
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

GPS: Navigating Weak Memory with
Ghosts, Protocols, and Separation

Aaron Turon Viktor Vafeiadis Derek Dreyer
Max Planck Institute for Software Systems (MPI-SWS)

{turon,viktor,dreyer}@mpi-sws.org

Abstract
Weak memory models formalize the inconsistent behaviors
that one can expect to observe in multithreaded programs
running on modern hardware. In so doing, however, they
complicate the already-difficult task of reasoning about cor-
rectness of concurrent code. Worse, they render impotent the
sophisticated formal methods that have been developed to
tame concurrency, which almost universally assume a strong
(i.e., sequentially consistent) memory model.

This paper introduces GPS, the first program logic to pro-
vide a full-fledged suite of modern verification techniques—
including ghost state, protocols, and separation logic—for
high-level, structured reasoning about weak memory. We
demonstrate the effectiveness of GPS by applying it to chal-
lenging examples drawn from the Linux kernel as well as
lock-free data structures. We also define the semantics of
GPS and prove in Coq that it is sound with respect to the
axiomatic C11 weak memory model.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs

Keywords Concurrency; Weak memory models; C/C++;
Program logic; Separation logic

1. Introduction
When reasoning about the behavior of a multithreaded pro-
gram, what can we assume about the interactions between
concurrent threads and the shared memory they operate on?
In the vast majority of the research on concurrent program
verification, it is assumed that shared memory accesses are
sequentially consistent (SC)—i.e., there is a single global

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2660193.2660243

RAM, threads take turns interacting with it, and any mem-
ory update performed by one thread is immediately visible
to all other threads. Even assuming sequential consistency,
concurrent program verification is a highly challenging prob-
lem, since one must account for the myriad interleavings of
threads. But fortunately there has been tremendous progress
in recent years on advanced program logics and verifica-
tion tools to help tame the complexity of interleaved execu-
tion [9, 11, 13, 15, 24, 29, 30, 36, 37, 39].

Unfortunately, the assumption of sequential consistency
is unrealistically “strong”: the synchronization required to
implement it on modern architectures precludes useful com-
piler optimizations that reorder memory operations, and is
thus considered by many to be too expensive in general [6].
Instead, languages like C/C++ [20, 21] and Java [26] sup-
port weak (or relaxed) models of memory, in which different
threads may observe operations on shared memory occur-
ring in different orders. To characterize precisely what types
of inconsistent observations are permitted, these language-
level memory models eschew the fiction of a single global
RAM and an interleaving semantics; rather, they model valid
program executions using event graphs, which track depen-
dencies between memory accesses subject to a variety of
consistency axioms, e.g., “if this event is visible to a thread t,
then so are these other events.”

In short, weak memory models are useful in enabling
compilers and hardware to aggressively optimize memory
accesses, but they also invalidate the basic assumptions
underlying existing verification tools and complicate the
semantics of concurrent code. As such, they have led to a
serious gap between the theory and practice of concurrency.

This paper takes a substantial step toward closing that
gap by presenting the first concurrent program logic that is
sound under weak memory assumptions but also supports
a full suite of modern verification techniques: ghost state,
protocols, and separation (GPS). Below, we briefly explain
why these techniques have proven important in reasoning
under strong memory assumptions (§1.1) and the obstacles
we face in adapting them to weak memory (§1.2), before
describing our contributions in more detail (§1.3).

1

1.1 Concurrent program logics: the state of the art
The goal of most program logics is to prove “deep” correct-
ness properties of code, and to do so in a modular fashion,
whereby different components of a program can be verified
in isolation, given only logical specifications (specs) of the
other components. Modern logics for SC concurrency meet
this goal through a variety of mechanisms—among the most
widespread and effective are the following:

Ownership and separation. Concurrent programs are
often inherently modular in the sense that different threads
within a program control (or “own”) disjoint pieces of the
program state. This modularity is important for simplifying
verification: if a thread owns a piece of state, one should be
able to verify the thread’s manipulations of that state with-
out worrying about interference from other threads. Modern
logics encapsulate this kind of reasoning through the mecha-
nisms of ownership and separation.

Consider, for instance, the parallel composition rule of
concurrent separation logic (CSL) [30]:

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 || e2 {Q1 ∗Q2}

Here, Pi and Qi not only describe the facts that hold before
and after the execution of thread ei, they also characterize
the piece of the program state that ei “owns”. The rule thus
says that e1 and e2 may be safely run in parallel—without
any interference checking—so long as P1 and P2 describe
disjoint pieces of state, as enforced implicitly by the use of
the “separating conjunction” P1 ∗ P2 in the precondition.

Protocols. Separation lets one dispense with interference
implicitly when threads do not in fact interfere. But some-
times explicit reasoning about interference is unavoidable,
e.g., when reasoning about racy (lock-free) data structures. In
such cases, the most basic mechanism for restoring modular
reasoning is the invariant, which describes a property hold-
ing of a piece of shared state at all times. With an invariant
installed, different threads can be verified modularly so long
as they all respect the invariant.

More generally, since invariants can be overly restrictive,
modern logics support various forms of protocols for legis-
lating interference. The best-known protocol mechanism is
rely-guarantee [23], which describes the state transitions a
thread may perform (the guarantee) vs. those its environment
may perform (the rely). Recent protocol mechanisms improve
upon rely-guarantee by supporting more abstract/concise
forms of shared state transition systems [37].

Ghost state. Last but not least, ghost (or auxiliary) state
refers generally to any behavior-preserving instrumentation
of a program (or its proof) with additional “logical” state
for the purposes of verification. Ghost state is often used to
expose control flow, or to summarize execution history, in
a way that could not be done just in terms of the “physical”
state manipulated by the program. Furthermore, it is essential
for the completeness of basic concurrency logics.

In newer logics, ghost state, protocols, and separation
are used in tandem to great effect. For example, ghost state
can be used to encode logical “permissions” (or “tokens”),
which are ownable resources that control the ability to make
certain transitions in shared state protocols. Ownership of
permissions can then be transferred back and forth between
threads via the same shared protocols, in turn providing a way
to model the dynamic “role-playing” that occurs in realistic
concurrent code. Logics such as RGSep [39], LRG [16],
Deny-Guarantee [15], VCC [9], Chalice [24], CAP [13],
CaReSL [37], FCSL [29], iCAP [36], and TaDA [11] depend
on such a synthesis of ghost state, protocols, and separation.

1.2 Obstacles to modular weak memory reasoning
While the aforementioned mechanisms provide powerful,
modular reasoning about concurrency, there are serious ob-
stacles to adapting them to weak memory models like those
of C/C++ or Java:

Separation obstacles. Models of concurrent separation
logics have generally assumed the existence of a single global
RAM (pieces of which may be owned by different threads)
and a single global notion of “time” (based on an interleaving
semantics). However, in weak memory models based on event
graphs, there is no clear global notion of a heap or of time,
making it unclear how to model basic notions like Hoare
triples and separation.

Protocol obstacles. Most logics support protocols that
govern multiple memory locations simultaneously, connect-
ing the value of one location to another. But even this simple
mechanism is unsound for weak memory: updates to differ-
ent locations may appear in contradictory orders to different
threads, so a thread can appear to be following the protocol
from its own point of view while violating it from the point
of view of other threads.

Ghost state obstacles. Traditional ghost state is incor-
porated by introducing explicit reads and writes to a program
text, with the constraint that these operations must not change
the code’s observable behavior. But in weak memory models
it is not clear how to usefully incorporate such reads and
writes without also introducing events and ordering into the
event graph that ultimately affect the program’s behavior.

An important first step toward overcoming these obstacles is
the recent work of Vafeiadis and Narayan on Relaxed Sepa-
ration Logic (RSL) [38], the first logic for the C11 memory
model. RSL supports simple, high-level reasoning about re-
source invariants and ownership transfer à la concurrent sepa-
ration logic (CSL) [30]—a particularly simple combination
of protocols and separation. But RSL provides no support
for ghost state or for more complex forms of protocol (e.g.,
rely-guarantee) or ownership transfer.

1.3 This paper
In this paper, we present GPS, the first logic to support ghost
state, protocols and separation in a weak memory setting.

2

GPS builds on the groundwork laid by RSL, extending and
generalizing it in several useful ways:

• Protocols. GPS supports per-location (PL) protocols,
which are modeled after the protocols in recent concur-
rency logics but restricted in order to be sound under weak
memory. The key to regaining soundness is to insist that
a protocol may only precisely dictate the evolution of a
single shared memory location, although it may make
bounded assertions about the state of other memory loca-
tions, e.g., “x’s value may only grow over time, and when
x contains n, y must contain at least n as well.”

• Ghost state. The states of PL-protocols already constitute
a useful form of ghost state for summarizing, e.g., the his-
tory of an execution. To support ownable logical resources
(e.g., permissions), GPS offers an additional facility called
ghosts. Ghosts enable one to create and manipulate what-
ever kind of logical resource one needs for a particular
verification, so long as it can be formulated as a partial
commutative monoid [14, 22, 25].

• Ownership transfer. In prior SC logics, threads can trans-
fer ownership of resources to other threads through the
medium of a shared protocol. GPS’s PL-protocols also
support ownership transfer between threads, but for sound-
ness purposes it is somewhat restricted: the acquiring
thread must perform an explicit synchronization opera-
tion like CAS in order to ensure that it is the exclusive
recipient of the transfer. To facilitate ownership transfer
even when the threads use only plain reads and writes, we
introduce an additional mechanism called escrows.

We demonstrate the use of the above logical features through
a series of concrete motivating examples in §3.

GPS targets the recent C11 [20, 21] memory model, which
offers portable but fine-grained control over memory consis-
tency guarantees. GPS supports verification of programs that
use the three most important consistency modes for C11:
nonatomic, release-acquire and sequentially-consistent (see
§2). Since sequentially-consistent reasoning is relatively well
understood, the paper presents the details only for the first
two modes (but see §6 for further discussion of the SC mode).
It is nonetheless worth stressing that verifications in GPS hold
good under the full axioms of the C11 model (and thus for any
compliant compiler). Moreover, the entire logic, model and
soundness proof of GPS have been formalized in Coq [1].
For space reasons, we focus in this paper almost entirely on
the proof theory of GPS; §3.7 sketches some details of the
semantic model and soundness proof, but for full details we
refer the reader to the appendix and Coq development.

To evaluate GPS, we have applied it to several challenging
case studies drawn from the Linux kernel and lock-free data
structures, as we describe in §4. These examples extend the
reach of existing program logics: we know of no other logic
that can verify them under C11’s weak memory assumptions.
We conclude in §5 and §6 with related and future work.

2. The C11 memory model
Memory models answer a seemingly simple question: when
a thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple
answer: threads read the last value written. SC is based on
interleaving, where threads interact atomically through a
global heap holding each location’s current value.
• In weaker consistency models, the “last value written” to

a location plays no special role—it may not even be well-
defined. Instead, threads can read out-of-date values due
to CPU or compiler optimizations.

The C11 memory model [20, 21] strikes a careful balance
between these extremes by offering a menu of consistency
levels. Broadly, memory operations are classified as either
nonatomic (the default) or atomic. Nonatomic accesses are
intended for “normal data”, while atomic accesses are used
for synchronization.

Nonatomics are governed by a peculiar contract: the
programmer can assume them to be SC, but must (under this
assumption!) never create a data race—roughly, a thread
must never write nonatomically if another thread might
access the same location concurrently. This rule prevents
the program from observing compiler/CPU optimizations on
nonatomics.

Atomics offer the opposite tradeoff: concurrent threads
may race to e.g., update a location atomically, but the mem-
ory model provides weaker guarantees (and admits fewer
optimizations) for atomic accesses in general. The precise
guarantees are determined by an “ordering annotation”, rang-
ing from SC to fully relaxed. In this paper, we focus on the
release-acquire ordering, which is the primary building block
for non-SC synchronization. As such, we will use two order-
ing annotations, O ∈ {at, na}, for atomic (release-acquire)
and nonatomic accesses, respectively. The full version of the
memory model and GPS logic, as formalized in Coq [1], also
includes sequentially-consistent accesses.

Examples Before introducing C11 formally, we build some
intuition through two classic examples. The first is a simpli-
fied version of Dekker’s algorithm, which provided the first
solution to the mutual-exclusion problem [12]:

[x]at := 1
if [y]at == 0 then
/* crit. section */

[y]at := 1
if [x]at == 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct
locations, both with initial value 0.1 The two threads race to
announce their intent to enter a critical section; each thread
then checks whether it announced first. In this simplified
version, even under SC, it is possible for both threads to lose.
Unfortunately, in the C11 model, it is also possible for both
threads to win! The intuition is that C11 allows the reads to

1 We are using here the program logic notation for pointer dereferencing,
[−], which avoids ambiguity with the ∗ of separation logic.

3

Syntax

v ::= x | V where V ∈ N
e ::= v | v + v | v == v | v mod v
| let x = e in e | repeat e end
| if v then e else e | fork e
| alloc(n) | [v]O | [v]O := v
| CAS(v, v, v)

K ::= [] | let x = K in e

T ∈ N fin
⇀ (ActName× Exp)

Event steps e
α−→ e

K[e]
α−→ K[e′] if e

α−→ e′

alloc(n)
A(`..`+n−1)−−−−−−−−→ `

[`]O
R(`,V,O)−−−−−→ V

[`]O :=V
W(`,V,O)−−−−−−→ 0

CAS(`, Vo, Vn)
U(`,Vo,Vn)−−−−−−−→ 1

CAS(`, Vo, Vn)
R(`,V ′,at)−−−−−−→ 0 if V ′ 6= Vo

Machine steps 〈T ;G〉 −→ 〈T ′;G′〉

e
α−→ e′ consistentC11(G′)

G′.A =G.A] [a′ 7→ α]
G′.sb =G.sb] (a, a′)
G′.mo ⊇G.mo
G′.rf ∈ {G.rf, G.rf] [a′ 7→ b]}
〈T] [i 7→ (a, e)];G〉 −→
〈T] [i 7→ (a′, e′)];G′〉

〈T] [i 7→ (a,K[fork e])];G〉 −→
〈T] [i 7→ (a,K[0])]] [j 7→ (a, e)];G〉

Figure 1. Syntax and semantics of a language for C11 concurrency

be performed before the writes have become visible to all
threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics
do enforce some ordering. The goal is to pass a “message”
(in this case, just a single value, 37, but more generally a data
structure) from one thread to another:

[x]na := 37;
[y]at := 1;

repeat [y]at end;
[x]na

Again, we presume x and y are pointers to distinct loca-
tions, initially 0. The repeat construct executes an expres-
sion repeatedly until its value is nonzero, so the second thread
will “spin” until it sees the write to y by the first thread. Un-
like in Dekker’s algorithm, here C11 will guarantee that the
subsequent read from x will return 37. The key difference
is that reading 1 from y yields positive information about
what the first thread has done: if an atomic (release) write
by a given thread is seen by another thread, so is everything
that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm,
by contrast, draws conclusions from not seeing a write by
another thread.

In general, then, release-acquire in C11 doesn’t guarantee
that threads see the “globally-latest” write to a location, but
does guarantee that (1) if a thread sees a particular write, it
also sees everything that happened before it, and (2) of the
writes a thread sees for a location, it reads from the latest.

A final point about the code: its use of y guarantees
that the write to x by the first thread happens before—not
concurrently with—the read of x by the second thread. So
the code is data-race free, despite nonatomic accesses to x.

Event graphs We now present the C11 model formally,
following Batty et al. [3] and subsequent simplifications [4,
38]. Our presentation makes some further simplifications
due to our focus on release-acquire atomics, but GPS is
sound for reasoning about non-atomic, release-acquire and
SC accesses under the official C11 axioms. Reasoning about
more advanced features of the C11 model—namely, relaxed
and consume atomics—is left as future work and discussed
in §6.

Since weak memory models allow threads to see stale
values, they must track the history of an execution and use
it to specify the values a read can return. The C11 model
takes the axiomatic approach: it treats each step of a program
execution as a node in a graph, and then constrains the graph
through a collection of global axioms on several kinds of
edges. Each node is labeled with an action:

α ::= S | A(`..`′) | R(`, V,O) | W(`, V,O) | U(`, V, V ′)

where O ∈ {na, at}. The actions are Skip (no memory inter-
action), Allocate, Read, Write, and atomic Update. Reads and
writes record the location, value read/written, and ordering
annotation. An atomic update U(`, Vo, Vn) simultaneously
reads the value Vo from location ` and updates it with the
new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A
is then a finite partial map from event IDs to actions, which
defines the nodes (and node labels) of a graph. An event graph
G = (A, sb,mo, rf) connects the nodes with three kinds of
directed edges:

Sequenced-before (sb ⊆ dom(A) × dom(A)), which
records the order of events as they appear in the code (i.e.,
“program order”). For convenience, sb is not transitive: it
relates each node only to its immediate successors in program
order (see [38]).

Modification order (mo ⊆ dom(A) × dom(A)), which
is a strict, total order on all the writes to each location, but
does not relate writes to different locations. It determines
which of any pair of (possibly concurrent) writes to a location
is considered to “take effect” first—a determination that is
agreed upon globally.

Reads-from (rf ∈ dom(A) ⇀ dom(A)), which maps each
read to the unique write, if any, that it is reading from. It is
undefined for reads from uninitialized locations.

The goal of the C11 axioms is to constrain the rf relation so
that it provides the guarantees mentioned informally above.
The axioms rely on a pair of derived relations:

Synchronized-with (sw ⊆ dom(A) × dom(A)) defines
those read-write pairs that induce “transitive visibility”, as in

4

the message-passing example above. In the release-acquire
fragment of C11, these include any read/write pair marked as
atomic:

sw , {(a, b) | rf(b) = a, isAtomic(a), isAtomic(b)}

Happens-before (hb , (sb ∪ sw)+) is the heart of the
model: hb(a, b) means that if a thread has observed event b,
then it has observed event a as well; it bounds staleness.

Axioms Only the sb order is determined by the program as
written. The other orders are chosen arbitrarily—except that
they must satisfy C11’s axioms. These axioms include some
sanity checks:

• hb is acyclic (an event cannot happen before itself),
• a location cannot be allocated more than once,
• rf maps reads to writes of the same location and value, and

it is not possible to read a value from a write that happens
later:2

rf(b) = a =⇒ ∃`, V. writes(a, `, V), reads(b, `, V), ¬hb(b, a)

• atomic updates must, in fact, be atomic: the update must
immediately follow the event it reads from in mo:

isUpd(c), rf(c) = a =⇒ mo(a, c), @b. mo(a, b), mo(b, c)

But the heavy lifting of the C11 model is done by a final
axiom, called coherence, which connects mo, rf, and hb:

hb(a, b) =⇒ ¬mo(b, a), ¬mo(rf(b), a),
¬mo(rf(b), rf(a)), ¬mo(b, rf(a))

To see how coherence formally ensures the intuitive guaran-
tees we gave above, we apply it to the simple message-passing
example, this time in graph form:

a:W(x,0,na)

b:W(x,37,na)

d:R(y,1,at)

e:R(x,?,na)

c:W(y,1,at)

 sb

sb sb

rf

rf

rf

sb

(Initialization
of y elided.)

In the depicted execution, the event d in the second thread
reads from the event c in the first thread (which writes 1 to
y). We use coherence to deduce that the subsequent read of x
in event e must read from event b (which writes 37 to x):

• Since sb(a, b), and thus hb(a, b), we have ¬mo(b, a). But
mo is a total order on writes to a location, so mo(a, b).
• Since rf(d) = c, we have sw(c, d) and thus hb(c, d). By

transitivity of hb, we have hb(b, d) and hence hb(b, e).
• Coherence then says that ¬mo(rf(e), b), i.e., that e cannot

read from any write earlier (in mo) than b; in particular, e
cannot read from a. It must read from b.

2 The reads and writes functions extract the locations and values from
normal read/writes as well as atomic updates.

The key is the second step, where we deduce the existence
of an sw edge (and thus the transitive visibility, by hb, of
previous writes). In Dekker’s algorithm, by contrast, when
one thread reads the other’s flag, there are no hb edges that
ensure it sees the “latest” write.

We write consistentC11(G) if a graph G satisfies the
axioms above (plus one more for uninitialized reads).

A language for C11 concurrency Figure 1 gives a sim-
ple language of expressions e with allocation, pointer arith-
metic, thread forking and order-annotated memory oper-
ations. To streamline the semantics, we adopt A-normal
form [18], which requires intermediate computations to be
named through let-binding (the only evaluation context K).
The if expression takes the then branch when its guard is
non-zero. Similarly, repeat executes the given subexpres-
sion until it produces a non-zero value, which is returned.

The semantics is given in two layers. First, expressions e
freely generate actions α through the relation e α−→ e′. Pure
expressions generate the S action (e.g., let x = V in e

S−→
e[V/x]), while expressions that interact with memory generate
corresponding memory model actions. Note that reading
generates an R action for an arbitrary value. The actual
value read is constrained by the second layer, which governs
machine configurations 〈T ;G〉.

Machine configurations track the current pool of threads,
T , and the event graph built up so far, G. For each thread, the
pool maintains (1) the identity of the last event produced by
the thread and (2) an expression giving the thread’s continua-
tion. To take a (non-fork) step, a thread’s continuation must
generate some action α, which is then incorporated into an
updated event graph G′, where it is placed in sb order after
the thread’s previous event. The mo order for G′ can arbitrar-
ily extend the one for G, but because it is a strict total order
on writes, the extension will only add relationships to the
new node. The rf order can likewise only add a read for the
new node, which must read from some previously-existing
write. Finally, the new graph G′ is assumed to satisfy the
C11 axioms, constraining both the possible events and edges.
The validity of this semantics for C11 is discussed in the
appendix [1].

We write JeK for the set of final values e can produce,
starting with a single-node event graph (where the start node
is action S). If at any point e creates a data race or memory
error (defined formally in the appendix), then JeK = err;
the C11 semantics leaves such programs undefined. Any
expression verified by GPS is guaranteed to be free of data
races on non-atomic locations and memory errors.

3. GPS
The C11 memory model successfully serves as a contract
between compiler and programmer, making it possible—
in principle—to resolve disputes (can a read of x here
return 0?) by reference to global axioms. These axioms—
again, in principle—also support certain intuitions about, e.g.,

5

transitive visibility. But, even with an example as simple as
one-shot message passing (§2), the intuitions are not directly
captured by the axioms. Rather, they emerge through chains
of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is relentlessly global: a read
event can potentially read from any write in the graph, so the
axioms must be applied to each write to rule it in or out.

Our goal is to supplement the C11 memory model with
a program logic that (1) directly captures intuitions about
transitive visibility and (2) supports thread-local reasoning.
GPS achieves both goals through

• per-location protocols that abstract away event graphs;
• ghosts and escrows, which govern logical permissions in

the style of recent separation logics.

Setup GPS is a separation logic for an expression language.
Its central judgment is the Hoare triple, {P} e {x. Q}, which
says that when given resources described by P , the expression
e is memory safe and data-race free. If, moreover, e termi-
nates with a value V , it will do so with resources satisfying
Q[V/x]. We will introduce assertions P gradually. For now,
we assume they include the basic operators of multi-sorted
first-order logic:

P ::= t = t | P ∧ P | P ∨ P | P ⇒ P | ∀X.P | ∃X.P

where t ranges over terms. We write t : θ if t has sort θ, and
assume that variables X are broken into classes by sort. For
now, the only sort is Val, ranged over by variables `, x, y, z.

3.1 Per-location protocols
We start with a slight variation on the message-passing
example from §2:

[x]at := 37;
[y]at := 1;

· · · [x]at := 37;
[y]at := 1;

repeat [y]at end;
[x]at

In this variant, there are multiple threads sending the same
message (37),3 and intuitively this works for the same reason
the original does: transitive visibility. We want to articulate
this common intuition in a way that doesn’t depend on how
many threads are sending the message 37 or involve global
reasoning about the event graph.

A tempting starting point is to simply say that the values
that x and y point to progress from (0, 0) to (37, 0) to (37, 1).
In other words, we would like to impose a protocol on the
evolution of x and y. Such protocols are the lifeblood of prior
SC concurrency logics (see §5.1 for details), but alas, the kind
of reasoning they support is unsound for weak memory in
general: it assumes that all threads will see writes to different
locations in the same order. In actuality, independent (i.e., hb-
unrelated) writes to different locations can appear to threads
in different orders, which is why Dekker’s algorithm fails. If
we want thread-local reasoning, we need an approach that
accounts for what our thread may see, while capturing the
happens-before relationship between writes.

3 Note that the writes to x here must be atomic to avoid data races.

The key insight of GPS is that we can constrain the
evolution of values if we focus on one location at a time: mo
provides a linear order, seen by all threads, on the writes to a
given location. Toward this end, GPS provides per-location
protocols, which are state transition systems governing a
single shared location. Using protocols, we can express the
changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event
graph: each state represents a set of write events, while edges
represent mo relationships between them. Thus, for x, we see
that all of the writes of 37 are mo-later than the initial write
of 0. But these independent constraints alone are not enough:
we must ensure that y can only be in state 1 if x is “known”
to be in state 37.

In general, protocol states are abstract; the labels on the
transition systems above are merely suggestive. Each state is
given an interpretation, which constrains the values that may
be written to the location in that state, but may also impose
other constraints—including, as we will see, constraints on
other protocols. (Treating states abstractly allows us to, in
effect, associate a ghost variable with each memory location,
as §4 will show.)

Formally, we assume a sort State of protocol states,
ranged over by variables s. GPS is parameterized by (1) the
grammar of terms of sort State and (2) a set of protocol types
(metavariable τ). For each protocol type τ , the user of the
logic specifies:

• A transition relation vτ , a partial order on states.
• A state interpretation τ(s, z), an assertion in which s and
z appear free (i.e., a predicate on s and z). The assertion
represents what must be true of a value z for a thread to
be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol
type Dat governing location x. Writing abstract states in
bold, we say 0 vDat 0, 0 vDat 37, 37 vDat 37, and define

Dat(s, z) , (s = 0 ∧ z = 0) ∨ (s = 37 ∧ z = 37)

To give the protocol for y, however, we need a way of talking
about the protocol for x in its state interpretations. For this
purpose, GPS offers protocol assertions, ` : s τ , which say
that location ` is governed by the protocol type τ , and has
been observed in state s, thus giving a lower bound on the
current protocol state.

We can now give the protocol for y. We introduce a
protocol type Flg(`) that is parameterized over a location
` (which we will instantiate with x). Again writing abstract
states in bold, we say 0 vFlg 0, 0 vFlg 1, 1 vFlg 1, and

Flg(`)(s, z) , (s = 0 ∧ z = 0)

∨ (s = 1 ∧ z = 1 ∧ ` : 37 Dat)

6

Thus, to move to state 1 in Flg(x), a thread must (1) write 1

to y and (2) have already observed that x : 37 Dat , which
it can ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the
following Hoare triple for atomic reads of a location `:4

∀s′ wτ s. ∀z. τ(s′, z)⇒ Q{
` : s τ

}
[`]at

{
z. ∃s′. ` : s′ τ ∧Q

}
The precondition requires some pre-existing knowledge about
`’s protocol. (For the message receiver, this knowledge will
be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they
must be at least as far as state s in the protocol. The premise
of the rule then quantifies, abstractly, over the write we might
be reading from: it must have moved to some future state s′ in
the protocol, and have written some value z such that τ(s′, z)
holds. From all such possible writes, we derive a common
assertion Q—but note that s′ and z can appear in Q, so it can
tie together the value read and the state observed.

Altogether, we have:{
y : 0 Flg(x)

}
[y]at

z. y : 0 Flg(x) ∧ z = 0

∨ y : 1 Flg(x) ∧ z = 1 ∧ x : 37 Dat

So if a thread reads 1 from y, it learns a lower bound on the
protocol state for x. If it subsequently reads x, it is guaranteed
to see 37.{

y : 1 Flg(x) ∧ x : 37 Dat
}

[x]at
{
z. y : 1 Flg(x) ∧ x : 37 Dat ∧ z = 37

}
Before describing the rest of GPS, we briefly consider the

connection to the C11 model. GPS assertions say what is
known at each point in a thread’s code, with each such point
corresponding to a node in the event graph. A thread will only
be able to claim ` : s τ if a write moving ` to (abstract) state
s happens before the corresponding node in the event graph.
But because writes to ` in mo order correspond to moves
within the protocol, the thread can subsequently read only
from a write in some state s′ wτ s. PL-protocols have allowed
us to abstract away from the event graph and to reason thread-
locally: the thread receiving the message does not need to
know anything about the code/events of the sending threads
except that they follow the protocols.

3.2 Physical resources
GPS makes the simplifying assumption that each location is
either always used nonatomically (i.e., for data), or always
used atomically (i.e., for synchronization). Atomic locations
can be freely shared between threads, which can only make
protocol assertions about them; since protocol assertions are

4 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

{P} e {x. Q}
{P ∗R} e {x. Q ∗R}

{Q} e {true}
{P ∗Q} fork e {P}

{P} e {x. Q} ∀x. {Q} e′ {y. R}
{P} let x = e in e′ {y. R}

P ⇒ Q

P V Q

{P} e {x. (x = 0 ∧ P) ∨ (x 6= 0 ∧Q)}
{P} repeat e end {x. Q}

P V Q

P ∗RV Q ∗R

P ′ V P {P} e {x. Q} ∀x. QV Q′{
P ′
}
e
{
x. Q′

}
Figure 2. A selection of basic logical rules for GPS

just lower bounds, they are invariant under interference from
other threads. Nonatomic locations, on the other hand, must
be treated as resources to ensure that only one thread can
write to them at a time, in order to avoid data races. GPS thus
includes the assertions

P ::= · · · | uninit(`) | ` ↪→ v | P ∗ P
which resemble traditional separation logic, except that loca-
tions begin uninitialized. The heap assertion ` ↪→ v means
that ` is classified as nonatomic, and currently points to
value v. We thus get the usual separation logic axioms for
nonatomic locations:

{true} alloc(n)
{
x. uninit(x) ∗ · · ·

∗ uninit(x+ n− 1)

}
{uninit(`) ∨ ` ↪→ −} [`]na := v {` ↪→ v}

{` ↪→ v} [`]na {x. x = v ∗ ` ↪→ v}

The separating conjunction P ∗ Q requires that resources
claimed by P are disjoint from those of Q, e.g.,

uninit(`) ∗ uninit(`′)⇒ ` 6= `′

` ↪→ v ∗ `′ : s τ ⇒ ` 6= `′

but since atomic locations are shared, separation enforces
only that different observations about their state cohere:

` : s τ ∗ ` : s′ τ ′ ⇒ τ = τ ′ ∧ (svτ s′ ∨ s′vτ s)

In addition to these axioms, GPS supports the usual rules for
a concurrent separation logic; see Figure 2.

3.3 Ghost resources
Our earlier presentation of protocols implicitly assumed that
all threads can make the same moves within a protocol. But
we often want to say that only certain threads have the right
to make a particular move. To do so, we add non-physical
resources—ghosts—to GPS. These purely logical resources
are used to express arbitrary notions of permission that can
be divided amongst threads. Here we explain what ghosts
are; the subsequent subsections explain how they are used
together with protocols.

Following recent work in separation logic [14, 22, 25], we
model ghosts as partial commutative monoids (PCMs): GPS
is parameterized by a collection of PCMs µ, such that

7

• There is a sort PCMµ for each µ,
• Terms of sort PCMµ include unit εµ and composition ·µ.

The unit represents the empty permission, while t ·µ t′
combines the permissions t and t′. We do not want all
compositions to be defined: we want certain permissions to be
exclusive, meaning that they do not compose with themselves.
So composition is a partial function, but is commutative and
associative where defined (and εµ ·µ t = t for any t).

Within the logic, we add ghost assertions, γ : t µ , which
claim ownership of the ghost permission t drawn from some
PCM µ. Since we may want to use many instances of a par-
ticular PCM, ghosts have an identity γ. Being nonphysical,
ghosts are manipulated entirely through the rule of conse-
quence, which is generalized to allow ghost movesV, rather
than just implications; see Figure 2. These moves allow
new ghosts t to appear out of thin air, with a fresh iden-
tity: true V ∃γ. γ : t µ . Once a ghost is created, it can be
split apart using ∗, as follows:

γ : t ·µ t′ µ ⇔ γ : t µ ∗ γ : t′ µ

We take γ : t ·µ t′ µ to be false if t ·µ t′ is undefined.
A very simple but useful kind of permission is a token,

which is meant to be owned by exactly one thread at a time.
We can model this as a PCM, Tok, with two elements, ε and
� (the token), with ε · � = � = � · ε. We leave the composition
� · � undefined, so that γ : � Tok ∗ γ : � Tok ⇒ false.
Hence, GPS ensures the token for ghost γ cannot be owned
twice. (We use this PCM in several examples in §3.6.)

3.4 Taking stock: resource ownership vs. knowledge
We have now seen the full complement of resource ownership
assertions (physical and ghost) provided by GPS, with ∗
combining or separating them. Ownership can be divided by
the fork rule (Figure 2), which allows the parent thread
to donate some of its resources to the child thread. But
we will also need to transfer ownership between already-
running threads—while ensuring, of course, that claims of
ownership are not duplicated in the process. GPS provides
two mechanisms for doing so, one physical and the other
nonphysical, described in the next two subsections.

Both mechanisms rely on a fundamental distinction be-
tween assertions possibly involving resource ownership (like
` ↪→ v) and assertions only involving knowledge (like t = t′).
The key is that, while ownership can come and go, knowledge
remains true forever.

GPS has a modality � for knowledge, where �P holds
if P is true and does not depend on resource ownership—
and therefore will remain true forever. These properties of
knowledge are captured in two axioms:

�P ⇒ P �P ⇔ �P ∗�P

Using the second axiom and the frame rule, we can derive:
{P ∗�R} e {x. Q}

{P ∗�R} e {x. Q ∗�R}

Knowledge is retained no matter what an expression does.
Knowledge includes assertions that are “pure” in the

parlance of separation logic, like equalities on terms, but
it also includes protocol observations:

t = t′ ⇒ �(t = t′) ` : s τ ⇒ � ` : s τ

On the other hand, assertions about ownership never consti-
tute knowledge: the axiom �(` ↪→ v)⇒ false says that it is
impossible to treat nonatomic ownership as knowledge.

Finally, the � modality distributes over ∧, ∨, ∀, and ∃.

3.5 Ownership transfer through protocols
To explain physically-based ownership transfers, we consider
a simple spinlock:

newLock() , let x = alloc(1) in [x]at := unlocked; x

lock(x) , repeat CAS(x, unlocked, locked) end

unlock(x) , [x]at := unlocked

where unlocked = 0 and locked = 1. We want to reason about
this lock in the style of concurrent separation logic [30], i.e.,
we want to be able to prove the following triples:

{P} newLock() {x. �isLock(x)}
{isLock(x)} lock(x) {P}

{isLock(x) ∗ P} unlock(x) {true}

Here, the assertion P is an arbitrary resource invariant (e.g.,
claiming ownership of nonatomic locations) protected by the
lock, while isLock represents the permission to use the lock.
These triples reflect a transfer of ownership of the resources
satisfying P , first upon creation of the lock, and then between
each successive thread that acquires the lock. But the whole
point of the lock is to ensure that when multiple threads
race to acquire it, only one will win—and it is the use of
CAS that guarantees this, by physical atomicity. We want
to leverage the fact that CAS physically arbitrates races to
logically arbitrate ownership transfers.

To do so, we revise our understanding of protocol state
interpretations: rather than just a way to communicate knowl-
edge between threads, they are more generally a way to trans-
fer resource ownership between threads. For the spinlock, we
can get away with a simple protocol type LP having a single
state Inv, where

LP(Inv, z) , (z = unlocked ∗ P) ∨ z = locked

Intuitively, whenever a thread releases the lock, it must have
reestablished the resource invariant P , which it then relin-
quishes, allowing P to be transferred to the next thread ac-
quiring the lock. We can then define isLock(x) , x : Inv LP .

To initialize an atomic location ` with state s and value v,
a thread must relinquish resources τ(s, v):

{uninit(`) ∗ τ(s, v)} [`]at := v
{
` : s τ

}
which is reflected in the triple for newLock() above.

8

{
P
}

let x = alloc(1) in{
uninit(x) ∗ P

}
[x]at := unlocked;{
x : Inv LP

}
x{
�(isLock(x))

}

{
isLock(x)

}
repeat{

x : Inv LP
}

CAS(x, unlocked, locked){
z. x : Inv LP ∗ ((z = 1 ∗ P) ∨ z = 0)

}
end{
P
}

{
isLock(x) ∗ P

}{
x : Inv LP ∗ P

}
[x]at := unlocked{
x : Inv LP ∗ true

}{
true

}
Figure 3. Proof outlines for the simple spinlock implementation

Subsequently, we can reason about CAS as follows:

∀s′ wτ s. τ(s′, Vo) ∗ P V ∃s′′ wτ s′. τ(s′′, Vn) ∗Q
∀s′′ wτ s. ∀y 6= Vo. τ(s

′′, y) ∗ P ⇒ �R{
` : s τ

∗ P

}
CAS(`, Vo, Vn)

{
z. ∃s′′. ` : s′′ τ ∗
((z=1 ∗Q) ∨ (z=0 ∗ P ∗�R))

}

The two premises of the rule correspond to the CAS

succeeding or failing, respectively. In the successful case,
we observe the protocol in some state s′, and choose a new
state s′′ that is reachable from it. To make the move from s′

to s′′, we (1) gain the resources τ(s′, Vo), because we won
the race to CAS, but (2) must relinquish resources τ(s′′, Vn),
which can be transferred to the next successful CAS on `. We
can use any resources P we owned beforehand, and we get
to keep any leftover resources Q.

The failure case works like an atomic read, except that we
do not learn the exact value observed; we know only that it
differs from the expected value Vo. Since multiple threads
can read from the same write, it should not be possible to gain
resources by reading alone—but it should still be possible to
gain knowledge. Thus the full read rule is:

∀s′ wτ s. ∀z. τ(s′, z) ∗ P ⇒ �Q{
` : s τ ∗ P

}
[`]at

{
z. ∃s′. ` : s′ τ ∗ P ∗�Q

}
This rule differs from the version we gave earlier in two
respects. First, the assertionQ is placed under the�modality,
ensuring that readers only gain knowledge, not resources,
through the protocol. Second, the precondition includes an
arbitrary assertion P , which we combine via ∗ with the
interpretation of the state we are reading.

The inclusion of the assertion P enables rely-guarantee
reasoning through protocols. For the protocol to be in state
s′, some thread must have written z to ` while also giving up
resources τ(s′, z). If we read from this write, we know that
the resources involved must be disjoint from any resources P
we currently own. We can therefore rule out certain protocol
states on this basis. The typical way to do so is through ghosts:
we can require that, to move to a certain protocol state s′, a
thread must give up a ghost t (e.g., a token). Thus, if a thread
owns some ghost t′ such that t·t′ is undefined, then the thread
knows that the protocol cannot be in state s′. We illustrate
this kind of reasoning in the next subsection.

Finally, we have a rule for atomic writes:

P V τ(s′′, V) ∗Q ∀s′ wτ s. τ(s′,−) ∗ P ⇒ s′′ wτ s′{
` : s τ ∗ P

}
[`]at :=V

{
` : s′′ τ ∗Q

}
Writes are surprisingly subtle. Prior to writing, our thread
knows some lower bound s on the protocol state. But because
the write may be racing with unknown other writes (or CASes),
we do not know (or learn!) the “current” state of the protocol.
Instead, we must move to a state s′′ that is reachable from
any state s′ wτ s that concurrent threads may be moving
to. As with reads and CASes, though, we know that any such
state s′ must be satisfiable with resources disjoint from our
resources, P . In particular, if τ(s′,−) ∗ P ⇒ false, then we
do not have to show that s′′ wτ s′.

In summary:
• Reads relinquish nothing and gain knowledge.
• Writes relinquish ownership and gain nothing.
• CASes relinquish and gain ownership when successful,

and behave like reads when unsuccessful.

Returning to the simple spinlock example introduced at
the beginning of this subsection, Figure 3 contains the proof
outlines for newLock(), lock(x), and unlock(x). The proofs
are straightforward and follow immediately from the rules
for atomic accesses given in this subsection and the rules of
Figure 2.

3.6 Ownership transfer through escrows
We have just shown how GPS axiomatizes ownership transfer
for programs that use the explicit, built-in form of synchro-
nization offered by CAS. But in fact programs can and do
build up their own implicit mechanisms for ownership trans-
fer without using CAS (which is relatively expensive). We
already saw such implicit synchronization at work in the
original version of our “message-passing” example from §2:

[x]na := 37;
[y]at := 1;

repeat [y]at end;
[x]na

Unlike the version of this example that we showed how to
verify in §3.1, this version transfers ownership of a nonatomic
location (x ↪→ 37) from one thread to another, and it does
so without using CAS. Intuitively, the reason this works is
that the threads have agreed ahead of time—implicitly—that
once y is set to 1, the second thread will have the exclusive
permission to take ownership of x. (Indeed, the transfer would

9

be unsound if there were two copies of the second thread
operating concurrently.) However, since the second thread
does not use CAS, it cannot transfer ownership of x directly
out of y’s protocol—some additional mechanism is needed.

Thus we are led to the final concept in GPS: escrows.5

The idea is that a thread may indirectly transfer a resource to
another thread by placing it “under escrow”: it is then inac-
cessible to any thread until some exclusive, logical condition
is met, at which point the thread meeting the condition gains
ownership of it. GPS is parameterized over a set of escrow
types (metavariable σ) and definitions, written σ : P Q.
Here Q represents the resource to be placed under escrow,
while P represents the transfer condition, which must be
exclusive (P ∗ P ⇒ false) to ensure that ownership of Q is
only transferred out of the escrow to one receiving thread.

Escrows are created and used via ghost moves, where the
assertion [σ] says that an escrow of type σ is known to exist:

σ : P Q

QV [σ]

σ : P Q

P ∧ [σ]V Q
[σ]⇒ �[σ]

The first rule allows Q to be put under escrow; ownership
is lost, in exchange for the knowledge [σ]—and because
[σ] is knowledge, it can be learned about through reading.
When later extracting the resource Q from the escrow [σ],
the condition P is consumed; this fact, together with the
exclusivity of P , ensures that an escrow can only be used to
transfer ownership once.

Returning to the message-passing example, the idea is to
define an escrow type, XE(γ), which governs the transfer of
the resource x ↪→ 37. The escrow type is parameterized by γ,
which is the name of an exclusive ghost token, γ : � Tok ,
that will be used to guard the escrow (i.e., as its transfer
condition). The second thread will start out as the (unique)
owner of this token, but then exchange it for ownership of x.
Formally, we define XE(γ) as follows:

XE(γ) : γ : � Tok x ↪→ 37

We then define a single protocol governing y, namely YP(γ),
with states 0 and 1 and transition relation≤, and the following
state interpretations:

YP(γ)(0, z) , z = 0

YP(γ)(1, z) , z = 1 ∗ [XE(γ)]

This protocol enforces that y progresses from 0 to 1, and
when it is set to 1, the escrow XE(γ) must exist. Thus, before
the first thread sets y to 1, it must first transfer the resource
x ↪→ 37 into the escrow XE(γ) so that it can then pass
the knowledge of this escrow’s existence into the protocol.
Once the second thread receives this knowledge from the
protocol (by reading y as 1), it can trade in its ghost token for
ownership of the resource x ↪→ 37, as desired. This reasoning
is summarized in the proof outline in Figure 4 (omitting the
Tok type in the ghost assertions for brevity).

5 As we discuss in Section 5, escrows are closely related to Bugliesi et al.’s
notion of “exponential serialization” [7].

{
x ↪→ 0 ∗ y : 0 YP(γ)

}
[x]na := 37;{
x ↪→ 37 ∗ y : 0 YP(γ)

}{
[XE(γ)] ∗ y : 0 YP(γ)

}
[y]at := 1;{
y : 1 YP(γ)

}

{
γ : � ∗ y : 0 YP(γ)

}
repeat [y]at end;{
γ : � ∗ y : 1 YP(γ)

∗ [XE(γ)]

}
{
x ↪→ 37

}
[x]na{
z. z = 37 ∗ x ↪→ 37

}
Figure 4. Proof outline for nonatomic message-passing

A more challenging application of escrows Although the
above example succinctly illustrates the basic idea of escrows,
it is perhaps not the most compelling one, given that it can be
handled by other means in prior logics (such as RSL [38]).

We therefore turn now to an interesting synchronization
algorithm (suggested to us by Ernie Cohen), whose GPS
verification demonstrates an elegant use of escrows and
which, to our knowledge, is beyond the reach of prior logics:

[x]at := choose(1, 2);
repeat [y]at end;
if [x]at == [y]at then
/* crit. section */

[y]at := choose(1, 2);
repeat [x]at end;
if [x]at != [y]at then
/* crit. section */

The goal of this algorithm is to guarantee mutual exclusion
using release-acquire atomics, but without using CAS. The
idea is that each thread sets its respective variable (x or y)
to either 1 or 2 (using a nondeterministic choice operator,
choose) and then checks the value chosen by the other thread.
This enables the threads to synchronize implicitly based on a
logical condition: the first thread wins if the values pointed
to by x and y are equal, and the second wins if they are not.

Implicit in the algorithm is the invariant that once each
thread sets its variable to 1 or 2, it will not change it further.
As a consequence, unlike in Dekker’s algorithm (§2), each
thread in Cohen’s algorithm relies only on positive informa-
tion about the progress of the other thread—e.g., has y been
set to some nonzero value yet and, if so, what?—in order to
determine if it has won the race. Intuitively, it is this restric-
tion to positive reasoning that makes Cohen’s algorithm work
under release-acquire semantics while Dekker’s doesn’t.

We now sketch the verification of Cohen’s algorithm
(full details are given in the appendix [1]). Suppose that the
winning thread should gain exclusive access to some shared
resource P . To verify Cohen’s algorithm, our basic idea is
to place P under an escrow PE at the beginning (prior to
the execution of either thread). The transfer condition for
this escrow will be defined so as to be satisfiable only by
whichever thread wins the race. Thus, once that thread knows
it has won, it can unlock the escrow and gain access to P .

Formally, at the beginning of the proof, four tokens will be
created and passed to the two threads: the first thread (which
sets x) will be given the tokens γx1 : � and γx2 : � , and the

second thread (which sets y) will be given the tokens γy1 : �

and γy2 : � . The γ1’s will be used to guard access to the

10

aforementioned escrow, and the γ2’s will be used to guard
access to transitions in the protocols governing x and y.

Speaking of which: when x and y are initialized to 0,
they will be associated with Choice(γx2) and Choice(γy2),
respectively, where Choice(γ) is the following protocol with
states 0, 1, 2:

0

1

2

Choice(γ)(s, z) ,

s = z ∧ (s = 0 ∨ γ : � Tok)

This protocol captures not just the irreversible choices made
for x and y, but also control over who can make these choices:
only the owner of the ghost token γx2 : � —i.e., the first
thread—will be able to change the state of x and transition
from the 0 state of Choice(γx2) to the 1 or 2 states, and
similarly only the second thread will be able to change the
state of y’s protocol.

Finally, we come to the definition of the PE escrow, under
which P is placed at the beginning of the proof:

PE(γx1 , γ
y
1) : ∃i, j > 0.

x : i Choice(γx2) ∧
y : j Choice(γy2) ∧

 γx1 : � Tok ∧ i = j

∨ γy1 : � Tok ∧ i 6= j

 P

The transfer condition on this escrow says that, in order to
access P , a thread must know that x and y are both in nonzero
states—i.e., that both threads have made their irreversible
choices—and that either the states are equal and the thread
owns γx1 , or they are distinct and the thread owns γy1 . In
either case, the thread that owns the relevant token is the
winning thread. Note that the fact that the transfer condition
is exclusive, which is necessary in order for it to be a valid
transfer condition, follows easily from the combined use of
tokens and protocol assertions. In particular, the proof rule
shown at the end of §3.2 dictates that if x : i and x : i′ for
i, i′ > 0, then i = i′ (and similarly for y, j, j′).

3.7 Soundness
The main soundness result for GPS is simple to state:

Theorem 1 (Soundness). If {true} e {x. P} is provable then
JeK ⊆ {V | JP [V/x]K 6= ∅}.
The theorem says that Hoare triples proved in GPS accurately
predict the final result of a closed program, according to the
C11 memory model.

But to prove this theorem, we must be able to relate the
Hoare triples of the logic to C11’s event graphs, which do not
provide the global notion of “current state” that the semantics
of triples usually depend on.

Overview of the model and proof We structure the seman-
tics of triples into two layers: local safety and global safety.

Local safety steps through the execution of a single thread,
but instead of using an event graph and the C11 axioms to
restrict the actions produced by the thread, it essentially re-
plays the rules of GPS. For example, when a thread performs

an acquire read, local safety enforces that the location be-
ing read is governed by a PL-protocol, and the value read
is then constrained by that protocol—exactly mirroring the
logic’s rule for acquire reads. Thus local safety provides a
kind of “rely/guarantee semantics”: it checks that an abstract
execution of a given thread follows the rules of the logic (i.e.,
making valid protocol moves) while relying on protocols
to predict the outcome of reads (i.e., valid protocols moves
made by other threads). When a new thread is forked, local
safety is checked independently for the new thread and its
parent. Since local safety is just a restatement of GPS’s rules
in small-step form, it is easy to show that the proof rules of
GPS preserve local safety.

Global safety applies to labeled event graphs, where the
labels annotate graph edges with resource and knowledge
transfers from the point of view of GPS. By imposing
appropriate constraints on the labeling, global safety connects
the logical assumptions made in local safety with the physical
reality of the event graph.

The heart of the soundness argument is then to show that
if a whole program is locally safe, it is globally safe. We do
this by building up the C11 event graph step-by-step (much
like the operational semantics), showing for each new event
that (1) the existing labeling implies the rely for the event,
and (2) the event’s guarantee, which we know by local safety,
implies that we can extend the labeling to include it.

Unfortunately, space constraints prevent us from de-
scribing the semantic model and proof—both of which are
substantial—in full detail here. Below, we sketch a few of
the key details. The full semantic model is described in the
appendix, and the entire model and soundness proof (as well
as an extension of the logic to handle SC accesses) have been
formalized and checked in our Coq development [1].

Resources In the semantics of GPS, a resource r is a tuple
(Π, g,Σ) containing:

• A physical location map Π from locations to either a value
(for nonatomics) or a protocol and state (for atomics).
• A ghost identity map g from ghost names to an element

of the corresponding ghost PCM.
• A known escrow set Σ containing all escrow types cur-

rently in play.

Resources form a PCM with composition ⊕, and assertions
are interpreted as sets of resources, e.g.,

r ∈ JP1 ∗ P2K , ∃r1, r2. r = r1⊕r2, r1 ∈ JP1K , r2 ∈ JP2K

The structure of resources and definition of ⊕ are designed
to support the axioms on assertions we gave in §3.

Local safety With resources in hand, we can define a
semantic version of ghost moves r V P , which says that
from resource r it is possible to take a ghost move to resources
described by the (semantic) assertion P . We can also define
two functions

rely, guar : Resource× Action→ P(Resource)

11

that describe the rely and guarantee constraints on updating
resources, given that we are performing some action α. For
example, if α = R(`, V, na) and r claims that ` ↪→ V ′, then

rely(r, α) = if V = V ′ then {r} else ∅

which says that the action is only possible if the value it
claims to read is the one the logic says the location has.
This precisely mirrors the rule for nonatomic reading, and
in particular yields no new resources. For atomic locations,
the protocol state is allowed to advance, again mirroring the
logic’s rule for atomic reads.

We can then define local safety:

rpre ∈ LSafe0(e,Φ) , always
rpre ∈ LSafen+1(e,Φ) ≈ (simplified; see appendix)

If e ∈ Val then rpre V Φ(e)
If e = K[fork e′] then
rpre ∈ LSafen(K[0],Φ) ∗ LSafen(e′, true)

If e α−→ e′ then ∀r ∈ rely(rpre, α). ∃P. r V P and
∀r′ ∈ P. ∃rpost ∈ guar(r′, α). rpost ∈ LSafen(e′,Φ)

which is indexed by the number of steps for which we demand
safety. (An expression is “locally safe” if LSafen holds for
all n.) Local safety can be understood as giving weakest
preconditions: LSafen(e,Φ) is the set of starting resources
for which e can safely execute for n steps with postcondition
Φ (a semantic predicate). We then define

|= {P} e {x.Q} , ∀n. ∀r ∈ JP K. r V LSafen(e, Jx. QK)

Theorem 2 (Local soundness). All of the proof rules given
in §3 are sound for this semantics of Hoare triples.

Global safety We then define a notion of global safety,
written GSafen(T , G,L), over an instrumented thread pool
T , an event graph G, and a labeling L.

The instrumented thread pool T maps each thread to a tu-
ple (a, e, r,Φ), specifying the last event a that the thread per-
formed in the event graph, the remainder e of its computation,
the resources r that it currently holds, and its postcondition
Φ. Global safety at n assumes that each thread is locally safe
for n more steps, given its resources and postcondition.

The labeling L annotates hb edges of the graph with
resource transfers between the nodes, and is constrained to
ensure that each node obeys the corresponding guar condition.
Since each atomic write to a location ` is associated logically
with a move in `’s protocol, the labelingL also annotates each
write event for ` with information about the corresponding
state to which `’s protocol was updated.

The labeling must then globally ensure the following:

• Compatibility: any set of “concurrent” resource transfers
(i.e., roughly, those that are not hb-related) must be
composable with one another, ensuring that exclusive
resources are never duplicated.
• Conformance: if mo(a, b) for two atomic writes/updates

to ` with protocol τ , the protocol states with which a and
b are labeled must be related by vτ .

Soundness The key theorem is a kind of simulation be-
tween the expression semantics and global safety:

Theorem 3 (Instrumented execution). If GSafen+1(T , G,L)
and 〈erase(T);G〉 −→ 〈T ′;G′〉 then there is some T ′,L′

such that erase(T ′) = T ′ and GSafen(T ′, G′,L′).

Our main soundness result, given at the beginning of the
section, is then a corollary connecting the proof theory all the
way to the C11 execution (for closed expressions).

4. Case studies
We have applied GPS to three challenging case studies
for weak memory reasoning: Michael and Scott’s lock-free
queue [28], as well as circular buffers [19] and bounded ticket
locks [10] (both adapted from the Linux kernel). Note that
the first two of these exhibit non-SC behavior to their clients
(cf. §5). For space reasons, we focus here on the proof for
circular buffers, which we describe in some detail. For full
details of all three examples, see the appendix [1].

Circular buffers Figure 6 shows the code for a simplified
variant of the circular buffer data structure drawn from the
Linux kernel. It is a fixed-size queue, implemented using an
array that “wraps around”. Specifically, the queue pointed
to by q consists of an N -cell array (at q + b), together with
a reader index (at q + ri) specifying the array offset of the
next item to be consumed, and a writer index (at q + wi)
specifying the array offset of the next item to be produced.
The “active” part of the queue consists of the array elements
starting at the reader index and ending at the one prior to the
writer index, wrapping around modulo N . Hence, if the two
indices are equal, then the buffer is empty, and if the writer
index is one before the reader index (modulo N), then the
buffer is full (with N − 1 elements).

The tryProd and tryCons operations first check the two
indices to see whether the buffer is full or empty, respec-
tively. If so, they return 0. Otherwise, they proceed by writ-
ing/reading the element at the writer/reader index and then
incrementing that index (modulo N). Since accesses to the
actual data in the buffer are completely synchronized, the
cells comprising the array itself can be read and written non-
atomically. All synchronization is performed through the
reader/writer indices. Note, however, that (as in Cohen’s ex-
ample from §3.6) this synchronization is entirely implicit: the
algorithm uses plain writes, not CAS, to increment the indices.
While this is an efficiency win (e.g., on x86, the algorithm
requires no fences), it means that only one producer and one
consumer can operate simultaneously.

The specification We will prove the following spec:

{true} newBuffer() {q. Prod(q) ∗ Cons(q)}
{Prod(q) ∗ P (x)}tryProd(q, x){z. Prod(q) ∗ (z 6=0 ∨ P (x))}

{Cons(q)} tryCons(q) {x. Cons(q) ∗ (x=0 ∨ P (x))}

The spec is parameterized over a predicate P that should
hold of all the elements in the buffer; it guarantees that P (x)

12

all , (N,N,N,N)

restP(i) , ((> i), (≥ i), ∅, ∅)
restC(i) , (∅, ∅, (> i), (≥ i))

protP(i) , ({i}, ∅, ∅, ∅)
escP(i) , (∅, {i}, ∅, ∅)
protC(i) , (∅, ∅, {i}, ∅)
escC(i) , (∅, ∅, ∅, {i})

Prod(q) , ∃γ, i, j. i < j +N ∗ q + wi : i PP(γ, q) ∗ q + ri : j CP(γ, q) ∗ γ : restP(i)

Cons(q) , ∃γ, i, j. j ≤ i ∗ q + wi : i PP(γ, q) ∗ q + ri : j CP(γ, q) ∗ γ : restC(j)

PP(γ, q)(i, x) , γ : protP(i) ∧�x = i mod N ∧�∀j < i. [CE(γ, q, j)]

CP(γ, q)(j, x) , γ : protC(j) ∧�x = j mod N ∧�∀i < j +N. [PE(γ, q, i)]

PE(γ, q, i) : γ : escP(i) uninit(q + b+ (i mod N)) ∨ (q + b+ (i mod N)) ↪→ −
CE(γ, q, j) : γ : escC(j) ∃x. P (x) ∗ (q + b+ (j mod N)) ↪→ x

Figure 5. Technical setup for the circular buffer case study

holds of all elements x that the consumer consumes so long
as it holds of all elements x that the producer produces. This
predicate can thus be used in typical separation-logic style to
transfer ownership of data structures from producer to con-
sumer.6 The spec also employs two predicates Prod(q) and
Cons(q), which describe the privilege of acting as producer
or consumer, respectively. These predicates are exclusive re-
sources, ensuring that there can only be one call to tryProd

and one call to tryCons running concurrently. Their defini-
tions (in Figure 5) are described below.

Note that this spec is rather weak because it does not
enforce that the buffer actually implements a queue. This
is merely for simplicity—it is easy to generalize our proof
to handle a stronger spec, e.g., in which P , Prod, and Cons
are allowed to keep track of the entire sequence of elements
produced thus far.

High-level picture Our proof of the above spec (Figure 6)
depends on all the features of GPS working in concert.
Figure 5 shows the technical setup for the proof.

First, we use protocols PP and CP to govern the states
of the writer and reader indices, respectively. The state of
each of these protocols tracks the “absolute state” of the cor-
responding index, meaning the total number of writes/reads
that have ever occurred, which can only increase over time
(the state ordering is ≤). The state interpretation of PP/CP
then dictates that the “physical state” of the writer/reader
index equal the absolute state modulo N .

Second, since the buffer does not use CAS, it is not possible
to use the PP and CP protocols to directly transfer ownership
of the cells in the buffer between the producer and consumer.
Fortunately, we can indirectly exchange ownership of the
buffer cells instead, by (a) placing the cells under escrows,
and (b) using PP and CP as a conduit for the knowledge that
these escrows, once created, exist. Specifically, after filling a
buffer cell with a new element, the producer will pass control
of the cell to the consumer via the CE escrow (see Step 10
in the proof of tryProd); upon consumption, the consumer
will pass control of the cell back to the producer via the PE
escrow. The state interpretations of PP and CP offer a way
to communicate awareness of these escrows back and forth.

6 In the case that the buffer is full, i.e., return value z = 0, the tryProd

operation simply returns ownership of P (x) to the caller.

Third, we use ghost tokens in a manner similar to the
proof of Cohen’s example from the previous section. The
protP(i) and protC(i) tokens are needed in order to transition
to (absolute) state i of the PP and CP protocols, respectively,
while the escP and escC tokens are used as transfer conditions
for the PE and CE escrows. In both cases, the producer and
consumer each start out with all the tokens they will ever need
(i.e., restP(0) and restC(0)) as part of their exclusive resource
predicates Prod(q) and Cons(q), and they proceed to “spend”
one protocol token and one escrow token upon each call to
tryProd/tryCons. All these tokens are defined in Figure 5
as elements of the ghost PCM P(N)× P(N)× P(N)× P(N)
(with composition defined as componentwise]).

Finally, tying everything together, Prod(q) and Cons(q)
assert bounded knowledge about the states of the PP and
CP protocols, thus enforcing the fundamental invariant of
circular buffers:

The absolute writer index is at least 0 and less than N cells
ahead of the absolute reader index.

Now, the reader (of this paper, not the buffer) may rightly
wonder: how can this fundamental invariant possibly be
enforced in the weak memory setting, given that it concerns
the states of two separate cells being updated by different
threads? The answer is that, although neither the producer
nor the consumer can fully assume or maintain this invariant
themselves, they are each able to enforce a piece of it
sufficient to verify their own correctness. In particular, the
consumer controls the progress of the reader index, and can
therefore assume and maintain the invariant that the reader
index never overtakes the writer index (the “at least 0” part),
while the producer controls the progress of the writer index,
and can therefore assume and maintain the invariant that
the writer index never leaves the reader index more than
N − 1 cells behind (the “less than N” part). Together, these
piecemeal enforcements of the fundamental invariant are
enough to perform the full verification.

Proof outline for tryProd Figure 6 displays the proof out-
line for tryProd(q, x). (The proof for tryCons is almost
dual, and the proof for newBuffer is comparatively simple;
see the appendix.) We explain here some of the most impor-
tant steps in the proof. Throughout, note that assertions under

13

wi , 0, ri , 1, b , 2

newBuffer()

let q = alloc(N+2)
[q + ri]at := 0;
[q + wi]at := 0;
q

tryProd(q, x)

let w = [q + wi]at
let r = [q + ri]at
let w′ = w + 1 mod N
if w′ == r then

0
else

[q + b +w]na :=x;
[q + wi]at :=w

′;
1

tryCons(q)

let w = [q + wi]at
let r = [q + ri]at
let r′ = r + 1 mod N
if w == r then

0
else

let x = [q + b + r]na
[q + ri]at := r

′;
x

Proof outline for tryProd(q, x):{
Prod(q) ∗ P (x)

}
(1)

{
γ : restP(i) ∗ P (x) ∗�

(
i < j0 +N ∧ q + wi : i PP(γ, q) ∧ q + ri : j0 CP(γ, q)

)}
let w = [q + wi]at

(2)
{
γ : restP(i) ∗ P (x) ∗�(w = i mod N ∧ ∀k < i. [CE(γ, q, k)])

}
let r = [q + ri]at

(3)

{
γ : restP(i) ∗ P (x) ∗�

(
r = j mod N ∧ q + ri : j CP(γ, q)

∧ j0 ≤ j ∧ ∀k < j +N. [PE(γ, q, k)]

)}
(4)

{
γ : restP(i) ∗ P (x) ∗�(i < j +N ∧ [PE(γ, q, i)])

}
let w′ = w + 1 mod N{
γ : restP(i) ∗ P (x) ∗�(w′ = w + 1 mod N)

}
(5) if w′ == r then

{
γ : restP(i) ∗ P (x)

}
0
{
z. Prod(q) ∗ z = 0 ∗ P (x)

}
else

{
γ : restP(i) ∗ P (x) ∗�(w′ 6= r)

}
(6)

{
γ : restP(i) ∗ P (x) ∗�(i+ 1 < j +N)

}
(7)

{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ γ : escP(i)

}
(8)

{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ (uninit(q + b+ w) ∨ (q + b+ w) ↪→ −)

}
[q + b +w]na :=x;

(9)
{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ (q + b+ w) ↪→ x

}
(10)

{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ [CE(γ, q, i)]

}
[q + wi]at :=w

′;

(11)
{
γ : restP(i+ 1) ∗ q + wi : i+ 1 PP(γ, q)

}
1

(12)
{
z. Prod(q) ∗ z = 1

}
Figure 6. Proof excerpt for the circular buffer case study

� are only written once and then used freely in the rest of the
proof since they hold true forever after.

Step 1: By unfolding Prod(q), we gain access to our piece
of the fundamental invariant, namely that the absolute writer
index i is less than N past the absolute reader index, which
is at least j0.

Step 2: The reason we know exactly what i is—but merely
have a lower bound on j0—is that we own the protocol tokens
protP(k) for all k > i, constraining the possible “rely” moves
that other threads can make in the PP protocol. In this step,
we exploit that knowledge to assert that the value w we read
is exactly i mod N .

Step 3: Here we read the current reader index r, whose
absolute state j must be at least j0 (as mentioned already).
From the read of protocol CP at state j, we also gain
knowledge of the escrows PE(γ, q, k) for all k < j +N .

Step 4: Since i < j0 +N ≤ j +N , the escrows we just
learned about in the previous step include PE(γ, q, i), which
we need later.

Step 5: If the buffer is full, i.e., r = (w + 1) mod N , then
the operation is a no-op and we simply return P (x) back to
the caller.

Step 6: Otherwise, r 6= (w + 1) mod N . We know from
Step 4 that i < j +N , and we want to show i+ 1 < j +N

because this is the piece of the fundamental invariant that we
are responsible for maintaining when we bump up the writer
index at the end of the operation (Step 12). To prove this, we
must establish i + 1 6= j + N . So suppose the opposite is
true: i+ 1 = j +N . Then, since w = i mod N , we obtain
(w + 1) mod N = (i+ 1) mod N = (j +N) mod N =
j mod N = r. Contradiction.

Step 7: From our stash of tokens (restP(i)), we peel off a
protocol token (protP(i+ 1)) for advancing to the (i+ 1)-th
state of the PP protocol, and an escrow token (escP(i)) for
accessing the escrow PE(γ, q, i) that we learned about in
Step 4.

Step 8: We access the escrow, thereby gaining ownership
of the buffer cell at index w.

Step 9: We non-atomically write x to the buffer cell.
Step 10: We pass control of the buffer cell back to the con-

sumer by placing it under the consumer escrow CE(γ, q, i).
Step 11: We advance the absolute writer index (i.e., the

state of the PP protocol) to i+1, which we can do because (a)
we own the token protP(i+ 1), and (b) we have knowledge
of CE(γ, q, i).

Step 12: Thanks to Step 6, we have preserved the “less
than N” part of the fundamental invariant, as demanded by
Prod(q).

14

5. Related work
5.1 From SC reasoning to weak memory reasoning
As explained in the introduction, the various logical mecha-
nisms employed by GPS are not fundamentally new: they are
all either descendants or restrictions of mechanisms proposed
in prior logics for strong (SC) concurrency.

First and foremost, many recent SC logics support some
form of protocol for describing fine-grained invariants on
shared state; GPS’s per-location (PL) protocols are inspired
most directly by the protocols of CaReSL [37]. CaReSL’s
protocols take the form of state transition systems (STSs)
wherein each STS state is associated with an invariant
about some underlying shared state. The primary differ-
ence between GPS’s protocols and CaReSL’s protocols is
that CaReSL’s protocols are not restricted to governing the
contents of a single location: they may govern arbitrary heap
regions, and this additional flexibility renders them suitable
for verifying programs that assume sequential consistency.

For instance, the CaReSL protocol for verifying Dekker’s
algorithm (§2) would look something like this:

0, 0

1, 0

0, 1

1, 1

Here, each protocol state governs the contents of x and y
simultaneously. In the (1, 0) state the first thread has won the
race; in the (0, 1) state the second thread has won the race;
and in the (1, 1) state the race is over (and it is impossible
to tell who won). The verification of Dekker’s algorithm just
has to ensure that (a) each thread only makes state changes
according to the protocol, which is easy since updating x or
y from 0 to 1 is always legal according to the protocol, and
(b) each thread only accesses the shared resource once it has
observed the protocol being in its respective winning state.

In the weak memory setting, the kind of simultaneous
invariant represented by the above protocol, relating the
“current” states of x and y, is unsound because the updates to
x and y may appear in different orders to the first and second
threads. It is a key original insight in the design of GPS that
the soundness of CaReSL-style protocols for weak memory
can in fact be regained if we simply restrict them to governing
a single location at a time.

GPS’s support for ghost state is also inspired by CaReSL,
but the mechanisms are somewhat different. CaReSL supports
ghost state through “tokens”, which are coupled with its
protocol mechanism, whereas in GPS ghost state is handled
separately via ghost PCMs [14, 22, 25]. (In this paper, we
have only made use of simple token-like ghost PCMs, but the
“bounded ticket lock” example, shown in the appendix [1],
employs a much more interesting PCM.) GPS’s separation
of orthogonal mechanisms has the side benefit of removing
CaReSL’s “token purity” restriction—e.g., in the circular
buffer example from Section 4, we did not require any

side condition on the per-item predicate P (x), whereas an
analogous proof in CaReSL would have required that P (x)
be a “token-pure” (i.e., duplicable) assertion.

GPS’s escrows, P Q, can be viewed as yet another kind
of CaReSL-style protocol, restricted in a different way than
PL-protocols are. Escrows are essentially protocols with two
states: before and after the resource being held in escrow, Q,
has been exchanged for the escrow condition, P . Escrows are
sound in the weak memory setting because the only thread
that can observe anything at all about the protocol is the
thread that exchanges P for Q. Since that thread owns P , and
P is exclusive, it can deduce that the escrow is in the before
state, and therefore safely transition to the after state, without
any concern about the observations of other threads.

Although in the context of concurrency logics the escrow
mechanism is unusual, there is some precedent for it: escrows
are very similar to “exponential serialization”, a mechanism
proposed by Bugliesi et al. [7] as part of an affine type system
for verifying cryptographic protocols. Bugliesi et al. employ
this mechanism for much the same reasons we do—namely,
as a way of indirectly transferring control of an exclusive
resource from one thread to another across a duplicable,
“knowledge-only” channel. However, in their case the channel
takes the form of a cryptographic signing key, whereas for us
it is a shared memory location. Logically, the main difference
between escrows and exponential serialization is that the
precondition of escrow creation—i.e., that the escrow transfer
condition P is exclusive (P ∗ P ⇒ false)—is something we
can prove easily within the logic of GPS. In contrast, since
the primitive affine predicates of Bugliesi et al.’s type system
have no underlying semantic interpretation, they can only
ensure the analogous exclusiveness condition via a complex
and syntactic “guardedness” check on typing contexts.

5.2 Relaxed Separation Logic (RSL)
The closest related work to GPS is the recent Relaxed Separa-
tion Logic (RSL) introduced by Vafeiadis and Narayan [38],
which is the only prior program logic for the C11 memory
model. The goal of RSL is to support simple reasoning about
release-acquire accesses in the style of Concurrent Separation
Logic (CSL) [30]. Unlike in GPS, it is possible in RSL for a
release write to directly transfer resource ownership to an ac-
quire read (e.g., in verifying the nonatomic message-passing
example, for which GPS required escrows). To manage such
transfers, RSL employs release/acquire permissions describ-
ing the resources to be transferred upon a write to a given
location. The choice of resources depends solely on the value
being written, and so any given value can only be used to
perform a transfer once per location.

GPS draws much inspiration from RSL, particularly in
its proof of soundness, whose structure is based closely
on RSL’s. There are many significant differences, however.
Most importantly, GPS offers a much more flexible way of
coordinating ownership and knowledge transfers between
threads—including rely-guarantee reasoning—through its

15

protocols, ghosts, and escrows. These mechanisms refactor
and generalize the permission-based reasoning of RSL, thus
allowing us to lift several of RSL’s restrictions, including
the one on repeated writes of the same value. Lifting this
restriction is crucial for handling the indices in the circular
buffer, and the ticket numbers in the bounded ticket lock,
as these are cases where the same value is “recycled” (i.e.,
written to a location multiple times, and each time used to
perform a different resource transfer). To our knowledge,
none of our case studies can be verified in RSL.

5.3 Alternative approaches
Most existing approaches to reasoning about weak memory
rely in some way on recovering strong memory assumptions,
either by imposing a synchronization discipline or by reason-
ing directly about low-level hardware details.

Recovering SC by synchronization discipline Most mem-
ory models satisfy the so-called fundamental property [34]:
they guarantee sequential consistency for “sufficiently syn-
chronized” code. (Synchronization operations like memory
fences effectively thwart compiler and CPU optimizations.)
Thus, if one can use a concurrency logic or some other means
to enforce a strong synchronization discipline, one can re-
cover strong memory reasoning for programs that follow that
discipline. Instances of this approach include:

• Owens [31] proves that data-race free and “triangular-race”
free programs on x86-TSO have SC behavior.
• Batty et al. [4] prove that for C11 restricted to nonatomics

and SC-atomics, data-race freedom ensures SC behavior.
• Cohen and Schirmer [8] prove that programs following a

certain ownership discipline and flushing write buffers at
certain times on TSO models have SC behavior.
• Ferreira et al. [17] prove that concurrent separation logic

is sound for a class of weak memory models satisfying a
data-race freedom guarantee.

All of these disciplines force programs to use enough syn-
chronization to keep weak memory behavior unobservable.
We view them as complementary to GPS: they delimit an im-
portant subset of programs for which SC reasoning is sound
within a weak memory model. Ultimately, our goal is to de-
rive such disciplines within a more general weak memory
program logic like GPS. Our treatment of locks in §3 already
does this for the simple case of recovering CSL-style rea-
soning within weak memory: our lock spec provides the key
concurrency rules for CSL as a derived set of rules in GPS.

We believe the extra generality of GPS is important
because it enables us to verify a wider class of weak memory
programs, including those whose observable behavior is not
SC. The circular buffer and Michael-Scott queue are good
examples of this (see the appendix [1]). Singh et al. [35]
argue that one should not expose the high-level programmer
to such non-SC data structures, but GPS shows that in fact it
is possible to reason sensibly and modularly about them.

Recovering SC through low-level reasoning Another way
of recovering strong memory is to explicitly model low-level
hardware details (e.g., per-processor write buffers) within
one’s logic [33, 40], or to transform the program being
verified so that interactions with write buffers, for instance,
are made manifest in its code [2]. While this type of approach
can accommodate arbitrary programs and enable the reuse
of existing SC techniques, it provides little abstraction or
modularity: users of such an approach must reason directly
with the low-level hardware details, with relatively little help
given in structuring this reasoning.

Ridge [33] provides a program logic for x86-TSO that
supports rely-guarantee reasoning. The logic works directly
with the operational x86-TSO model [32], and includes
assertions about both program counters and write buffers.
Rely constraints must be stable under the (nondeterministic)
flushing of write buffers.

Wehrman and Berdine [40] propose a separation logic for
x86-TSO which directly models store buffers and provides
both temporal and spatial separating conjunctions, as well
as resource invariants in the style of CSL. Unfortunately, the
logic as proposed has some (known) soundness gaps, and to
our knowledge a sound version has not yet been developed.

6. Future work
While GPS makes a significant step forward in reasoning
about release/acquire semantics, there is much work left to
do to develop a full understanding of the C11 memory model.

Interaction with SC In our Coq development, we show
that the reasoning principles for release-acquire atomics ap-
ply to SC atomics as well. In addition, we believe that if each
memory location were uniquely used in conjunction with
one access mode (e.g., always release-acquire or always SC),
then it would be straightforward to supplement GPS with
completely separate (and stronger) reasoning principles for
SC atomics, along the lines of prior SC logics. However, the
C11 model allows programmers to freely mix memory order-
ings, and ideally program logics should support such mixed
reasoning as well. Early investigation suggests that the C11
model has some corner cases when mixing memory orderings
that may obstruct compositional reasoning principles.

Consume reads The C11 memory model supports a weaker
mode for reads, called consume reads, under which happens-
before relationships are only introduced for subsequent ac-
tions that depend on the value that was read. Such consume
reads are used crucially, for example, in the implementation
of read-copy-update (RCU) synchronization in the Linux ker-
nel [27]. We believe it should be possible to extend GPS with
support for consume reads, and that reasoning about compo-
sitionally about them will likely require the introduction of a
modality encapsulating possible data dependencies.

Relaxed operations Finally, C11 offers fully relaxed mem-
ory orderings, which induce no happens-before relationships.

16

If both relaxed reads and writes are allowed, the formal C11
model permits causal cycles: an execution can produce a
value “out of thin air” through a cycle of relaxed read and
write operations [5]. As noted in the RSL paper [38], these
cycles inhibit even very basic forms of logical reasoning,
including single-location invariants, and they also inhibit
program analyses that are routinely used for optimization.
(RSL includes rules for reasoning about relaxed accesses, but
only under a severely restricted version of the C11 memory
model.) We therefore believe that C11 should be revised to
rule out these and other causal cycles, which will enable us
to find sound reasoning principles for relaxed operations.

Acknowledgments
This work is partially supported by the EC FP7 FET project
ADVENT. We would also like to thank Xiao Jia, Ralf Jung,
and Joe Tassarotti for helpful comments and corrections.

References
[1] Appendix and Coq development for this paper available at the

following URL: http://plv.mpi-sws.org/gps/.
[2] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Soft-

ware verification for weak memory via program transformation.
In ESOP, 2013.

[3] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.
Mathematizing C++ concurrency. In POPL, 2011.

[4] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell.
Clarifying and compiling C/C++ concurrency: From C++11 to
POWER. In POPL, 2012.

[5] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for
C/C++ concurrency. In POPL, 2013.

[6] H.-J. Boehm and S. V. Adve. Foundations of the C++ concur-
rency memory model. In PLDI, 2008.

[7] M. Bugliesi, S. Calzavara, F. Eigner, and M. Maffei. Logi-
cal foundations of secure resource management in protocol
implementations. In POST, 2013.

[8] E. Cohen and B. Schirmer. From total store order to sequential
consistency: A practical reduction theorem. In ITP, 2010.

[9] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
practical system for verifying concurrent C. In TPHOLs, 2009.

[10] J. Corbet. Ticket spinlocks, 2008. http://lwn.net/

Articles/267968/.
[11] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA:

A logic for time and data abstraction. In ECOOP, 2014.
[12] E. W. Dijkstra. EWD123: Cooperating Sequential Processes.

Technical report, 1965.
[13] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and

V. Vafeiadis. Concurrent abstract predicates. In ECOOP 2010,
volume 6183 of LNCS, pages 504–528. Springer, 2010.

[14] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson,
and H. Yang. Views: Compositional reasoning for concurrent
programs. In POPL, 2013.

[15] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-
guarantee reasoning. In ESOP, 2009.

[16] X. Feng. Local rely-guarantee reasoning. In POPL, 2009.
[17] R. Ferreira, X. Feng, and Z. Shao. Parameterized memory

models and concurrent separation logic. In ESOP, 2010.
[18] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The

essence of compiling with continuations. In PLDI, 1993.
[19] D. Howells and P. E. McKenney. Circular buffers.

https://www.kernel.org/doc/Documentation/

circular-buffers.txt.
[20] ISO/IEC 14882:2011. Programming language C++, 2011.
[21] ISO/IEC 9899:2011. Programming language C, 2011.
[22] J. Jensen and L. Birkedal. Fictional separation logic. In ESOP,

2012.
[23] C. B. Jones. Tentative steps toward a development method for

interfering programs. TOPLAS, 5(4):596–619, 1983.
[24] K. R. M. Leino, P. Müller, and J. Smans. Verification of

concurrent programs with Chalice. In Foundations of Security
Analysis and Design V, volume 5705 of LNCS. 2009.

[25] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for
coarse-grained concurrency. In POPL, 2013.

[26] J. Manson, W. Pugh, and S. V. Adve. The Java memory model.
In POPL, 2005.

[27] P. McKenney. Exploiting deferred destruction: an analysis of
read-copy-update techniques in operating system kernels. PhD
thesis, Oregon Graduate Institute, 2004.

[28] M. M. Michael and M. L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory
multiprocessors. JPDC, 51(1):1–26, 1998.

[29] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco.
Communicating state transition systems for fine-grained con-
current resources. In ESOP, 2014.

[30] P. O’Hearn. Resources, concurrency, and local reasoning.
Theoretical Computer Science, 375(1):271–307, 2007.

[31] S. Owens. Reasoning about the implementation of concurrency
abstractions on x86-TSO. In ECOOP, 2010.

[32] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory
model: x86-TSO. In TPHOLs, 2009.

[33] T. Ridge. A rely-guarantee proof system for x86-TSO. In
VSTTE, 2010.

[34] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun.
A theory of memory models. In PPoPP, 2007.

[35] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and
M. Musuvathi. End-to-end sequential consistency. In ISCA,
2012.

[36] K. Svendsen and L. Birkedal. Impredicative concurrent abstract
predicates. In ESOP, 2014.

[37] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and
Hoare-style reasoning in a logic for higher-order concurrency.
In ICFP, 2013.

[38] V. Vafeiadis and C. Narayan. Relaxed separation logic: A
program logic for C11 concurrency. In OOPSLA, 2013.

[39] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee
and separation logic. In CONCUR, 2007.

[40] I. Wehrman and J. Berdine. A proposal for weak-memory local
reasoning. In LOLA, 2011.

17

http://plv.mpi-sws.org/gps/
http://lwn.net/Articles/267968/
http://lwn.net/Articles/267968/
https://www.kernel.org/doc/Documentation/circular-buffers.txt
https://www.kernel.org/doc/Documentation/circular-buffers.txt

	1 Introduction
	1.1 Concurrent program logics: the state of the art
	1.2 Obstacles to modular weak memory reasoning
	1.3 This paper

	2 The C11 memory model
	3 GPS
	3.1 Per-location protocols
	3.2 Physical resources
	3.3 Ghost resources
	3.4 Taking stock: resource ownership vs. knowledge
	3.5 Ownership transfer through protocols
	3.6 Ownership transfer through escrows
	3.7 Soundness

	4 Case studies
	5 Related work
	5.1 From SC reasoning to weak memory reasoning
	5.2 Relaxed Separation Logic (RSL)
	5.3 Alternative approaches

	6 Future work

