods. We have verified that
the evidence translation produces well-typed IL programs, as formalized by the
following theorem.

Theorem C.1 (Soundness of Evidence Translation).
Suppose ∆ ` Γ ⇑ and FTV(exp) = FTV(mod) = ∅.

1. If ∆ ; Γ ` exp : τ ; e, then ∆ ; Γ ÌL e : τ .
2. If ∆ ; Γ ` mod : Σ with α ↓ ; M, then ∆ ; Γ ÌL M : Σ with α ↓.
3. If ∆ ` Σ1 � ∃(α ↓K).Σ2 ; (δ; F) and ∆ ` Σ1 ⇑ and ∆ ` ∃(α ↓K).Σ2 ⇓,

then ∆ ; ∅ ÌL F : Σ1 → δΣ2.
4. If ∆ ` Σ1 � Σ2 ; F and ∆ ` Σ1 ⇑ and ∆ ` Σ2 ⇓,

then ∆ ; ∅ ÌL F : Σ1 →Σ2.

