
Compositional Compiler Correctness
Via Parametric Simulations

A dissertation submitted towards the degree
Doctor Engineering (Dr.-Ing)

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Georg Neis, M.Sc.

Saarbrücken, 2018

ii

Tag des Kolloquiums 7. Juni 2018

Dekan der Fakultät Univ.-Prof. Dr. Sebastian Hack
Vorsitzender des Prüfungsausschusses Univ.-Prof. Dr. Sebastian Hack
Erstgutachter / Doktorvater Prof. Dr. Derek Dreyer
Zweitgutachter Dr. Deepak Garg
Drittgutachter Prof. Lars Birkedal, Ph.D.
Akademischer Beisitzer Marco Patrignani, Ph.D.

Zusammenfassung

Die Verifikation von Compilern ist für die Konstruktion von vollständig verifizierter
Software essenziell. Jedoch beschränkt sich die meiste bisherige Forschung (z.B.
CompCert) auf das Szenario der Kompilierung von ganzen Programmen. Um sep-
arate Kompilierung und das Linken von Erzeugnissen verschiedener Compiler zu
unterstützen, scheint es erforderlich einen kompositionalen Begriff von Compilerkor-
rektheit zu entwickeln, der modular (kompatibel mit Linken), transitiv (mehrphasige
Kompilierung unterstützend), und flexibel ist (anwendbar auf Compiler mit ver-
schiedenen Zwischensprachen oder unkonventionellen Transformationen).

In dieser Arbeit formalisieren wir einen solchen Korrektheitsbegriff basierend auf
parametrischen Simulationen, und entwickeln auf diese Art einen neuartigen Ansatz
zur kompositionalen Compilerverifikation.

1. Wir führen die grundlegende Idee von parametrischen (Bi-)simulationen ein und
stellen eine konkrete Instanz vor. Diese bildet eine kompositionale Technik zum
Beweisen von Programmäquivalenzen einer höheren ML-ähnlichen Sprache S.

2. Dann betrachten wir eine Umgebung, in der S-Programme in systemnahen
Code einer Maschinensprache T übersetzt werden. Wir verallgemeinern unsere
Formulierung von PBs zu parametrischen interlingualen Simulationen (PILS),
und demonstrieren dass PILS als Fundament von kompositionaler Compilerver-
ifikation dienen können.

Unsere PB- und PILS-Entwicklungen wurden mittels des Beweissystems Coq durchge-
führt und korrekt bewiesen.

iii

iv ZUSAMMENFASSUNG

Summary

Compiler verification is essential for the construction of fully verified software, but
most prior work (such as CompCert) has focused on verifying whole-program compil-
ers. To support separate compilation and to enable linking of results from different
verified compilers, it is important to develop a compositional notion of compiler cor-
rectness that is modular (preserved under linking), transitive (supports multi-pass
compilation), and flexible (applicable to compilers that use different intermediate
languages or employ non-standard program transformations).

In this thesis, we formalize such a notion of correctness based on parametric
simulations, thus developing a novel approach to compositional compiler verification.

The thesis is roughly divided into two parts.

1. We introduce the basic idea of parametric (bi-)simulations (PBs) and present
a concrete instance of it. This instance constitutes a compositional technique
for proving equivalences of programs written in the same higher-order ML-like
language S.

2. We then move from such a single-language setting to a setting where S pro-
grams are being compiled into low-level code of some machine language T .
We generalize our PB formalization to parametric inter-language simulations
(PILS) and demonstrate that PILS can serve as a foundation for compositional
compiler verification.

Both our PB and PILS developments have been carried out and proven correct using
the Coq proof assistant.

v

vi SUMMARY

Note

This thesis is based primarily on the following publications.

• The Marriage of Bisimulations and Kripke Logical Relations.
Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. In 2012 ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2012).

• The Transitive Composability of Relation Transition Systems.
Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. Technical
Report MPI-SWS-2012-002, May 2012.

• Pilsner: A Compositionally Verified Compiler for a Higher-Order
Imperative Language.
Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer,
and Viktor Vafeiadis. In 2015 ACM SIGPLAN International Conference on
Functional Programming (ICFP 2015).

vii

viii NOTE

Acknowledgements

It’s been a long journey. I am immensely grateful to my advisor Derek Dreyer and
my mentors Andreas Rossberg and Chung-Kil Hur. Thank you so much for your
support, guidance, care, and wisdom!

I also want to thank Lars Birkedal and Viktor Vafeiadis for their support and insights;
Neel Krishnaswami for excellent explanations; Claudio Russo and Aleks Nanevski for
making me feel welcome at conferences; and everyone at MPI-SWS for the great en-
vironment.

Last but not least, I thank my family.

My PhD studies were partially funded by a Google European Doctoral Fellowship in
Programming Technology. Thank you, Google!

ix

x ACKNOWLEDGEMENTS

Contents

Zusammenfassung iii

Summary v

Note vii

Acknowledgements ix

1 Introduction 1

1.1 Compiler Correctness . 2

1.2 Compositionality . 3

1.3 State of the Art . 4

1.4 This Thesis . 6

1.4.1 First Part . 6

1.4.2 Second Part . 7

1.4.3 Other Chapters . 8

1.4.4 Proof Mechanization . 8

2 Background: Logical Relations and Protocols 9

2.1 Kripke Logical Relations . 10

2.2 State Transition Systems . 12

2.2.1 The Limitation of Worlds as Memory Relations 12

2.2.2 The Power of Worlds as State Transition Systems 12

2.2.3 Private Transitions . 13

2.3 Dealing With Recursive Language Features 14

2.3.1 Step-Indexing . 15

3 Parametric Bisimulations 17

3.1 Overview . 17

3.2 Notation . 18

3.3 The Language Fµ! . 19

3.3.1 Syntax and Static Semantics 19

3.3.2 Dynamic Semantics . 20

3.3.3 Contextual Equivalence . 22

xi

xii CONTENTS

3.3.4 Deterministic Allocation . 22

3.4 Global vs. Local Knowledge . 26

3.5 Warmup: Parametric Bisimulations for λµ 30

3.5.1 Definitions . 30

3.5.2 Example Proof . 35

3.5.3 Basic Properties and Soundness 36

3.5.4 Transitivity . 40

3.6 Parametric Bisimulations for Fµ! . 41

3.6.1 Worlds . 41

3.6.2 Treatment of Universal and Existential Types 43

3.6.3 Treatment of Reference Types 43

3.6.4 Lifting and Separating Conjunction of Local Worlds 45

3.6.5 Program Equivalence . 45

3.6.6 Expression and Continuation Equivalence 49

3.6.7 Living in a Different World . 50

3.7 Metatheory . 51

3.7.1 Basics . 51

3.7.2 Symmetry . 55

3.7.3 Compatibilities . 57

3.7.4 Congruency . 61

3.7.5 Soundness . 61

3.8 Examples . 62

3.8.1 Well-Bracketed State Change 62

3.8.2 Twin Abstraction . 65

3.8.3 World Generator . 67

3.8.4 Twin Abstraction, Alternate Proof 68

3.8.5 A Free Theorem . 69

3.9 Transitivity . 70

3.9.1 Structure of the Transitivity Proof 71

3.9.2 First Part: Constructing the Full World W 71

3.9.3 Second Part: Constructing the Corresponding Local World w . 78

3.10 Stuttering Parametric Bisimulations 86

3.10.1 The Problem with Eta . 87

3.10.2 Guardedness Revisited . 88

3.10.3 Logical Reduction and the Stutter Budget 88

3.10.4 Eta Revisited . 89

3.10.5 First-Class Continuations . 90

3.10.6 Comparison to Step-Indexing 90

3.11 Greatest Local Knowledge . 91

3.12 Comparison To Logical Relations . 92

CONTENTS xiii

4 Parametric Inter-Language Simulations 95

4.1 Overview . 95

4.1.1 Transitivity . 97

4.2 Languages . 97

4.2.1 Language-Generic Approach . 97

4.2.2 Language Specification . 98

4.2.3 Source Language S . 101

4.2.4 Intermediate Language I . 105

4.2.5 Target Language T . 110

4.3 Worlds . 118

4.3.1 Queries . 120

4.3.2 Value Closure . 122

4.3.3 Lifting and Separating Conjunction of Local Worlds 123

4.4 Concrete Global Worlds . 125

4.4.1 Global References . 125

4.4.2 Unary Parts . 126

4.5 Simulations . 132

4.5.1 Stuttering according to algebraic well-founded orders. 138

4.5.2 The two modes of E and cfg. 140

4.5.3 A Note on the Untyped Model 142

4.5.4 Convenience Lemmas . 142

4.6 Example . 147

4.6.1 Modules . 147

4.6.2 Proof . 148

4.7 Metatheory . 153

4.7.1 Basics . 153

4.7.2 Adequacy . 154

4.7.3 Modularity . 156

4.8 Proof of Transitivity . 162

4.8.1 Overview . 162

4.8.2 Constructing the Local World 163

4.8.3 Discussion . 172

5 The Pilsner Compiler and Its Verification 173

5.1 Overview . 173

5.2 From S to I: CPS Transformation . 175

5.2.1 Definition . 175

5.2.2 Verification . 180

5.3 Infrastructure for Optimizations . 182

5.3.1 Relating Open Expressions . 183

5.3.2 Annotating Expressions With Transformations 188

5.4 The Commute Pass . 192

5.4.1 Transformation . 192

xiv CONTENTS

5.4.2 Verification . 193
5.4.3 Alternative Implementation. 194

5.5 The Dedup Pass . 194
5.5.1 Transformation . 194
5.5.2 Verification . 194

5.6 The Hoist Pass . 195
5.6.1 Transformation . 195
5.6.2 Verification . 196

5.7 The Dead Code Elimination Pass . 197
5.7.1 Transformation . 197
5.7.2 Verification . 197

5.8 The Inline Pass . 201
5.8.1 Transformation . 201
5.8.2 Verification . 201
5.8.3 Freshening . 205

5.9 The Contify Pass . 205
5.9.1 Transformation . 205
5.9.2 Verification . 208

5.10 The Codegen Pass . 208
5.10.1 Transformation . 208
5.10.2 Verification . 216

5.11 The Full Pilsner Compiler . 224
5.12 The Zwickel Compiler . 225

5.12.1 Transformation . 226
5.12.2 Verification . 227

5.13 The Self-Modifying Awkward Example 231
5.14 Mechanization and Extraction . 233
5.15 Putting It All Together . 234

6 Related Work 235
6.1 Logical Relations . 235
6.2 Bisimulations . 236
6.3 Compositional Compiler Correctness 238
6.4 Miscellaneous . 240

Bibliography 243

Chapter 1

Introduction

Contents

4.1 Languages . 96

4.1.1 Language-Generic Approach 96

4.1.2 Language Specification . 97

4.1.3 Source Language S . 100

4.1.4 Intermediate Language I 105

4.1.5 Target Language T . 108

4.2 Worlds . 118

4.2.1 Queries . 120

4.2.2 Lifting and Separating Conjunction of Local Worlds 122

4.3 Concrete Global Worlds . 124

4.3.1 Global References . 125

4.3.2 Unary Parts . 125

4.4 Simulations . 132

4.4.1 Stuttering according to algebraic well-founded orders. . . . 138

4.4.2 Convenience Lemmas . 143

4.5 Simulation Example . 148

4.5.1 Modules . 149

4.5.2 Proof . 150

4.6 Metatheory . 154

4.6.1 Least Global Knowledge . 154

4.6.2 External Call Elimination[consistent name] 155

4.6.3 Adequacy . 156

4.6.4 Modularity . 158

4.7 Proof of Transitivity . 163

4.7.1 Overview . 163

4.7.2 Constructing the Local World 164

4.7.3 Discussion . 174

1

2 CHAPTER 1. INTRODUCTION

1.1 Compiler Correctness

Compilers constitute some of the most critical infrastructure of software development.
And yet they often have bugs. In 2011, for instance, Yang et al. [92] uncovered 325
bugs in widely used C compilers. In more recent work, Le et al. [46] identified 147
confirmed bugs in the industrial-strength GCC and LLVM compilers.

Let us distinguish between two classes of compiler bugs:

1. Bugs that cause the compiler to crash, to run forever, to reject valid source
programs, or to produce inefficient code. Those are bad.

2. Bugs that cause the compiler to not preserve the semantics of its input, i.e.,
to produce code that behaves differently than its source program. Those are
terrible.

Compiler correctness, at least in the context of this thesis, is the absence of the
second class of bugs. These bugs are so bad because they can go unnoticed until
they blow up a system in production, with potentially fatal consequences. Moreover,
they essentially nullify any efforts of formally verifying the program (usually a very
expensive endeavor), because typical verification tools operate on the source code
and simply trust in the compiler being correct. In a sense, these bugs can make a
correct program incorrect. Out of the 147 bugs mentioned above, 95 were violations
of semantics preservation.

Establishing compiler correctness means providing a formal, machine-checked
guarantee that a compiler preserves the semantics of its source programs, and has
been an active research area ever since [50, 55, 20]. The standard way of express-
ing this preservation formally is roughly as follows. Suppose we are working with a
distinguished source language S and a distinguished target language T . A compiler
c from S to T , modelled as a partial function from S programs to T programs, is
correct (semantics-preserving) iff for any given S program pS , for which the compiler
produces a T program pT , this target program pT refines its source program pS :

∀pS , pT . c(pS) = pT =⇒ Behav(pT) ⊆ Behav(pS)

Refinement means that any observable behavior of pT is also a valid observable be-
havior of pS , for some common notion of “observable behavior” that both the S and
T languages share (e.g., termination, I/O events). In the case of S being a determin-
istic language, this actually implies that pS and pT have exactly the same observable
behavior. In the case of S being non-deterministic, the compiler is permitted to
translate away some of the non-determinism. We will see a concrete definition of
Behav later on.

Research on compiler correctness has made great progress in the last years. Un-
doubtetly the most successful project so far has been CompCert [47], an optimizing
compiler for most of the C language, targetting PowerPC, ARM and x86 processors.
It was developed by Leroy and collaborators using the Coq proof assistant [19]. In-
deed, Le et al. [46] report that, despite extensive testing, they were unable to uncover

1.2. COMPOSITIONALITY 3

a single bug in CompCert. On the more functional side of languages, CakeML [42, 85]
has become a serious optimizing ML compiler, implemented and verified in the HOL4
system. (See Chapter 6 for further references.)

However, the notion of semantics preservation stated earlier suffers from a fun-
damental limitation, and therefore so does CompCert as well as CakeML: it only
applies to whole program compilation. The issue is that the formulation of refine-
ment in terms of the observable behavior of a program implicitly assumes that the
program is complete and thus can be meaningfully executed.

Consider the simple scenario where the source program pS consists of two modules
m1 and m2:

pS = link(m1,m2)

The correctness statement then tells us that c(pS) refines pS . But what if we want
to compile m1 and m2 separately and link them together? In that case the target
program pT is given as

pT = link(c(m1), c(m2))

and what we actually need to know is whether pT refines pS , not whether c(pS) refines
pS . While it is possible for pT and c(pS) to be syntactically identical, this situation is
very rare (the compiler must not do cross-module optimizations and linking must be
very simple). In general, they are different programs and thus the above correctness
statement about c(pS) is useless.

In practice, of course, most programs are indeed linked together from multiple
separately-produced modules. Some of these modules may as well be generated by
different compilers or even hand-optimized in assembly. The limitation of compiler
correctness to whole-program compilation is therefore a serious handicap.

1.2 Compositionality

The obvious question then is: can we define a more general notion of semantics
preservation that says what it means for a single module in a program to be compiled
correctly? And can this be done while assuming as little as possible about how the
other modules in the program are compiled?

In particular, we articulate the following three desiderata concerning different
aspects of compositionality:

• Modularity: To enable verified separate compilation, semantics preservation
should be defined at the level of modules, not just whole programs, and it should
be preserved under linking. Specifically, suppose that source (S) module mS

is refined by target (T) module mT , and that S module m′S is refined by T
module m′T . We should then be able to conclude that the S-level linking of mS

and m′S is refined by the T -level linking of mT and m′T . (This is sometimes
referred to as “horizontal compositionality”.)

Of course, in the special case of modules representing whole programs, this new
notion of semantics preservation should imply the original one.

4 CHAPTER 1. INTRODUCTION

• Transitivity: Compilers are rarely expressed as direct translations but typi-
cally consist of several (if not dozens of) individual transformation passes that
form a pipeline. Proofs of semantic preservation should therefore be transi-
tively composable. That is, one should be able to prove a compiler correct by
verifying refinement for its constituent passes independently and then chaining
the results together by transitivity. (This is sometimes referred to as “vertical
compositionality”.)

• Flexibility: It should be possible to prove semantics preservation for a range of
different compilers and program transformations, so that the results of different
verified compilers (which might employ different intermediate languages) can be
safely linked together, and so that hand-optimized and hand-verified machine
code can be safely linked with compiler-generated code.1

1.3 State of the Art

We are not the first to broach this question—it has been an active research topic in
recent years. But we argue that all previously proposed solutions are lacking in some
dimension of compositionality.

Contextual Refinement The natural starting point is the standard notion of
contextual refinement : target module mT contextually refines source module mS if
C[mT] refines C[mS] for all closing program contexts C. While contextual refinement
is inherently modular and transitive, it only applies if the input and output languages
are the same (we call this the intra-language setting): mT and mS are modules
written in the same language, since they are placed into (think: linked with) the
same program context C. Contextual refinement is therefore unsuitable for realistic
compiler verification (unless combined with multi-language semantics, as discussed
below).

Bisimulations Bisimulations originate in the study of process calculi [52, 72, 73]
and have successfully been employed (and generalized) to characterize contextual

1Note: In our model of the semantics preservation problem, every module in a program is
represented by both an S and a T version, and we aim to prove that the T version refines its
S counterpart. For modules that are compiled by a verified compiler, the T version is generated
automatically by the compiler. But for any module that is hand-coded in T , one must also manually
supply its S counterpart, which serves as a “specification” that the hand-coded T module is then
proven to refine. (We will see an example of this in Section 5.13.) This means that we can only
account for hand-coded T modules that have some S-level counterpart. This is somewhat of a
restriction at present, since we focus here on the setting where S is a high-level, ML-like language
and T a low-level, assembly-like language, and certainly not all assembly modules have an ML-level
counterpart. However, we do not view this as a fundamental restriction: there is nothing in principle
preventing us from generalizing our approach to a setting where S itself supports interoperation
between high- and low-level modules. We discuss this point further in Section 6.3.

1.3. STATE OF THE ART 5

equivalence in a variety of languages [29, 28, 41, 80, 79, 74, 43, 45, 7, 78]. Unfortu-
nately, bisimulation methods rely on technical devices that prevent them (it seems)
from scaling to the inter -language setting of transformations from one language to
another. Specifically, in order to deal with higher-order functions, bisimulation meth-
ods employ various ”syntactic” devices that restrict the applicability of the methods
to intra-language reasoning (see Section 3.4 for details).

Logical Relations Logical Relations were originally used to prove fundamental
properties of typed lambda calculi such as strong normalization [84, 76] and lambda-
definability results [66, 67]. Later they were applied to relational reasoning [69, 82,
90, 65, 64, 2, 38] and used as an effective technique for proving correctness of a wide
variety of program transformations in a wide variety of languages. For instance,
Dreyer et al.’s recent Kripke logical relations [4, 22] support proofs with a very clean
and intuitive high-level structure, based on the idea of establishing a state transition
system that expresses directly how the “abstract state” of a module may evolve over
time. We review this technique in the background Chapter 2, as it is important to
the work in this thesis.

Besides being highly flexible, logical relations are also inherently modular and,
unlike contextual refinement and bisimulations, can be used to relate different source
and target languages. For these reasons, Benton and Hur [6] proposed the idea of
employing logical relations to define compositional semantics preservation.

Hur and Dreyer [32] developed this idea further by formalizing the compositional
correctness of a simple, single-pass compiler from an ML-like source language to an
idealized assembly language. They additionally demonstrated the flexibility of their
inter-language logical relations by using them to verify a contrived but illustrative
example, wherein a higher-order ML function was implemented in a rather baroque
way by some tricky hand-written self-modifying assembly code. Thanks to the modu-
larity of their logical relations method, this highly non-standard assembly code could
nonetheless be safely linked with assembly modules produced by their verified com-
piler, with the resulting assembly program guaranteed to preserve the semantics of
the corresponding linked source modules.

Unfortunately, it is not clear how to scale Hur et al.’s approach from single- to
multi-pass compilers because, although logical relations are modular and flexible, they
are not typically transitive. Chapter 2 provides a short review of logical relations,
including the issue of transitivity.

Multi-Language Semantics Motivated by the goal of supporting compiler ver-
ification for programs that interoperate between different languages, Perconti and
Ahmed [62] propose an approach based on multi-language semantics [49]. In par-
ticular, they define a “big-tent” language that comprises the source, target, and
intermediate languages of a compiler, and provides “wrapping” operations for em-
bedding terms of each language within the others. They then use logical relations
to prove that every source module is contextually equivalent to a suitably wrapped

6 CHAPTER 1. INTRODUCTION

version of the target module to which it is compiled. In this way, their method syn-
thesizes the benefits of logical relations (modularity and different source and target
languages) and contextual equivalence (transitivity).

One downside of their approach is that the intermediate languages (ILs) used
in a compiler show up explicitly in the statement of compiler correctness. This
leads to a loss of modularity: the semantics of source-level linking is not preserved
when linking the results of compilers that have different ILs. Another downside
concerns flexibility: the approach seems to be restricted to compilers that use typed
intermediate and assembly languages. Lastly, Perconti and Ahmed have so far only
applied their technique to a compiler for a purely functional source language.

Compositional Verification for CompCert Motivated by the goal of composi-
tional compiler verification, Beringer et al. [9] propose an adaptation of the CompCert
framework based on a novel operational semantics that differentiates between internal
(intra-module) and external (inter-module) function calls. They introduce a notion
of “logical simulation relation” that assumes little about the memory transformations
performed by external function calls.

Beringer et al.’s approach is transitive, but lacking somewhat in modularity and
flexibility. Concerning modularity, it does not yet (according to the authors) support
fully separate compilation. Concerning flexibility, it depends on compiler passes only
performing a restricted set of memory transformations—permitting additional trans-
formations can potentially break the transitivity property. In addition, their method
appears to be geared specifically toward compilers in the style of CompCert, which
employ a uniform memory model across source, intermediate, and target languages. It
is not clear how to generalize their technique to support richer (e.g., ML-like) source
languages, or compilers whose source and target languages have different memory
models.

1.4 This Thesis

In this thesis, we develop a novel approach to compositional compiler verification
in the form of parametric inter-language simulations (PILS). PILS formalize a com-
positional notion of semantics preservations that matches the criteria described in
Section 1.2.

In order to ease the presentation of PILS, the thesis is divided into two main
parts.

1.4.1 First Part

In the first part, consisting of Chapter 3, we introduce the basic idea of parametric
inter-language simulations in the intra-language setting of an ML-like language S.
We call this development parametric bisimulations (PBs). Focusing on a single high-
level language first lets us develop the core theory without getting lost in the details

1.4. THIS THESIS 7

of lower-level languages and their implementation of higher-level concepts.

PBs marry together some of the most appealing aspects of KLRs and bisim-
ulations. In particular, they synthesize bisimulations’ support for reasoning about
recursive features via coinduction with KLRs’ support for reasoning about local state
via state transition systems. Moreover, PBs are designed to avoid the limitations of
KLRs and bisimulations that preclude their generalization to inter-language reason-
ing. To achieve this goal, we have to come up with a novel way of accounting for
higher-order functions in the context of a coinductive bisimulation-like proof method,
without relying on the “syntactic” devices that previous bisimulation methods use.

We explore PBs here in the setting of S—a call-by-value λ-calculus with general
recursive types, products, sums, universals, existentials, general references, and I/O—
as this provides a relatively clear point of comparison with recent work on both
KLRs [22] and bisimulations [79]. Technically, our result is a compositional technique
for proving equivalences of S programs, proven sound with respect to contextual
equivalence. With one notable exception (see Section 3.10), we believe PBs are
capable of reasoning effectively about all the challenging S equivalences studied in
the aforementioned papers, and we demonstrate PBs’ effectiveness on several such
equivalences.

Crucially, the proof of transitivity does not simply exploit soundness and com-
pleteness with respect to contextual equivalence2. Instead, it is developed from
scratch and requires a number of technical innovations.

1.4.2 Second Part

The second main part of the thesis consists of Chapters 4 and 5. In it, we move
from the previous single-language setting to a setting where S programs are being
compiled into low-level code of an idealized machine language T . We generalize our
PBs formalization to the full parametric inter-language simulations and demonstrate
that PILS can serve as a foundation for compositional compiler verification.

Essentially, we are doing for PBs what Hur and Dreyer [32] did for logical rela-
tions: namely, taking a proof technique for single-language reasoning and showing
how to scale it to inter-language reasoning between high- and low-level languages.
The key difference is that, due to its reliance on a logical-relations model, Hur and
Dreyer’s method only supports verification of single-pass compilation, whereas PILS
support verification of multi-pass compilation.

Indeed, PILS satisfy all three compositionality criteria from Section 1.1.

• PILS are modular : they enable compiler verification in a way that supports
separate compilation and is preserved under linking.

• PILS are transitive: we use them to verify Pilsner, a simple (but non-trivial)
multi-pass optimizing compiler from S to T , going through a CPS-based in-
termediate language I. After CPS conversion, Pilsner performs several op-

2In fact, our PB model is not complete, but this is not necessarily a “bad” thing.

8 CHAPTER 1. INTRODUCTION

S I I I

I

IIIT

cps inline contify dce

hoistcommutededupcodegen

Figure 1.1: Structure of the Pilsner compiler

timizations at the I level prior to code generation. These optimizations in-
clude function inlining, contification, dead code elimination, and hoisting (Fig-
ure 1.1). Although Pilsner is relatively simple—it is not nearly as realistic
as the (whole-program) verified CakeML compiler, for instance [42]—it is the
first multi-pass compiler for a higher-order imperative language to
be compositionally verified.

• PILS are flexible: we use them to additionally verify (1) Zwickel, a direct
(one-pass) non-optimizing compiler from S to T , and (2) Hur and Dreyer’s
aforementioned self-modifying code example, programmed as a T module and
proven correct w.r.t. an S-level specification. Thanks to PILS’ modularity, the
output of Zwickel and the self-modifying T module can then be safely linked
together with the output of Pilsner.

1.4.3 Other Chapters

The two main parts are preceded by Chapter 2, which briefly reviews Kripke logical
relations, and followed by Chapter 6, in which we discuss related work and conclude.

1.4.4 Proof Mechanization

Both PBs and PILS are formalized using the Coq proof assistant. The extensive
development, available at https://people.mpi-sws.org/~neis/thesis/, includes
machine-checked proofs of all theorems. We also provide glueing code to extract some
definitions to OCaml, for instance in order to obtain an executable compiler.

https://people.mpi-sws.org/~neis/thesis/

Chapter 2

Background: Logical Relations
and Protocols

Contents

5.1 Overview . 176

5.2 From S to I: CPS Transformation 178

5.2.1 Definition . 178

5.2.2 Verification . 182

5.3 Infrastructure for Optimizations 185

5.3.1 Relating Open Expressions 186

5.3.2 Annotating Expressions With Transformations 191

5.4 The Commute Pass . 195

5.4.1 Transformation . 195

5.4.2 Verification . 196

5.4.3 Alternative Implementation. 197

5.5 The Dedup Pass . 197

5.5.1 Transformation . 197

5.5.2 Verification . 198

5.6 The Hoist Pass . 198

5.6.1 Transformation . 198

5.6.2 Verification . 199

5.7 The Dead Code Elimination Pass 200

5.7.1 Transformation . 200

5.7.2 Verification . 203

5.8 The Inline Pass . 204

5.8.1 Transformation . 204

5.8.2 Verification . 204

5.8.3 Freshening . 208

9

10 CHAPTER 2. BACKGROUND: LOGICAL RELATIONS AND PROTOCOLS

5.9 The Contify Pass . 209

5.9.1 Transformation . 209

5.9.2 Verification . 211

5.10 The Codegen Pass . 211

5.10.1 Transformation . 212

5.10.2 Verification . 219

5.11 Putting It All Together . 229

5.12 Mechanization and Extraction 230

5.13 The Zwickel Compiler . 231

5.13.1 Transformation . 232

5.13.2 Verification . 232

Logical relations are one of the best-known methods for local reasoning about
observational equivalence1 in higher-order, typed languages. The basic idea is to lift
the notion of observable equivalence at base types to a compositional one at higher
types by defining a notion of “logical equivalence” inductively on the type structure of
the language. The Curry-Howard correspondence dictates which logical connective
to use in assigning a relational operation to each type constructor. For instance,
logical relatedness at function type is defined with the help of implication in terms
of logical relatedness at argument type and logical relatedness at result type: two
functions are logically related if relatedness of their arguments implies relatedness
of their results; similarly, two existential packages are logically related if there exists
a relational interpretation of their hidden type representations that is preserved by
their operations; and so forth.

2.1 Kripke Logical Relations

Since Reynolds’ seminal paper on relational parametricity [69], which presented logi-
cal relations for reasoning about the pure, strongly normalizing System F, there has
been a lot of work on generalizing and extending the method to handle increasingly
realistic languages [64, 65, 51, 8, 3, 13]. Most relevant for this thesis is the line of
work on modelling languages with state, where an equivalence may only hold due
to particular invariants being imposed by the programs on parts of their memory.
Naturally, these invariants must play a crucial role in any proof of that equivalence.

This is where Kripke logical relations come in. Kripke logical relations [65] are
logical relations indexed by a possible world W , which codifies memory constraints.
Roughly speaking, programs e1 and e2 are related under W only if they behave
“the same” when run under any memories h1 and h2, respectively, that satisfy the
constraints of W .

1Or, more generally, for local reasoning about observational refinement. Here we talk in terms of
equivalence, because this is what most of the work focusses on.

2.1. KRIPKE LOGICAL RELATIONS 11

When reasoning about programs that maintain some local state, i.e., state that is
encapsulated and cannot be freely accessed by the context, possible worlds allow us
to impose whatever constraints on the local state we want, so long as we ensure that
those constraints are preserved by the code that accesses the state. (Global state,
e.g., a reference that is passed to the context at a ref type, will have to obey the
canonical invariants dictated by that type.)

In early Kripke logical relations, such as those of Pitts and Stark [65], worlds
essentially take the form of simple memory relations, i.e., memory invariants. To
make things concrete, consider the following simple example (written in an ML-like
language):

τ = (unit→ unit)→ int
e1 = λf. (f 〈〉; 1)
e2 = let x = ref 1 in λf. (f 〈〉; !x)

Each program evaluates to a higher-order function that, when applied, calls its ar-
gument f (a “callback” function) and then returns a number. In e1 this number is
simply 1. In the case of e2, however, this number is the value of reference x, which
is initially set to 1. In this example, and in the variants to follow, keep in mind that
the callback function f might itself call the higher-order function in question (here:
the value of e2).

We would like to show that e1 and e2 are observationally equivalent at type τ .
The reason, intuitively, is obvious: x is kept private (i.e., it is never leaked to the
context) and thus references local state; since it is never modified by the function
returned by e2, it will always point to 1.

To prove this using Kripke logical relations, we would set out to prove that e1

and e2 are related under an arbitrary initial world W . So suppose we evaluate the
two terms under heaps h1 and h2 that satisfy W . Since the evaluation of e1 results in
the allocation of some fresh heap location lx for x (i.e., lx 6∈ dom(h2)), we know that
the initial world W cannot already contain any constraints governing the contents of
lx. (If it contained such a constraint, h1 would have had to satisfy it, and hence lx
would have to be in dom(h1).) So we may extend W with a new invariant stating
that lx ↪→ 1 (i.e., lx points to 1). More formally, this invariant can be represented as
a binary heap relation of the following form:

{(h1, h2) | h2(lx) = 1}

(Note that while in this example no constraints are imposed on e1’s heap, in general
such a heap relation can talk about the contents of both heaps and even relate them
to each other.)

It then remains to show that the two λ-abstractions are logically related under
this extended world—i.e., under the assumption that lx ↪→ 1. The key part of this
concerns reasoning about the calls to f . We are guaranteed that if both calls return,
the resulting memories again satisfy the extended world. This lets us conclude that
both computations return 1 (assuming f terminates).

12 CHAPTER 2. BACKGROUND: LOGICAL RELATIONS AND PROTOCOLS

2.2 State Transition Systems

2.2.1 The Limitation of Worlds as Memory Relations

The applicability of worlds as growing collections of memory relations is fairly lim-
ited. To see why, let us look at Pitts and Stark’s “awkward” example [65], a slight
modification of the previous one.

τ = (unit→ unit)→ int
e1 = λf. (f 〈〉; 1)
e3 = let x = ref 0 in λf. (x := 1; f 〈〉; !x)

Only the second program has changed: e3 is very similar to e2 from the previous
section, but (i) it initializes x with 0 instead of 1, and (ii) the returned function sets
x to 1 before calling f .

Clearly, e1 and e3 are still equivalent. When the function returned by e3—say
v3—is called for the very first time, it immediately writes 1 to x. Since there are no
other writes, from that point on x will always hold 1 and so the value returned by
the first and by any subsequent invocation of v3 will always be 1 as well.

However, using the notion of worlds from the previous section, we cannot prove
this equivalence. The reason is simple: the only “interesting” invariant concerning
x is that it points to either 0 or 1, but this invariant is insufficient to rule out that
after the call to f , the contents of x have changed back to 0. Hence a proof attempt
would get stuck.

While this example is clearly contrived, it is also a minimal representative of a
common class of programs in which changes to local state occur in some monotonic
fashion. As Ahmed et al.[4] pointed out, this includes well-known generative (or state-
dependent) abstract data types (ADTs), in which the interpretation of an abstract
type grows over time in correspondence with changes to some local state.

2.2.2 The Power of Worlds as State Transition Systems

To address this limitation, Ahmed et al.[4] proposed generalizing possible worlds to
include the ability for a memory relation to evolve over time. Dreyer et al.[22] later
streamlined and extended Ahmed et al.’s approach in various ways, and cast Ahmed
et al.’s possible worlds as collections of state transition systems (STS’s), where each
state determines a particular heap property, and where the transitions determine how
the heap property may evolve. This approach lets one express complex protocols
according to which programs manipulate their memory.

Let us illustrate how this works for the example above. Instead of extending
the initial world W with a simple heap relation governing location lx as we did in
Section 2.1, we extend W with the following (very simple) STS with initial state s0:

s0: lx ↪→ 0 s1: lx ↪→ 1
--

2.2. STATE TRANSITION SYSTEMS 13

This expresses that the value at lx (in e3’s heap) right after allocation is 0, but that
it may eventually change to 1, from which point on it will stay 1 forever.

When showing that the returned λ-abstractions, say v3 and v4, are logically re-
lated in this extended world, it is important that we not only consider their appli-
cation when our STS resides in its initial state s0 (in which these functions were
returned), but also in any future state (here s1). Intuitively, this is because we are
effectively reasoning about an arbitrary application of v3 and v4, not necessarily the
first one (i.e., lx might already have been set to 1 by a previous call). If the calls
happen in state s0, then we transition to state s1 when v4 assigns 1 to lx. If they
happen in s1, then the assignment doesn’t change anything, so we just stay in that
state. In either case, we conform to the protocol described by our STS and end up
in s1 after the assignment. Hence the call to f always happens when we are in the
lx ↪→ 1 state, and since there there is no transition out of it, we know that f can only
return in the same state. Consequently, v4’s dereferencing lx can only result in 1.

2.2.3 Private Transitions

A very useful extension to STSs, also due to Dreyer et al.[22], is the distinction be-
tween public and private transitions. Let us motivate this with the help of yet another
modification of the “awkward” example. It is originally due to Jacob Thamsborg and
has been dubbed the “very awkward” example or “well-bracketed state change” ex-
ample in the literature.

τ = (unit→ unit)→ int
e4 = λf. (f 〈〉; f 〈〉; 1)
e5 = let x = ref 0 in λf. (x := 0; f 〈〉;x := 1; f 〈〉; !x)

This time both programs have changed: they now make two calls to the callback
f , instead of just one. Moreover, in e5, x is actually set to 0 before the first call, and
only afterwards to 1, right before the second call.

Assuming that the language does not provide control effects such as call/cc or
exceptions2, e4 and e5 are in fact again equivalent. Intuitively, we can see that
whenever x is set to 0, it will eventually be set to 1—no matter what the callback
function does (as long as it terminates). Consequently, the final dereferencing will
always yield 1.

But let’s try to prove this equivalence using STSs. First, recall the STS that
we used in order to prove the “awkward” example. It’s easy to see why this STS
is insufficient for our present purpose: suppose v5, the function value resulting from
evaluating e5, is applied in the lx ↪→ 1 state. The first thing that happens is that lx
is set to 0. However, as there is no transition from state s1 back to s0, there is no
way we can continue the proof.

2The other examples hold even in the presence of such control features.

14 CHAPTER 2. BACKGROUND: LOGICAL RELATIONS AND PROTOCOLS

So how about adding that transition from lx ↪→ 1 to lx ↪→ 0, i.e., using the
following STS instead?

s0: lx ↪→ 0 s1: lx ↪→ 1
--

mm

While doing so clears the first hurdle, it also erects a new one: according to the
updated STS, it is now possible that, after the second call to f , we end up in state
s0—even though this situation (lx pointing to 0 after that call) cannot actually arise
in reality. And indeed, if lx could point to 0 at that point, our proof would be doomed
(in fact, using this STS is effectively the same as using the insufficient simple invariant
that lx points to either 0 or 1). In summary, while we would like this transition to
be available to us, we would at the same time like it to be unavailable to the context.
This is the idea behind private transitions.

Private transitions are a new class of transitions in our STSs, separate from the
ordinary transitions that we have seen so far (and which we henceforth call public
transitions). The basic idea is very simple: when reasoning about the relatedness of
terms, we must show that—when viewed extensionally—they appear to be making
only public transitions, and correspondingly we may assume that the context only
makes public transitions as well. Internally, however, within a computation, we may
make use of both public and private transitions.

Concretely, we can use the following STS to prove our last example, where the
dashed arrow denotes a private transition:

s0: lx ↪→ 0 s1: lx ↪→ 1
--

mm

First, if v5 is called in state s1, the presence of the private transition allows us to
“lawfully” transition from s1t o s0 when lx is set to 0. Second, we know that, because
we are in the lx ↪→ 1 state before the second call to f and there is no public transition
from there to any other state, we must still (or again) be in that same state when f
returns. Hence we know that lx holds 1 at that point, as desired. Lastly, although the
body of v5 makes a private transition internally when called in state s1, it appears
extensionally to make a public transition, since its final state (s1) is obviously publicly
accessible from itself.

This distinction of public and private transitions is also very useful in modelling
and reasoning about concepts in low-level languages such as stack discipline, as we
will see in Chapter 3.

2.3 Dealing With Recursive Language Features

The previous example programs store only integers in the heap, i.e., they are all
limited to first-order store. In a higher-order language, however, programs can also
store references and functions in the heap. It turns out[2] that, in order for Kripke
logical relations to support reasoning about higher-order store, one wants their heap

2.3. DEALING WITH RECURSIVE LANGUAGE FEATURES 15

relations to be world-dependent as well. This allows one, for instance, to express
the constraint that whatever functions heaps h1 and h2 store (at some fixed pair of
locations), these functions are logically related in whatever the current world is.

However, this immediately leads to a circularity in the construction of the whole
model: the universe of worlds depends on the universe of heap relations and the
universe of heap relations in turn depends on the universe of worlds, in an way that
has no solution.

A different problem arises when trying to support general recursive types. One
would like to define logical relatedness at such a type, say µα. τ , with the help of
logical relatedness at the unfolded type τ [µα. τ/α]. Since the latter is generally larger,
the logical relation can no longer be defined by recursion on types.

A third difficulty concerns reasoning about recursive functions. In the process of
showing the relatedness of two recursive functions, one typically must establish the
relatedness of the recursive calls, which in turn requires one to show the relatedness
of the recursive functions—the very task one set out to do.

2.3.1 Step-Indexing

An elementary technique that solves all three problems at once is step-indexing [5, 2].
The idea is simply to stratify the construction of the logical relation by a natural
number (or “step index”), representing roughly the number of steps of computation
for which the programs in question behave in a related manner.

Regarding the first issue above, worlds of step-index n are then defined in terms
of heap relations that can depend on worlds of step-index n − 1. Intuitively, this is
sufficient because, in order for a program to make use of a value stored in the heap,
it has to take at least one step (dereferencing a pointer). Regarding the second issue,
one defines two values of recursive type to be related for n steps iff their unfoldings
are related for n− 1 steps. Regarding the third issue, one can prove the relatedness
of two recursive functions by induction on the step-index, effectively assuming that
the functions are already related in any recursive calls.

Due to the tedious threading of step counting throughout proofs [21], it can be
somewhat annoying to work with step-indexed logical relations (SILRs). There is
a more serious catch, however: it seems fundamentally difficult to compose SILR
proofs transitively.

Ahmed studied the transitivity problem in her first paper on binary SILRs [3].
There, she observes a serious problem in naively proving that Appel and McAllester’s
original binary SILRs formed a PER. She proposes a way of regaining transitivity,
but (i) she is concerned only with a very simple pure language, (ii) her proof relies
on only working with syntactically well-typed terms, and (iii) it also depends on the
second and third program (in the statement of transitivity) coming from the same
language. Such an approach is unlikely to scale to reasoning about the intermediate
and low-level languages of a compiler, which in general may be untyped. Moreover,
we are not aware of any successful attempts to generalize her technique to SILRs for
richer languages.

16 CHAPTER 2. BACKGROUND: LOGICAL RELATIONS AND PROTOCOLS

Birkedal & Bizjak [11] propose a different trick to obtain transitivity, but their
technique is similarly unsuitable for an inter-language setting.

The lack of transitivity in many of the intra-language models is actually not a
big issue, simply because they are only used to reason about contextual equivalence
(or refinement), and so one can always transitively compose proofs at the level of
contextual equivalence instead. However, when the purpose of the model is precisely
to define a notion of equivalence—e.g., because contextual equivalence does not make
sense—then transitivity is critical.

Chapter 3

Parametric Bisimulations

Contents

6.1 Mechanization (?) . 239

6.2 Future Work . 239

6.3 Related Work . 239

6.4 Conclusion and Future Work 244

6.5 Conclusion . 251

3.1 Overview

In this chapter we present our technique for relational reasoning about programs,
called Parametric Bisimulations (PBs). PBs marry together some of the most
appealing features of KLRs and bisimulations, while circumventing their limitations.

In particular, PBs show how the use of state transition systems (from KLRs)
can be synthesized with the coinductive, step-index-free style of reasoning (from
bisimulations), thereby enabling clean and elegant proofs about local state and re-
cursive features simultaneously. Thus, concerning the long-standing open question of
whether there is a fundamental tradeoff between KLRs and bisimulations, we provide
a definitive answer: no, there is not.

We explore PBs here in the setting of Fµ!—a call-by-value λ-calculus with general
recursive types, products, sums, universals, existentials, and general references [4]—as
this provides a clear point of comparison with work on both KLRs [22] and bisimula-
tions [79]. With one notable exception (see Section 3.10), we believe PBs are capable
of reasoning effectively about all the challenging Fµ! equivalences studied in these
papers, and we demonstrate PBs’ effectiveness on several such equivalences.

In this chapter we focus on intra-language reasoning. In order to enable the gen-
eralization to inter-language reasoning, the subject of Chapter 4, PBs were designed
so as to avoid the use of any limiting technical devices. To achieve this goal, we had
to come up with a novel way of accounting for higher-order functions in the context

17

18 CHAPTER 3. PARAMETRIC BISIMULATIONS

of a coinductive bisimulation-like proof method, without relying on the “syntactic”
devices that previous bisimulation methods use. Our solution—a new technique we
call global vs. local knowledge—is one of the major contributions of this work.
Relying heavily on this new technique, we have proven that PB equivalence proofs
are transitively composable, which suggests they may serve as a superior foundation
to KLRs for inter-language reasoning.

The remainder of this chapter is structured as follows. In Section 3.3, we define
Fµ!, the language under consideration. In Section 3.4, we motivate our key novel
technical idea of global vs. local knowledge. We then present the formal development
of PBs. For pedagogical reasons, we begin in Section 3.5 with the presentation of a
relational model for λµ (a pure subset of Fµ! with recursive types), and then proceed
in Section 3.6 to extend that model to handle the full language Fµ!. Section 3.7
details the meta theory of the full model. The proof of transitivity merits its own
section, Section 3.9. In Section 3.8, we demonstrate the expressive power of our
method by proving several challenging equivalences from the literature. Afterwards,
in Section 3.10, we explore a variant of PBs that we call stuttering PBs, and discuss its
applications. In Section 3.11, we revisit local knowledges and point out how applying
parametric coinduction [34] to their consistency property enables a convenient proof
style. Finally, in Section 3.12, we recap and conclude with a comparison between
PBs and logical relations.

Because of this chapter’s focus on establishing contextual equivalences, it is con-
venient to develop PBs as symmetric relations. This is not essential, however. When
turning to refinement and compiler correctness in the next chapter, we will develop
PILS using an asymmetric formulation.

3.2 Notation

Let us briefly establish some basic notational conventions that we use in the remainder
of this thesis (not necessarily in the next section).

• We sometimes write meta-level functions in lambda notation (e.g., λx.x+ 42).

• For a binary relation R and a natural number n, we write Rn for the n−1-times
iterated relational composition R ◦ · · · ◦R.

• For a unary relation S and a natural number n, we write Sn for the n−1-times
iterated cartesian product S × · · · × S.

• We write R∗ for the reflexive transitive closure of relation R and R+ for its
transitive closure.

• Given sets X and Y , we write X]Y to denote X∪Y when we want to emphasize
that X and Y are disjoint.

• We write X⊥ short for X extended with a distinct element ⊥.

3.3. THE LANGUAGE Fµ! 19

• We write X ⇀ Y short for X → Y⊥, i.e., the set of partial functions from X
to Y .

• Given f ∈ X ⇀ Y , we write dom(f) to denote {x ∈ X | f(x) 6= ⊥}, i.e., the
largest subset of X for which f is total.

• We write X
fin
⇀ Y short for {f ∈ X ⇀ Y | dom(f) is finite}, i.e., for the set of

partial functions from X to Y whose domain is finite.

• Given f, g ∈ X ⇀ Y , we write f t g to denote either the merge of f and g (if
their domains are disjoint) or ⊥ (if they aren’t):

f t g ∈ (X ⇀ Y)⊥

f t g =

{
⊥ if dom(f) ∩ dom(g) 6= ∅
h otherwise

where h(x) =

f(x) if x ∈ dom(f)
g(x) if x ∈ dom(g)
⊥ otherwise

• For better readability, we sometimes write properties (e.g., lemmas) in the form
of proof rules. Moreover, in these rules, we often write multiple conclusions in
the same style as one writes multiple premises. For instance, the rule

P1 P2 P3

C1 C2

represents the property P1 ∧ P2 ∧ P3 =⇒ C1 ∧ C2.

3.3 The Language Fµ!

3.3.1 Syntax and Static Semantics

Figure 3.2 presents the surface syntax of Fµ!, a call-by-value PCF-like language ex-
tended with features such as polymorphism and state. We assume a countably infinite
set of type variables α and term variables x.

Types σ consist of variables (α), base types (including natural numbers), binary
product and sum types, higher-order function types, universal and existential types,
(iso-)recursive types, and general (higher-order) references.

Programs p consists of variables (x) and introduction and elimination constructs
for each type form (some of these carrying explicit typing annotations):

• For the unit type: the unit value (〈〉).

• For the natural number type: constants (n), standard binary arithmetic op-
erations (p1 � p2) such as addition and multiplication, and an “if not zero”
conditional (ifnz p0 then p1 else p2).

20 CHAPTER 3. PARAMETRIC BISIMULATIONS

σ ∈ Ty ::= α | unit | nat | σ1 × σ2 | σ1 + σ2 | σ1 → σ2 | ∀α. σ | ∃α. σ | µα. σ | ref σ

p ∈ Prg ::= x | 〈〉 | n | p1 � p2 | ifnz p0 then p1 else p2 | 〈p1, p2〉 | p.1 | p.2 | inlσ p |
inrσ p | case p (x. p1) (x. p2) | fix f(x:σ1):σ2. p | p1 p2 |
Λα. p | p [σ] | pack 〈σ, p〉 as ∃α. σ′ | unpack p1 as 〈α, x〉 in p2 |
rollσ p | unroll p | ref p | !p | p1 := p2 | p1 == p2

Figure 3.1: Surface syntax of Fµ!.

• For product types: product formation (〈p1, p2〉) and projections (p.1, p.2).

• For sum types: injections (inlσ p, inrσ p) and case analysis (case p (x. p1) (x. p2)).

• For function types: (recursive) abstraction (fix f(x:σ1):σ2. p) and application
(p1 p2).

• For universal types: generalization (Λα. p) and instantiation (p [σ]).

• For existential types: packing (pack 〈σ, p〉 as ∃α. σ′)
and unpacking (unpack p1 as 〈α, x〉 in p2).

• For recursive types: folding (rollσ p) and unfolding (unroll p).

• For reference types: allocation (ref p), reading (!p), writing (p1 := p2), and
comparing (p1 == p2).

The static semantics of Fµ!, given in Figure 3.2, is completely standard. It defines
the program typing judgment ∆; Γ ` p : σ, stating that program p has type σ in
environments ∆ and Γ. ∆ lists the type variables that may appear free in p, while Γ
lists the term variables and their types. We write σ[σ′/α] for the standard capture-
avoiding substitution of σ′ for variable α in σ.

3.3.2 Dynamic Semantics

The operational semantics of Fµ! is shown in Figure 3.3 and defined in terms of a
standard substitution-based small-step reduction, ↪→, of run-time entities. These
run-time entities, representing programs in execution, are pairs consisting of a heap
h and an expression e. Initially, an expression is obtained simply by erasing the
type annotations from a program p in the obvious way (written |p|). Expressions,
however, can also contain heap locations l, as created by an allocation step (we
assume a countably infinite set of locations Loc). A heap is a mapping from a finite
subset of Loc to values v, which are a syntactic subset of expressions.

The reduction relation follows an eager left-to-right evaluation strategy and is
defined the usual way using evaluation contexts K. We write K[e] for filling the hole

3.3. THE LANGUAGE Fµ! 21

Type environments ∆ ::= · | ∆, α
Term environments Γ ::= · | Γ, x:σ

∆; Γ ` p : σ

∆ ` Γ x:σ ∈ Γ
∆; Γ ` x : σ

∆ ` Γ
∆; Γ ` n : nat

∆; Γ ` p1 : nat ∆; Γ ` p2 : nat

∆; Γ ` p1 � p2 : nat

∆; Γ ` p0 : nat ∆; Γ ` p1 : σ ∆; Γ ` p2 : σ

∆; Γ ` ifnz p0 then p1 else p2 : σ

∆; Γ ` p1 : σ1 ∆; Γ ` p2 : σ2

∆; Γ ` 〈p1, p2〉 : σ1 × σ2

∆; Γ ` p : σ1 × σ2

∆; Γ ` p.1 : σ1

∆; Γ ` p : σ1 × σ2

∆; Γ ` p.2 : σ2

∆; Γ ` p : σ1 ∆; Γ ` σ2

∆; Γ ` inlσ2 p : σ1 + σ2

∆; Γ ` σ1 ∆; Γ ` p : σ2

∆; Γ ` inrσ1 p : σ1 + σ2

∆; Γ ` p0 : σ1 + σ2 ∆; Γ, x:σ1 ` p1 : σ ∆; Γ, x:σ2 ` p2 : σ

∆; Γ ` case p0 (x. p1) (x. p2) : σ

∆; Γ, f :(σ1 → σ2), x:σ1 ` p : σ2

∆; Γ ` fix f(x:σ1):σ2. p : σ1 → σ2

∆; Γ ` p1 : σ1 → σ2 ∆; Γ ` p2 : σ1

∆; Γ ` p1 p2 : σ2

∆, α; Γ ` p : σ

∆; Γ ` Λα. p : ∀α. σ
∆; Γ ` p : ∀α. σ1 ∆; Γ ` σ2

∆; Γ ` p [σ2] : σ1[σ2/α]

∆; Γ ` σ1 ∆; Γ ` p : σ2[σ1/α]

∆; Γ ` pack 〈σ1, p〉 as ∃α. σ2 : ∃α. σ2

∆; Γ ` p1 : ∃α. σ1 ∆, α; Γ, x:σ1 ` p2 : σ2 ∆; Γ ` σ2

∆; Γ ` unpack p1 as 〈α, x〉 in p2 : σ2

∆; Γ ` p : σ[µα. σ/α]

∆; Γ ` rollµα. σ p : µα. σ

∆; Γ ` p : µα. σ

∆; Γ ` unroll p : σ[µα. σ/α]

∆; Γ ` p : σ

∆; Γ ` ref p : ref σ

∆; Γ ` p1 : ref σ ∆; Γ ` p2 : σ

∆; Γ ` p1 := p2 : unit

∆; Γ ` p : ref σ

∆; Γ ` !p : σ

∆; Γ ` p1 : ref σ ∆; Γ ` p2 : ref σ

∆; Γ ` p1 == p2 : nat

Figure 3.2: Static semantics of Fµ!

22 CHAPTER 3. PARAMETRIC BISIMULATIONS

• in K with expression e (defined in the obvious way). We also write e[v/x] for the
standard capture-avoiding substitution of value v for variable x in e, and [l 7→ v] for
the singleton heap storing v at location l.

3.3.3 Contextual Equivalence

Our definition of contextual equivalence of Fµ! programs is also fairly standard.
Roughly, two programs of the same type are contextually equivalent iff putting them
in the same arbitrary (but well-typed) program context yields the same termination
behavior.

Formally, we first define program contexts C (programs with a hole) and their
typing, analogous to programs. This is shown in Figure 3.4. Context typing has the
property that if ` C : (∆; Γ;σ) (∆′; Γ′;σ′) and ∆; Γ ` p : σ, then ∆′; Γ′ ` C[p] :
σ′.

To express the termination behavior it suffices to define divergence. Intuitively,
〈h; e〉 ↑ holds iff the repeated reduction of 〈h; e〉 never results in a value and never
gets stuck, i.e., goes on forever.

Definition 1 (Divergence). Coinductively, using a single recursive rule:

〈h; e〉 ↪→ 〈h′; e′〉 〈h′; e′〉↑
〈h; e〉↑

Contextual equivalence is then defined as follows.

Definition 2 (Contextual equivalence).

∆; Γ ` p1 ∼ctx p2 : σ
def⇐⇒ ∆; Γ ` p1 : σ ∧ ∆; Γ ` p2 : σ ∧ ∀C, σ′, h.

` C : (∆; Γ;σ) (ε; ε;σ′) =⇒
(〈h; |C[p1]|〉↑ ⇐⇒ 〈h; |C[p2]|〉↑)

3.3.4 Deterministic Allocation

Notice that reduction (3.3) is deterministic except for the rule for reference allocation
(the ref e expression form), which is completely non-deterministic. For technical
reasons, however, it is more convenient to work with a deterministic allocation rule.

Given an allocation function alloc ∈ Heap → Loc, let ∼alloc
ctx be the contextual

equivalence of a deterministic version of Fµ!, obtained by replacing the allocation
rule with the following one (note the modified side condition):

〈h;K[ref v]〉 ↪→ 〈h t [l 7→ v];K[l]〉 (l = alloc(h))

Here, alloc determines the choice of the fresh location.
Fortunately, it is easy to show that if two programs are contextually equivalent

under all deterministic allocators (i.e., according to∼alloc
ctx), then they are contextually

equivalent under a non-deterministic allocator (i.e., according to ∼ctx).

3.3. THE LANGUAGE Fµ! 23

l ∈ Loc

e ∈ Exp ::= x | 〈〉 | n | e1 � e2 | ifnz e0 then e1 else e2 | 〈e1, e2〉 | e.1 | e.2 | inl e |
inr e | case e (x. e1) (x. e2) | fix f(x). e | e1 e2 | Λ. e | e [] |
pack e | unpack e1 as x in e2 | roll e | unroll e | ref e | !e | e1 := e2 |
e1 == e2 | l

v ∈ Val ::= 〈〉 | n | 〈v1, v2〉 | inl v | inr v | fix f(x). e | Λ. e | pack v | roll v | l

K ∈ Cont ::= • | K � e | v �K | ifnz K then e1 else e2 | 〈K, e〉 | 〈v,K〉 | K.1 | K.2 |
inl K | inr K | case K (x. e1) (x. e2) | K e | v K | K [] |
pack K | unpack K as x in e | roll K | unroll K | ref K | !K | K := e |
v := K | K == e | v == K

h ∈ Heap := Loc
fin
⇀ Val

Reduction: 〈h; e〉 ↪→ 〈h′; e′〉

〈h;K[n1 � n2]〉 ↪→ 〈h;K[n]〉 (n = J�K (n1, n2))
〈h;K[ifnz 0 then e1 else e2]〉 ↪→ 〈h;K[e2]〉
〈h;K[ifnz n then e1 else e2]〉 ↪→ 〈h;K[e1]〉 (n 6= 0)
〈h;K[〈v1, v2〉.1]〉 ↪→ 〈h;K[v1]〉
〈h;K[〈v1, v2〉.2]〉 ↪→ 〈h;K[v2]〉
〈h;K[case (inl v) (x. e1) (x. e2)]〉 ↪→ 〈h;K[e1[v/x]]〉
〈h;K[case (inr v) (x. e1) (x. e2)]〉 ↪→ 〈h;K[e2[v/x]]〉
〈h;K[(fix f(x). e) v]〉 ↪→ 〈h;K[e[fix f(x). e/f][v/x]]〉
〈h;K[(Λ. e) []]〉 ↪→ 〈h;K[e]〉
〈h;K[unpack (pack v) as x in e]〉 ↪→ 〈h;K[e[v/x]]〉
〈h;K[unroll (roll v)]〉 ↪→ 〈h;K[v]〉
〈h;K[ref v]〉 ↪→ 〈h t [l 7→ v];K[l]〉 (l /∈ dom(h))
〈h t [l 7→ v];K[l := v′]〉 ↪→ 〈h t [l 7→ v′];K[〈〉]〉 (l /∈ dom(h))
〈h t [l 7→ v];K[!l]〉 ↪→ 〈h t [l 7→ v];K[v]〉 (l /∈ dom(h))
〈h;K[l1 == l2]〉 ↪→ 〈h;K[1]〉 (l1 = l2)
〈h;K[l1 == l2]〉 ↪→ 〈h;K[0]〉 (l1 6= l2)

Figure 3.3: Dynamic semantics of Fµ!.

24 CHAPTER 3. PARAMETRIC BISIMULATIONS

` C : (∆; Γ;σ) (∆′; Γ′;σ′)

∆; Γ ` σ
` • : (∆; Γ;σ) (∆; Γ;σ)

` C : (∆; Γ;σ) (∆′; Γ′; nat) ∆′; Γ′ ` p2 : nat

` C � p2 : (∆; Γ;σ) (∆′; Γ′; nat)

∆′; Γ′ ` p1 : nat ` C : (∆; Γ;σ) (∆′; Γ′; nat)

` p1 � C : (∆; Γ;σ) (∆′; Γ′; nat)

` C : (∆; Γ;σ) (∆′; Γ′; nat) ∆′; Γ′ ` p1 : σ′ ∆′; Γ′ ` p2 : σ′

` ifnz C then p1 else p2 : (∆; Γ;σ) (∆′; Γ′;σ′)

∆′; Γ′ ` p0 : nat ` C : (∆; Γ;σ) (∆′; Γ′;σ′) ∆′; Γ′ ` p2 : σ′

` ifnz p0 then C else p2 : (∆; Γ;σ) (∆′; Γ′;σ′)

∆′; Γ′ ` p0 : nat ∆′; Γ′ ` p1 : σ′ ` C : (∆; Γ;σ) (∆′; Γ′;σ′)

` ifnz p0 then p1 else C : (∆; Γ;σ) (∆′; Γ′;σ′)

` C : (∆; Γ;σ) (∆′; Γ′;σ1) ∆′; Γ′ ` p2 : σ2

` 〈C, p2〉 : (∆; Γ;σ) (∆′; Γ′;σ1 × σ2)

` C : (∆; Γ;σ) (∆′; Γ′;σ1 × σ2)

` C.1 : (∆; Γ;σ) (∆′; Γ′;σ1)

` C : (∆; Γ;σ) (∆′; Γ′;σ1 × σ2)

` C.2 : (∆; Γ;σ) (∆′; Γ′;σ2)

∆′; Γ′ ` σ2 ` C : (∆; Γ;σ) (∆′; Γ′;σ1)

` inlσ2 C : (∆; Γ;σ) (∆′; Γ′;σ1 + σ2)

∆′; Γ′ ` σ1 ` C : (∆; Γ;σ) (∆′; Γ′;σ2)

` inrσ1 C : (∆; Γ;σ) (∆′; Γ′;σ1 + σ2)

` C : (∆; Γ;σ) (∆′; Γ′;σ1 + σ2) ∆′; Γ′, x:σ1 ` p1 : σ′ ∆′; Γ′, x:σ2 ` p2 : σ′

` case C (x. p1) (x. p2) : (∆; Γ;σ) (∆′; Γ′;σ′)

∆′; Γ′ ` p0 : σ1 + σ2 ` C : (∆; Γ;σ) (∆′; Γ′, x:σ1;σ′) ∆′; Γ′, x:σ2 ` p2 : σ′

` case p0 (x. C) (x. p2) : (∆; Γ;σ) (∆′; Γ′;σ′)

∆′; Γ′ ` p0 : σ1 + σ2 ∆′; Γ′, x:σ1 ` p1 : σ′ ` C : (∆; Γ;σ) (∆′; Γ′, x:σ2;σ′)

` case p0 (x. p1) (x. C) : (∆; Γ;σ) (∆′; Γ′;σ′)

` C : (∆; Γ;σ) (∆′; Γ′, f :(σ1 → σ2), x:σ1;σ2)

` fix f(x:σ1):σ2. C : (∆; Γ;σ) (∆′; Γ′;σ1 → σ2)

Figure 3.4: Program contexts in Fµ!.

3.3. THE LANGUAGE Fµ! 25

` C : (∆; Γ;σ) (∆′; Γ′;σ1 → σ2) ∆′; Γ′ ` p2 : σ1

` C p2 : (∆; Γ;σ) (∆′; Γ′;σ2)

∆′; Γ′ ` p1 : σ1 → σ2 ` C : (∆; Γ;σ) (∆′; Γ′;σ1)

` p1 C : (∆; Γ;σ) (∆′; Γ′;σ2)

` C : (∆; Γ;σ) (∆′, α; Γ′;σ1)

` Λα.C : (∆; Γ;σ) (∆′; Γ′;∀α. σ1)

` C : (∆; Γ;σ) (∆′; Γ′;∀α. σ1) ∆′; Γ′ ` σ2

` C [σ2] : (∆; Γ;σ) (∆′; Γ′;σ1[σ2/α])

∆′; Γ′ ` σ1 ` C : (∆; Γ;σ) (∆′; Γ′;σ2[σ1/α])

` pack 〈σ1, C〉 as ∃α. σ2 : (∆; Γ;σ) (∆′; Γ′;∃α. σ2)

` C : (∆; Γ;σ) (∆′; Γ′;∃α. σ1) ∆′, α; Γ′, x:σ1 ` p2 : σ2 ∆′; Γ′ ` σ2

` unpack C as 〈α, x〉 in p2 : (∆; Γ;σ) (∆′; Γ′;σ2)

∆′; Γ′ ` p1 : ∃α. σ1 ` C : (∆; Γ;σ) (∆′, α; Γ′, x:σ1;σ2) ∆′; Γ′ ` σ2

` unpack p1 as 〈α, x〉 in C : (∆; Γ;σ) (∆′; Γ′;σ2)

` C : (∆; Γ;σ) (∆′; Γ′;σ′[µα. σ′/α])

` rollµα. σ′ C : (∆; Γ;σ) (∆′; Γ′;µα. σ′)

` C : (∆; Γ;σ) (∆′; Γ′;µα. σ′)

` unroll C : (∆; Γ;σ) (∆′; Γ′;σ′[µα. σ′/α])

` C : (∆; Γ;σ) (∆′; Γ′;σ1)

` ref C : (∆; Γ;σ) (∆′; Γ′; ref σ1)

` C : (∆; Γ;σ) (∆′; Γ′; ref σ′)

` !C : (∆; Γ;σ) (∆′; Γ′;σ′)

` C : (∆; Γ;σ) (∆′; Γ′; ref σ1) ∆′; Γ′ ` p2 : σ1

` C := p2 : (∆; Γ;σ) (∆′; Γ′; unit)

∆′; Γ′ ` p1 : ref σ1 ` C : (∆; Γ;σ) (∆′; Γ′;σ1)

` p1 := C : (∆; Γ;σ) (∆′; Γ′; unit)

` C : (∆; Γ;σ) (∆′; Γ′; ref σ′) ∆′; Γ′ ` p2 : ref σ′

` C == p2 : (∆; Γ;σ) (∆′; Γ′; nat)

∆′; Γ′ ` p1 : ref σ′ ` C : (∆; Γ;σ) (∆′; Γ′; ref σ′)

` p1 == C : (∆; Γ;σ) (∆′; Γ′; nat)

Figure 3.4 (cont.): Program contexts in Fµ!.

26 CHAPTER 3. PARAMETRIC BISIMULATIONS

Theorem 1. If

∆; Γ ` p1 ∼alloc
ctx p2 : σ

for any alloc ∈ Heap→ Loc satisfying ∀h. alloc(h) /∈ dom(h), then:

∆; Γ ` p1 ∼ctx p2 : σ

Proof. We are given a heap h and a suitably typed context C and must show that
〈h;C[p1]〉 ↑ iff 〈h;C[p2]〉 ↑. We sketch the “only if” direction here, the proof of the
“if” direction is symmetric.

Suppose 〈h;C[p1]〉 ↑. We can look at the execution trace and observe the heap
locations that are allocated (and the order in which they are allocated) and choose
any deterministic allocator alloc that implements this allocation “strategy”.

Instantiating the premise then tells us that ∆; Γ ` p1 ∼alloc
ctx p2 : σ. Since 〈h;C[p1]〉

diverges according to the alloc-determinized semantics (by choice of alloc), we learn
that 〈h;C[p2]〉 diverges according to the determinized semantics as well. It therefore
also diverges according to the non-deterministic semantics, i.e., 〈h;C[p2]〉↑.

In the remainder of this chapter, we therefore assume a valid allocator alloc as
an axiom and work with the correspondingly determinized version of Fµ!. From now
on, we simply write ∼ctx for ∼alloc

ctx and never talk about the original ∼ctx again.

3.4 Global vs. Local Knowledge

Our method of parametric bisimulations (PBs) is essentially coinductive, following
the style of previous bisimulation techniques in many respects. Coinductive reasoning
makes it easy to deal with recursive features—such as recursive types and higher-order
store—without requiring the use of step-indexed constructions.

The two main ways in which PBs differ from previous bisimulation techniques are
in their treatment of:

Local state. From recent work on KLRs [4, 22], we borrow the idea of using state
transition systems (STSs) to establish invariants on how a module’s local state
may evolve over time. STSs enable one to encode more flexible state invariants
than are expressible using “environmental” bisimulations [74, 79].

Higher-order functions. In order to reason about higher-order functions in a coin-
ductive style, but without confining ourselves to single-language reasoning, we
employ a novel technical idea: global vs. local knowledge.

The treatment of local state using state transition systems follows prior work very
closely, which is already discussed in Chapter 2. Here we focus attention on motivat-
ing our idea of global vs. local knowledge.

3.4. GLOBAL VS. LOCAL KNOWLEDGE 27

Coinductive Reasoning Recall the way we defined contextual equivalence in the
previous section. An alternative but equivalent way of formulating contextual equiv-
alence is as the largest adequate congruence relation [64]. Being adequate means that
if two terms of base type are related, then either they both diverge (run forever) or
they both evaluate to the same value (e.g., if one term evaluates to 3, then the other
must evaluate to 3 as well). Being a congruence means the relation is closed under
all the constructs of the language (e.g., if f1 and f2 are related at τ ′ → τ , and e1 and
e2 are related at τ ′, then f1 e1 and f2 e2 are related at τ).

To prove using coinduction that two terms e1 and e2 are contextually equivalent at
type τ , one must exhibit a (type-indexed) term relation L that contains (τ, e1, e2) and
then prove that L is an adequate congruence. The relation L serves as a “generalized
coinduction hypothesis”, by which one proves equivalence for all pairs of terms related
by L simultaneously. However, while it is possible for one to employ this kind of
“brute-force” coinductive proof, it is typically not very pleasant, because proving a
relation to be a congruence directly can be incredibly tedious.

Bisimulation techniques help make coinductive proofs manageable by lightening
the congruence proof burden. Typically, this is achieved by only requiring one to
show that L is closed under type-directed uses (i.e., evaluation or deconstruction) of
the terms it relates. This results in proof obligations that look like the following (we
are not being totally formal here):

(1) If (τ, e1, e2) ∈ L, then either e1 ↑ and e2 ↑,
or ∃v1, v2. e1 ↪→∗ v1 and e2 ↪→∗ v2 and (τ, v1, v2) ∈ L.

(2) If (int, v1, v2) ∈ L, then ∃n. v1 = v2 = n.

(3) If (τ ′ × τ ′′, v1, v2) ∈ L, then ∃v′1, v′′1 , v′2, v′′2 . vi = 〈v′i, v′′i 〉
and (τ ′, v′1, v

′
2) ∈ L and (τ ′′, v′′1 , v

′′
2) ∈ L.

(4) If (µα. τ, v1, v2) ∈ L, then ∃v′1, v′2. vi = roll v′i
and (τ [µα. τ/α], v′1, v

′
2) ∈ L.

The most problematic proof obligation is the one for function values. It usually looks
something like this (simplifying fix to λ):

(5) If (τ ′ → τ, v1, v2) ∈ L, then ∃x, e1, e2. vi = λx.ei and

∀v′1, v′2. (τ ′, v′1, v
′
2) ∈ G ⇒ (τ, e1[v′1/x], e2[v′2/x]) ∈ L.

In other words, if L relates function values v1 and v2, then applying them to any
“equivalent arguments” v′1 and v′2 should produce results that are also related by L.
The big question is: what is this relation G from which the arguments v′1 and v′2 are
drawn?

Global vs. Local Knowledge First, some (non-standard) terminology: There
exist many equivalent terms, but when we do a bisimulation proof, we only make a
claim about some of them. So let us make a distinction between “local” and “global”

28 CHAPTER 3. PARAMETRIC BISIMULATIONS

knowledge about term equivalence. The relation L describes our local knowledge:
these are the terms whose equivalence we aim to validate in our proof. The relation
G, on the other hand, embodies the global knowledge about all terms out there that
are equivalent. In proof obligation (5), we draw equivalent function arguments from
G (rather than L) since they might indeed originate from “somewhere else” in the
program (some unknown client code), and thus our local knowledge L may not be
sufficient to justify their equivalence. This leaves us with the question of how to
define G.

Whence Global Knowledge? Coming up with a sound (and practically usable)
choice for G is far from obvious, and existing bisimulation methods make a variety
of different choices. For example:

• Applicative bisimulations [1] define G to be the syntactic identity relation on
closed values.

This is a nice, simple choice, which works well for pure λ-calculus. Unfortunately,
for higher-order stateful languages like Fµ!, it is unsound [40], so more advanced
approaches are needed:

• Environmental bisimulations [81, 41, 74, 79] take G to be the “context closure”
of L, i.e., the relation that extends the syntactic identity relation on closed
values by including closures of open values v with pairs of values (w1, w2) that
are related by L (formally: {(σ, v[w1/y], v[w2/y]) | {(σ′, w1, w2)} ⊆ L}).1

• Normal form (or open) bisimulations [43, 78, 44, 45] sidestep the whole question
by choosing a fresh variable name x and representing equivalent arguments by
the same x. As a result, these bisimulations are built over open terms, and proof
obligation (1) above must be updated to account for the possibility that the
evaluations of e1 and e2 get stuck trying to deconstruct the same free variable
x (more about that below).

All of these methods define global knowledge in a very “syntactic” way that is well
suited to proving contextual equivalences. However, we wish to develop a method
that will be capable of generalizing to the setting of inter-language reasoning, where
G may relate different languages. We therefore seek an account of global knowledge
that is more “semantic”.

Parameterizing Over Global Knowledge The essential difficulty in choosing
G has to do with higher-order functions: if the argument type τ ′ is (or contains)
a function type, then equivalence at τ ′ is very hard to characterize directly.2 Our

1We are glossing over a lot of details here. To be precise, environmental bisimulations are actually
sets of L’s. For more details, see Section 6.2.

2Conversely, if τ ′ were arrow-free (e.g., in a first-order language), it would be easy to characterize
equivalence at τ ′ directly.

3.4. GLOBAL VS. LOCAL KNOWLEDGE 29

solution is simple: we don’t try to define the global knowledge at all; instead, we take
G to be a parameter of our model!

Our key observation is that it is not necessary to pin down exactly what G is, so
long as we make our coinductive proof for L as parametric as possible with respect
to it. (We will clarify what “as parametric as possible” means in Section 3.6.) This
parametricity makes our proofs quite robust by allowing G to be instantiated in a
variety of different ways. In particular, we make no assumptions whatsoever about
the values that G relates at function type. For all we know, G might even include
“garbage” like (int→ int, 4, 〈〉).3

Our approach can be viewed as a more semantic account of the idea behind
normal form bisimulations (see above), which is to model “equivalent arguments”
as black boxes about which nothing is known. Consequently, just as for normal
form bisimulations, we need to adapt proof obligation (1) above to account for the
possibility that e1 and e2 get stuck. For normal form bisimulations, e1 and e2 may get
stuck if they try to deconstruct a free variable x, and so normal form bisimulations
loosen proof obligation (1) to allow e1 and e2 to reduce to terms of the form K1[x v1]
and K2[x v2], where K1 and K2 are equivalent continuations and v1 and v2 are
equivalent values. In our case, e1 and e2 may get stuck if they try to apply some bogus
functions that are equivalent according to the global knowledge but that turn out (like
4 and 〈〉) to not even be functions. Hence, we will allow e1 and e2 to reduce to terms
of the form K1[f1 v1] and K2[f2 v2], where K1 and K2 are equivalent continuations,
and where {(τ ′ → τ, f1, f2), (τ ′, v1, v2)} ⊆ G. In this way, the parameter G serves as
a semantic analogue of free variables in normal form bisimulations.

Intuitively, although the idea of parameterizing over the global knowledge may
seem surprising at first, we find it to be comfortingly reminiscent of Girard’s method
for modeling System F [27]. In Girard’s method, a potential cycle in the definition of
the logical relation for impredicative universal types ∀α.τ is avoided by parameteriz-
ing over an arbitrary relational interpretation of the abstract type α. In our scenario,
the problem of how to define the global knowledge is avoided by parameterizing over
an arbitrary relational interpretation of function types. In essence, we are treating
a function type τ1 → τ2 as an unusual kind of abstract type: the coinductive proofs
about different “modules” in a program all treat the global interpretation of τ1 → τ2

abstractly, while simultaneously they each contribute to defining it.

Parameterizing over the global knowledge turns out to be very useful. First and
foremost, it makes it easy to soundly compose our coinductive proofs for different
“modules” together (and hence prove soundness of our method w.r.t. contextual
equivalence). Second, it enables us to reason about open terms (Section 3.5) and
higher-order state invariants (Section 3.6), replacing the use of context closure or
free variables for those purposes in environmental and normal form bisimulations,
respectively. Finally, it is the key to establishing transitivity for our proof method
(Sections 3.5.4 and 3.9).

3The ability to instantiate G with a “trashy” relation is surprisingly useful. We will make critical
use of it in our transitivity proof.

30 CHAPTER 3. PARAMETRIC BISIMULATIONS

3.5 Warmup: Parametric Bisimulations for λµ

To ease the presentation of parametric bisimulations (PBs), we begin in this section
by using the idea of global vs. local knowledge, motivated in the previous section, to
define a relational model for λµ, a pure fragment of Fµ!. This sub-language is obtained
by restricting the definitions in Section 3.3 to base, function, product, sum, and
recursive types (i.e., by excluding universal, existential, and reference types, as well
as the associated constructs and rules). Regarding reduction, the heap component h
becomes unused and is erased. Regarding typing, the type variable environment ∆
becomes unused and is erased.

Due to the simplicity of the language, the model developed here does not feature
STSs. These will come into play when dealing with state in Section 3.6. However,
by ignoring the transition-systems aspect of PBs for the time being, we can focus
attention on other aspects of the model.

3.5.1 Definitions

Figure 3.5 lists the various semantic domains we will be using. Here, CTy denotes
the set of closed types of λµ (i.e., types with no free type variables α), CVal denotes
the set of closed values (i.e., values with no free term variables x), etc. The first four
definitions are standard: relations on values, expressions, continuations, and heaps,
indexed by the relevant types (in case of KRel, input and output types).

Next, we define what we call the flexible types, CTyF, along with the flexible
relations, VRelF, which are just relations on closed values indexed by such flexible
types. Whereas bisimulation methods typically allow terms of arbitrary type to be
included in the bisimulation, we find it useful to restrict local and global knowledges
to relate only values of “flexible” types. Intuitively, these are the types at which
value equivalence may depend on module-specific knowledge. In Fµ!, there will be
several kinds of flexible types, but in λµ, the only flexible types are function types.

In contrast, value equivalence at the remaining types—base, product, sum, and
recursive types, which we call rigid—is fixed and agreed upon by all modules once
the meaning of the flexible types is defined. This is achieved by a closure operation
that takes a relation R ∈ VRelF and returns its value closure R ∈ VRel. It is defined
as the least fixed-point of the set of equations in Figure 3.6. For instance, two pairs
are related by R if and only if they are related componentwise. Note that R only
occurs covariantly4, so R is inductively well defined, even though the type gets bigger
on the r.h.s. in the case of µα. τ .

Local and Global Knowledge As shown in Figure 3.7, a local knowledge L ∈ LK
is essentially a flexible relation, except that this relation is actually itself parameter-
ized by the global knowledge, G. In effect, L(G) describes the values that we wish

4We don’t need to worry about functions introducing contravariance because the relation on
function types is already given by R itself.

3.5. WARMUP: PARAMETRIC BISIMULATIONS FOR λµ 31

VRel := CTy→ P(CVal× CVal)
ERel := CTy→ P(CExp× CExp)
KRel := CTy × CTy→ P(CCont× CCont)
HRel := P(Heap× Heap)
CTyF := {(τ1 → τ2) ∈ CTy}
VRelF := CTyF→ P(CVal× CVal)

Figure 3.5: Semantic domains for λµ.

R(τ) := R(τ) if τ ∈ CTyF
R(unit) := {(〈〉, 〈〉)}
R(nat) := {(n, n)}
R(τ1 × τ2) := {(〈v1, v

′
1〉, 〈v2, v

′
2〉) | (v1, v2) ∈ R(τ1) ∧ (v′1, v

′
2) ∈ R(τ2)}

R(τ1 + τ2) := {(inl v1, inl v2) | (v1, v2) ∈ R(τ1)} ∪ {(inr v1, inr v2) | (v1, v2) ∈ R(τ2)}
R(µα. τ) := {(roll v1, roll v2) | (v1, v2) ∈ R(τ [µα. τ/α])}

Figure 3.6: Value closure for λµ (if R ∈ VRelF, then R ∈ VRel).

step(e) :=

{
e′ if e ↪→ e′

⊥ otherwise
FixVal := {f ∈ CVal | ∀v. step(f v) 6= ⊥}
R′ ⊇ R := ∀τ. R′(τ) ⊇ R(τ)

LK := {L ∈ VRelF→VRelF | L is monotone w.r.t. ⊆ ∧
∀G, τ. L(G)(τ) ⊆ FixVal× FixVal}

GK(L) := {G ∈ VRelF | G ⊇ L(G)}

Figure 3.7: Specification of local and global knowledges for λµ.

32 CHAPTER 3. PARAMETRIC BISIMULATIONS

to prove are equivalent, assuming that G correctly represents the global knowledge.
This parameterization is necessary in order to reason about open terms, and we will
see its utility below in the proof of compatibility for fix. We require that L is mono-
tone w.r.t. G: intuitively, passing in a larger global knowledge should never result in
fewer terms being related by L.

We also require that the values related by the local knowledge at function type are
indeed functions, in the sense that their application to an arbitrary value should not
be stuck, but should be reducible at least for one step. This is a technical requirement
that is used in our transitivity proof in Section 3.5.4. The idea is that there should
be classes of values that may be related by the global knowledge but not by the local
knowledge.

We want to restrict attention to global knowledges that are closed w.r.t. the local
knowledge in question: For a particular L, we define GK(L) to be the set of flexible
relations G s.t. G ⊇ L(G). This requirement makes sense since the global knowledge
must by definition be a superset of any local knowledge. Observe, however, that we
do not restrict what other values G relates. Indeed, G may relate values at function
type that are not actually functions, or that are obviously inequivalent (e.g., 4 and
〈〉, cf. Section 3.4).

Relating Expressions and Continuations So far, we have seen how local knowl-
edges describe equivalence between values of flexible type, and how this equivalence
can be lifted to arbitrary types.

Figure 3.8 shows how equivalence is defined for (closed) expressions, e, and con-
tinuations, K. Specifically, we introduce two new relations, E ∈ VRelF → ERel and
K ∈ VRelF→ KRel, which are defined coinductively.

Given a type τ , a local knowledge L ∈ LK, and a global knowledge G ∈ GK(L),
we say that two expressions are “locally” equivalent, written (e1, e2) ∈ E(G)(τ), if
they either both diverge or both terminate producing related values. Along the way,
however, they may make calls to “external” functions, that is, functions that are
related by G, but not necessarily by the local knowledge L(G). More precisely, we
say two closed expressions are locally equivalent if and only if one of the following
three cases holds:

Case div. Both expressions diverge (run forever).

Case eval. Both expressions run successfully to completion, producing related val-
ues.

Case call. Both expressions reduce after some number of steps to some expres-
sions of the form Ki[fi vi], where both the fi and vi are related by the global
knowledge G at the appropriate types, and the continuations, K1 and K2, are
equivalent. We say that two continuations are equivalent if instantiating them
with equivalent values (according to the global knowledge G) yields equivalent
expressions.

3.5. WARMUP: PARAMETRIC BISIMULATIONS FOR λµ 33

E(G)(τ) := {(e1, e2) |
(div) e1↑ ∧ e2↑

∨ (eval) ∃v1, v2. e1 ↪→∗ v1 ∧ e2 ↪→∗ v2 ∧ (v1, v2) ∈ G(τ)
∨ (call) ∃τ ′,K1,K2, e

′
1, e
′
2.

e1 ↪→∗ K1[e′1] ∧ e2 ↪→∗ K2[e′2] ∧
(e′1, e

′
2) ∈ U(G,G)(τ ′) ∧

(K1,K2) ∈ K(G)(τ ′, τ)}

K(G)(τ1, τ2) := {(K1,K2) | ∀(v1, v2) ∈ G(τ1). (K1[v1],K2[v2]) ∈ E(G)(τ2)}

U(R,R′)(τ) := {(v1 v
′
1, v2 v

′
2) | ∃τ ′. (v1, v2) ∈ R(τ ′ → τ) ∧ (v′1, v

′
2) ∈ R′(τ ′)}

consistent(L) := ∀G ∈ GK(L). ∀τ. ∀(e1, e2) ∈ U(L(G), G)(τ).
(step(e1), step(e2)) ∈ E(G)(τ)

Γ ` e1 ∼L e2 : τ := consistent(L) ∧ ∀G ∈ GK(L). ∀γ1, γ2 ∈ dom(Γ)→ CVal.
(∀x:τ ′ ∈ Γ. (γ1x, γ2x) ∈ G(τ ′)) =⇒ (γ1e1, γ2e2) ∈ E(G)(τ)

Γ ` e1 ∼ e2 : τ := ∃L. Γ ` e1 ∼L e2 : τ

Γ ` p1 ∼ p2 : τ := Γ ` |p1| ∼ |p2| : τ

Figure 3.8: Mutually coinductive definitions of expression equivalence, E ∈ VRelF→
ERel, and continuation equivalence, K ∈ VRelF→ KRel, and definitions of consistency
and program equivalence for λµ.

34 CHAPTER 3. PARAMETRIC BISIMULATIONS

Intuitively, expressions that are locally equivalent w.r.t global knowledge G do not
necessarily have the same observable behavior, but they can be understood to have
the same local behavior, i.e., behave equivalently modulo what happens during calls
to functions related by G. If G happens to relate functions that behave differently,
this is G’s fault, not ours.

Consistency and Program Equivalence We say that a local knowledge L is
consistent (in Figure 3.8) if and only if any functions that it declares equivalent
yield in fact equivalent expressions when applied to equivalent arguments. In the
formal definition, we parameterize over an arbitrary global knowledge G ∈ GK(L); the
auxiliary construction U (characterizing the “uses” of functions) draws the functions
being tested for equivalence from the local knowledge, L(G), while the arguments to
which they are applied are drawn from the global knowledge, G.

In order for PB’s coinductive reasoning to be sound, we must be quite careful in
the definition of consistency: for each pair of functions (v1, v2) related by L(G), and
arguments (v′1, v

′
2) related by G, we cannot simply require (v1 v

′
1, v2 v

′
2) to be related

by E(G) because, via call, this is a tautology! Instead, we demand that vi v
′
i ↪→ ei,

and that e1 and e2 are related by E(G) (see the use of step in the formal definition).
Requiring the terms to take a step of reduction at this point ensures that “progress”
is made in the coinductive argument, i.e., that the coinduction is guarded. We will
say more about this guardedness condition in Section 3.10.

We call two expressions equivalent at type τ in context Γ, written Γ ` e1 ∼ e2 : τ ,
if and only if there exists a consistent local knowledge L that shows that γ1e1 and
γ2e2 are equivalent at type τ for value substitutions γ1 and γ2 and an arbitrary
global knowledge G for L. (We write γe for substituting in e according to γ.) These
substitutions are also arbitrary except that they must be pointwise related by G at
Γ.

Finally, two programs are equivalent simply if and only if their type-erased ver-
sions are equivalent expressions.

A note on coinduction. As E and K are defined mutually dependent over a com-
plete lattice (powerset lattice lifted pointwise to function spaces) and all operations
involved are monotone, we can take the meaning of these definitions to be either the
least or the greatest fixed point. We choose the greatest fixed point, corresponding to
coinduction, because this can in principle relate more terms and is somewhat easier
to work with. This means that PBs actually come with two coinductive reasoning
principles:

1. The first is enabled by E’s call case and the use of the global knowledge,
which contains the local knowledge. Here, the coinductive assumption is about
L (and thus G). This coinduction principle is used all the time in examples,
for instance in Section 3.5.2 below. For a quick intuition, think of reasoning
about recursive functions: we construct a local knowledge relating them and
then need to show its consistency. In the proof of consistency, after taking a

3.5. WARMUP: PARAMETRIC BISIMULATIONS FOR λµ 35

step, we may get to recursive calls. At that point, we are allowed to make use
of the call since we already know that the functions are related by the global
knowledge (after all, it contains the local knowledge that we constructed).

2. The second is enabled by the definition of E as a greatest fixed point, as we
just discussed above. Here, the coinductive assumption is about E. This coin-
duction principle is only used in the metatheory (e.g., Lemma 3 and its gener-
alization Lemma 11), not in any example proofs. The reason is that in λµ and
Fµ! there is no way for a program to loop other than via function calls, so we
can always use the first principle. Were we to extend the language with other
forms of recursion (such as while loops or primitive recursion), the coinductive
interpretation of E would become essential.

When presenting PILS in Chapter 4, we will see that it is possible to get away with
a single form of coinductive reasoning, without losing expressivity.

3.5.2 Example Proof

Consider the following example concerning streams as functions (taken from Sumii
and Pierce [81]):

τ := µα. unit→ nat× α
ones : unit→ nat× τ := fix f(x). 〈1, roll f〉
twos : unit→ nat× τ := fix f(x). 〈2, roll f〉
succ : τ → τ := fix f(s). let 〈n, s′〉 = unroll s 〈〉 in

roll λx. 〈n+1, f s′〉

(Here and elsewhere we write λx. e short for fix g(x). e, where g does not occur free
in e.) As the names suggest, ones encodes the stream consisting of only 1’s (i.e.,
111 . . .), while twos encodes the stream consisting of only 2’s. The goal is to show
that incrementing each component of ones by one results in a stream equivalent to
twos:

` roll twos ∼ succ (roll ones) : τ

Constructing a Suitable Local Knowledge. Note that we have

succ (roll ones) ↪→∗ roll twos ′

for twos ′ := λx. 〈1+1, succ (roll ones)〉. We define a local knowledge L that relates
exactly twos and twos ′:

L(G)(τ ′) := {(twos, twos ′) | τ ′ = unit→ nat× τ}

36 CHAPTER 3. PARAMETRIC BISIMULATIONS

Proving Its Consistency. Suppose (e1, e2) ∈ U(L(G), G)(τ ′), where G ∈ GK(L).
By construction of L we know that e1 = twos 〈〉, e2 = twos ′ 〈〉, and τ ′ = nat × τ .
Hence we must show:

(〈2, roll twos〉, 〈1+1, succ (roll ones)〉) ∈ E(G)(nat× τ)

Using the eval case in E and the definition of G, this reduces to showing
(2, 2) ∈ G(nat) and (roll twos, roll twos ′) ∈ G(τ). The former is trivial. The lat-
ter is equivalent to (twos, twos ′) ∈ G(unit → nat× τ), which holds by construction
because G extends L(G).

Showing the Programs Related By It. It remains to show:

∀G ∈ GK(L). (roll twos, succ (roll ones)) ∈ E(G)(τ)

Again using eval, we end up having to show (roll twos, roll twos ′) ∈ G(τ), which we
have already done above.

3.5.3 Basic Properties and Soundness

We move on to some properties of our constructions. These lemmas will be general-
ized in a later section (3.7) to the full Fµ! setting.

The first lemma says that a global knowledge that is valid for the union of two
local knowledges is also valid for each local knowledge in isolation. (The reason why
we don’t express this more generally using ⊆ will become clear in Section 3.7.)

Lemma 1. If L1, L2 ∈ LK and G ∈ GK(L1 ∪ L2), then G ∈ GK(L1) ∩ GK(L2).

The following lemma states that consistency of local knowledges is preserved un-
der (pointwise) union. This is important for ensuring that equivalence proofs for
different subterms, which rely on different local knowledges, can be soundly com-
posed.

Lemma 2. If consistent(L) and consistent(L′), then consistent(L ∪ L′).

Figure 3.9 shows some of the basic properties of our program equivalence rela-
tion. First, we have a set of rules stating that equivalence is compatible with all the
language constructs. These rules state that if two terms start with the same term
constructor and their immediate subterms are component-wise equivalent, then so
are the composite terms. For brevity, we just present the rules for recursive function
definition (Fix) and function application (App), whose proofs are the most interest-
ing.

The proof of Fix is particularly interesting because it requires coinductive rea-
soning: when showing the consistency of our local knowledge, i.e., when proving
applications of the recursive functions related, we deal with the recursion by resort-
ing to the fact that the local knowledge relates the functions.

3.5. WARMUP: PARAMETRIC BISIMULATIONS FOR λµ 37

Γ, f :(τ ′ → τ), x:τ ′ ` e1 ∼ e2 : τ

Γ ` fix f(x). e1 ∼ fix f(x). e2 : τ ′ → τ
Fix

Γ ` e1 ∼ e2 : τ ′ → τ Γ ` e′1 ∼ e′2 : τ ′

Γ ` e1 e
′
1 ∼ e2 e

′
2 : τ

App

Γ ` p : τ

Γ ` |p| ∼ |p| : τ Refl
Γ ` e2 ∼ e1 : τ
Γ ` e1 ∼ e2 : τ

Symm

Γ ` e1 ∼ e2 : τ Γ ` e2 ∼ e3 : τ
Γ ` e1 ∼ e3 : τ

Trans

Γ ` e1 ∼ e2 : τ ` C : (Γ; τ) (Γ′; τ ′)

Γ′ ` |C|[e1] ∼ |C|[e2] : τ ′
Cong

Γ, x:τ ′ ` e1 ∼ e2 : τ Γ ` v1 ∼ v2 : τ ′

Γ ` e1[v1/x] ∼ e2[v2/x] : τ
Subst

Γ ` e′1 ∼ e′2 : τ
∀γ ∈ dom(Γ)→ CVal. γe1 ↪→∗ γe′1 ∀γ ∈ dom(Γ)→ CVal. γe2 ↪→∗ γe′2

Γ ` e1 ∼ e2 : τ
Expand

Γ, x:τ ′ ` e1 ∼ e2 : τ Γ ` v1 ∼ v2 : τ ′

Γ ` (λx. e1) v1 ∼ e2[v2/x] : τ
Beta

Figure 3.9: Some basic properties of our equational model.

38 CHAPTER 3. PARAMETRIC BISIMULATIONS

More formally, from the premise there exists L such that Γ, f :(τ ′ → τ), x:τ ′ `
e1 ∼L e2 : τ and consistent(L). We define:

L′(G)(τ1) := {(γ1fix f(x). e1, γ2fix f(x). e2) |
τ1 = τ ′ → τ ∧ γi ∈ dom(Γ)→ CVal ∧
∀y:τ2 ∈ Γ. (γ1(y), γ2(y)) ∈ G(τ2)}

Note here how the parameterization of L′ over G provides it with a source from which
to construct the closing substitutions γ1 and γ2.

The goal now is to prove

Γ ` fix f(x). e1 ∼ fix f(x). e2 : τ ′ → τ .

The local knowledge that we choose is L ∪ L′. Showing that L′ (and thus L ∪ L′)
relates any appropriately closed instances of the two functions is simply a matter
of unfolding definitions (by construction of L′). It therefore remains to establish
consistent(L ∪ L′). By Lemma 2, this boils down to showing

(γ′1e1, γ
′
2e2) ∈ E(G)(τ)

for any G ∈ GK(L ∪ L′), where

• γi ∈ dom(Γ)→ CVal,

• ∀y:τ ′ ∈ Γ. (γ1(y), γ2(y)) ∈ G(τ ′),

• (v1, v2) ∈ G(τ ′),

• γ′i = γi, f 7→(γifix f(x). ei), x7→vi.

Since (γ1fix f(x). e1, γ2fix f(x). e2) ∈ L′(G)(τ ′ → τ) ⊆ G(τ ′ → τ) and by Lemma 1
G ∈ GK(L), we can instantiate Γ, f :τ ′ → τ, x:τ ′ ` e1 ∼L e2 : τ with γ′i and are done.

The proof of rule App relies on Lemma 2 as well, in order to show that the
consistent local knowledges for its two premises combine to form a consistent local
knowledge for the conclusion. In addition, the proof relies on the following lemma
about plugging equivalent expressions or continuations into equivalent continuations,
proved by mutual coinduction and case analysis.

Lemma 3. If (K1,K2) ∈ K(G)(τ ′, τ), then:

1. (e1, e2) ∈ E(G)(τ ′) =⇒ (K1[e1],K2[e2]) ∈ E(G)(τ)

2. (K ′1,K
′
2) ∈ K(G)(τ ′′, τ ′) =⇒ (K1[K ′1],K2[K ′2]) ∈ K(G)(τ ′′, τ)

In the proof of App, we apply the first case of this lemma with ei := γi ei and
Ki := • γie′i, which leaves us to prove K1 and K2 to be equivalent according to K.
Unfolding the definition of K, we have to show that for arbitrary equivalent values
v1 and v2, (v1 γ1e

′
1, v2 γ2e

′
2) is in E, for which we apply Lemma 3 again, this time

3.5. WARMUP: PARAMETRIC BISIMULATIONS FOR λµ 39

with ei := γi e
′
i and Ki := vi •. Then we are left to prove v1 • and v2 • equivalent,

i.e., that (v1 v
′
1, v2 v

′
2) is in E for arbitrary equivalent values v′1 and v′2, which follows

from the third disjunct of the E definition.
As a consequence of these “compatibility” rules, by a straightforward induction

on the typing derivation, we can show that equivalence is reflexive on well-typed
programs (rule Refl). This corresponds to the “fundamental property” of logical
relations. Equivalence is also symmetric: this follows trivially from the symmetric
nature of our definition. Transitivity holds as well, but its much more subtle and
warrants its own section, namely Section 3.5.4.

By induction on the typing derivation of contexts, we can show that our equiv-
alence is a congruence: if two equivalent terms are placed in the same contexts, the
resulting compositions are equivalent. Next, we have a substitutivity property for
values, an expansion law for pure execution steps, and finally a direct corollary of
these two, namely β-equivalence (on value arguments).

We move to a key lemma about E. Given a consistent local knowledge L, if the
global knowledge extends L with some additional external knowledge R, then the
call case in the definition of E can be restricted so that it applies only to external
function calls (i.e., calls to functions related by R).

Lemma 4 (External call). For any consistent(L), any G ∈ GK(L) and R ∈ VRelF,
we have:

G = L(G) ∪R =⇒ E(G) = ER(G)

where the definition of ER is the same as E except that, in the third disjunct,
U(G,G) is replaced by U(R, G).

The ⊇ follows directly from the observation that R ⊆ G. To prove the other
direction, we essentially have to eliminate all uses of the third disjunct of E where
the functions being invoked are related by G \R. Since all such functions are by
definition in L(G), and since we know consistent(L), we can in fact always “inline”
the equivalence proofs for all such function calls.

For G = µR.L(R) (denoting the least fixed point of L) and R = ∅, Lemma 4
yields adequacy, which says that equivalent closed terms either both diverge or both
terminate returning proper values. Note that this implies safety: the terms never get
stuck during evaluation.

Lemma 5 (Adequacy). If ` e1 ∼ e2 : τ , then:

(e1 ↑ ∧ e2 ↑) ∨ ∃v1, v2. e1 ↪→∗ v1 ∧ e2 ↪→∗ v2

Finally, combining adequacy and congruence, we show our main soundness the-
orem: for well-typed programs, our equivalence relation is included in contextual
equivalence.

Theorem 2 (Soundness). If Γ ` p1 : τ and Γ ` p2 : τ , then:

Γ ` p1 ∼ p2 : τ =⇒ Γ ` p1 ∼ctx p2 : τ

40 CHAPTER 3. PARAMETRIC BISIMULATIONS

3.5.4 Transitivity

We now briefly sketch our proof of transitivity. We will go into more details in
Section 3.9 presenting the proof of transitivity of our PB model for full Fµ!.

It suffices to show the following lemma:

Lemma 6. If Γ ` e1 ∼L1 e2 : τ and Γ ` e2 ∼L2 e3 : τ , then there exists L such that
Γ ` e1 ∼L e3 : τ .

Naturally, we can expect L to be some sort of composition of the given local knowl-
edges L1 and L2. Defining this composition is, however, quite subtle. The problem
is that the local knowledge takes the global knowledge G as a parameter, but then
what global knowledges GL1 and GL2 should be passed on to L1 and L2, respectively,
in constructing L? Assuming for now we somehow pick GL1 and GL2 appropriately,
L can naturally be defined as follows:

L(G)(τ) := L1(GL1)(τ) ◦ L2(GL2)(τ)

where ◦ stands for ordinary relational composition.
The key part of the proof is showing transitivity of E:

∀G ∈ GK(L). (e′1, e
′
2) ∈ E(GL1)(τ) ∧ (e′2, e

′
3) ∈ E(GL2)(τ) =⇒ (e′1, e

′
3) ∈ E(G)(τ)

In order to prove this, we want the disjunct of E by which e′1 and e′2 are related to
match the disjunct of E by which e′2 and e′3 are related (recall the three disjuncts in
the definition of E). To illustrate, say e′1 and e′2 are related because they reduce to
related values (second disjunct). Now consider the three cases regarding e′2 and e′3:

Case div. They both diverge. Fortunately, this contradicts our assumption about
e′2, so this case cannot arise.

Case eval. They are related for the same reason as e′1 and e′2 are—i.e., e′2 and
e′3 reduce to related values. This is the “good” case. Relying on determinacy
of reduction, we are done if we can show transitivity of the value relation.
Formally, we need to show that GL1(τ) ◦GL2(τ) ⊆ G(τ).

Case call. They reduce to related function calls with related continuations. It is
unclear how to make progress in this situation, so we would very much like to
rule it out!

In order to make case eval straightforward to show, while simultaneously ruling out
case call from consideration, we will need to define GL1 and GL2 carefully.

The key idea is as follows: for each pair of function values (f1, f3) ∈ G, we come up
with a value, v2, that (i) uniquely identifies f1 and f3, and that (ii) is not a normal
function, but rather a “bad” value that gets stuck when applied to an argument
(and hence does not belong to FixVal). The first requirement allows us to ensure
GL1(τ) ◦ GL2(τ) = G(τ), as needed in proving transitivity of the value relation, by

3.6. PARAMETRIC BISIMULATIONS FOR Fµ! 41

τ ∈ Ty ::= . . . | n
CTyF := {(τ1 → τ2) ∈ CTy} ∪ {(∀α. τ) ∈ CTy} ∪ {(ref τ) ∈ CTy} ∪ {n ∈ CTy}

Figure 3.10: Semantic domains for Fµ!.

relating (f1, v2) ∈ GL1 and (v2, f3) ∈ GL2 . The second requirement, together with
Lemma 4, rules out the “bad” case call above.

Formally, since CTy and CVal are countable sets, there exists an injective function
I ∈ CTy × CTy × CVal× CVal→ CVal (e.g., returning an integer value that uniquely
encodes all the arguments). Using this function, one can decompose G ∈ VRelF as
follows:

G(1)(τ1→τ2) := {(f1, I(τ1, τ2, f1, f3)) | (f1, f3) ∈ G(τ1→τ2)}
G(2)(τ1→τ2) := {(I(τ1, τ2, f1, f3), f3) | (f1, f3) ∈ G(τ1→τ2)}

Taking GL1 to be G(1) is, however, incorrect because if L1 relates any values at
function type, then the global knowledge will not be closed w.r.t. it (i.e., G(1) /∈
GK(L1)). To address this problem, we simply close G(1) accordingly, i.e., we take
GL1 to be the least solution to the fixed-point equation GL1 = L1(GL1) ∪G(1) (and
similarly for GL2).

With these definitions, we can show GL1(τ) ◦GL2(τ) = G(τ) if G ∈ GK(L), and
use it in case eval above.

In the problematic case call, we make use of the key Lemma 4, which lets
us conclude that the functions being called—say, (f2, f3)—are really external, i.e.,
related not merely by GL2 but more precisely by G(2). But by construction, this
means that f2 is an integer and thus e′2 gets stuck, contradicting the prior assumption
that e′1 and e′2 reduce to values.

3.6 Parametric Bisimulations for Fµ!

In this section, we present the full-blown parametric bisimulations for Fµ!. This model
generalizes the model from the previous section in a superficially very simple way:
whereas previously we proved two terms equivalent by exhibiting a consistent local
knowledge L, we now do so by exhibiting a consistent world W .

3.6.1 Worlds

Worlds are state transition systems (equipped with “public” and “private” transi-
tions, just as described in Section 2.2) that control how the local knowledge of a
module and the properties of its local state may evolve over time. Formally (Fig-
ure 3.12), a transition system T consists of a (possibly infinite) state space (S), the
private (or full) transition relation (v) and a smaller public transition relation (vpub),

42 CHAPTER 3. PARAMETRIC BISIMULATIONS

R(τ) := R(τ) if τ ∈ CTyF
...

R(∃α. τ) := {(pack v1, pack v2) | ∃τ ′. (v1, v2) ∈ R(τ [τ ′/α])}

Figure 3.11: Value closure for Fµ! (if R ∈ VRelF, then R ∈ VRel).

step(e) :=

{
e′ if ∀h. 〈h; e〉 ↪→ 〈h; e′〉
⊥ otherwise

FixVal := {v ∈ CVal | ∀v′. step(v v′) 6= ⊥}
GenVal := {v ∈ CVal | step(v []) 6= ⊥}

T ∈ TrSys := {(S,w,wpub) ∈ Set× P(S× S)× P(S× S) |
(∀s, s′. s′ wpub s =⇒ s′ w s) ∧
(∀s. s wpub s) ∧
(∀s1, s2, s3. s3 w s2 ∧ s2 w s1 =⇒ s3 w s1) ∧
(∀s1, s2, s3. s3 wpub s2 ∧ s2 wpub s1 =⇒ s3 wpub s1)}

VRelFS := {f ∈ S → VRelF→ VRelF |
∀s, s′, R,R′. s′ w s ∧R′ ⊇ R =⇒ f(s′)(R′) ⊇ f(s)(R)}

HRelS := {f ∈ S → VRelF→ HRel |
∀s,R,R′. R′ ⊇ R =⇒ f(s)(R′) ⊇ f(s)(R)}

WorldS := {(T, L,H,N) ∈ TrSys× VRelFS×T.S × HRelS×T.S × P(TyNam) |
(∀s,R. ∀n /∈ P(TyNam). L(s)(R)(n) = ∅) ∧
(∀s,R, τ, τ ′. L(s)(R)(τ → τ ′) ⊆ FixVal× FixVal) ∧
(∀s,R, α, τ. L(s)(R)(∀α. τ) ⊆ GenVal×GenVal)}

LWorld := {w ∈WorldWref .S | ∀s,R, τ. w.L(s)(R)(ref τ) = ∅}
World := {W ∈World1}

Figure 3.12: Definition of worlds.

3.6. PARAMETRIC BISIMULATIONS FOR Fµ! 43

both preorders. A world then consists of a transition system (T), a mapping from
states to local knowledges (L), a mapping from states to heap relations (H), and a
set of type names that are used to represent abstract types (N). For now, ignore the
distinction between different kinds of worlds in the figure.

As before, the local knowledge (at each state) is parameterized by—and must
be monotone in—the global knowledge (R). The same applies to the heap relation,
which describes pairs of subheaps that are “owned” by the world. The parameter R
here provides a way of referring to the global equivalence on values when establishing
invariants on the contents of local heaps; this is especially critical in dealing with
higher-order state.

While the local knowledge mapping must be monotone in its state index (w.r.t. the
full transition relation), the heap relation mapping need not be. Since a module’s
local state is hidden from the environment, there is no necessity to require that heaps
related in one state will continue to be related in future states. The freedom this
gives us is critical even in very simple examples: imagine a transition system of two
states, one in which a particular heap location contains 0 and the other in which the
same location contains 1.

We have seen in the previous section how a local knowledge and its closure relate
values at λµ types. This carries over to the full setting. But how do we deal with the
additional types of Fµ!, i.e., with universal, existential, and reference types?

3.6.2 Treatment of Universal and Existential Types

Universal types, like function types, are considered flexible. That is, a world’s local
knowledge can relate any values at any closed type ∀α. τ , as long as, when instanti-
ated, those values can run for at least one step.

Existential types, like product types, are considered rigid, and thus their inter-
pretation is given by the value closure (Figure 3.11). Note that the witness of related
packages must be the same type τ ′. How, then, do we support reasoning about
parametricity?

The key is that the witness type τ ′ may be an abstract type name. We extend the
syntax of Fµ! types in our PBS model with type names n (Figure 3.10), and the local
knowledge of a world can pick a subset of these names and interpret them however
it wants. To avoid conflicts with other worlds, the choice of names must be recorded
in the N component of the world (the local knowledge must not relate anything at
other names). Note that N cannot be inferred from the local knowledge as the set of
names whose interpretation is nonempty, because the empty relation is a perfectly
valid interpretation of a type name.

3.6.3 Treatment of Reference Types

Reference types are considered flexible, but they really are a special case. Intuitively,
the collection of all reference types can be seen as a separate module that is used by all
other modules. Accordingly, we construct a designated world Wref (explained below)

44 CHAPTER 3. PARAMETRIC BISIMULATIONS

Wref .S := {sref ∈ Pfin(CTy × Loc× Loc) |
∀(τ, l1, l2) ∈ sref . ∀(τ ′, l′1, l′2) ∈ sref .
(l1 = l′1 =⇒ τ = τ ′ ∧ l2 = l′2) ∧
(l2 = l′2 =⇒ τ = τ ′ ∧ l1 = l′1)}

Wref .v := ⊆
Wref .vpub := ⊆

Wref .L(sref)(G)(ref τ) := {(l1, l2) | (τ, l1, l2) ∈ sref}

Wref .H(sref)(G) := {(h1, h2) |
dom(h1) = {l1 | ∃τ, l2. (τ, l1, l2) ∈ sref} ∧
dom(h2) = {l2 | ∃τ, l1. (τ, l1, l2) ∈ sref} ∧
∀(τ, l1, l2) ∈ sref . (h1(l1), h2(l2)) ∈ G(τ)}

Wref .N := ∅

Figure 3.13: Wref provides the meaning of reference types.

that interprets ref τ , and bar ordinary worlds from relating anything at such types.
We therefore distinguish between two kinds of worlds: local worlds (LWorld) and full
worlds (World). For conciseness, both are defined in terms of the same underlying
structure of dependent worlds (DepWorld). We sometimes call Wref a shared world
or global world, because it is not local to the programs we are reasoning about.

A world depending on state space S is a world as described above, except that
its local knowledge and heap relation additionally take a state from S as argument
(more precisely, their usual state argument is paired with a state from S). Intuitively,
S is the state transition system of some other world. Thus, a full world W ∈World
is simply a world depending on nothing (a singleton set 1 := ∅). In contrast, a local
world w ∈ LWorld is a world that depends on—will later be “linked” with—Wref and
does not itself relate any values at reference types.

As a matter of notational convenience: if W ∈World and s ∈ W.S, then we will
usually just write W.L(s) for W.L(∅, s), and similarly for the H component. (We use
the dot notation to project components out of a world.)

3.6.3.1 The World for Reference Types

Figure 3.13 defines Wref ∈World, the world that provides the meaning of reference
types. Its states are finite ternary relations (between a type τ and two heap locations
l1, l2) that are functional in the location arguments. They associate each allocated
location on the left with the corresponding one on the right and the type of values
stored. The relations are finite because only a finite number of locations can ever be
allocated. And, as dictated by the language, they can only grow over time.

3.6. PARAMETRIC BISIMULATIONS FOR Fµ! 45

Its local knowledge Wref .L(sref) relates precisely the locations related by the cur-
rent state sref , at the corresponding reference types. The heap relation Wref .H(sref)
relates heaps that contain exactly the locations related by the current state sref and
that store (globally) related values at those locations. Note the critical use of the
global knowledge parameter G in defining Wref .H.

3.6.4 Lifting and Separating Conjunction of Local Worlds

Now, if we have a local world w ∈ LWorld, then we can link it with Wref , thereby
lifting it to a full world w↑ ∈World. This operation is defined in Figure 3.14. The full
world’s transition system w↑.T is the synchronous product of Wref ’s and w’s. Its local
knowledge relates values iff they are related by either component’s local knowledge,
and its heap relation relates heaps iff they can be split into disjoint parts that are
related by Wref .H and w.H, respectively. Note how the state sref of the reference
world Wref is passed to w.L and w.H along with the state of w itself.

Similarly, given two local worlds w1, w2 ∈ LWorld that own disjoint sets of ab-
stract types (i.e., w1.N ∩ w2.N = ∅), we can construct their separating conjunction
w1 ⊗ w2 ∈ LWorld. The definition is also given in Figure 3.14. Note how the same
state sref is passed to the L and H components of both w1 and w2. While this con-
struction is not needed for defining the model itself, it is critical for composing proofs
(e.g., when proving soundness). In fact, separating conjunction of local worlds is a
generalization of the union operation on local knowledges, which we have seen in
Section 3.5.3.

3.6.5 Program Equivalence

With these constructions in hand, we can now describe the definition of program
equivalence in Figures 3.15 and 3.16.

We say that two programs are equivalent (∼) iff there exists a local world w
that (1) does not depend on a particular choice of names to represent its abstract
types; (2) is stable; and (3) when lifted, relates the expressions. Stability means
that the local world’s heap relation in some sense tolerates “environmental” changes:
whenever the shared world Wref is advanced to a future state s′ref , then w should
be able to respond to that change by moving to a public future state s′ such that
any local heaps that were related previously by w.H are still related at s′. This is a
technical condition that is required for compositionality (see Lemma 9 later on) but
is satisfied trivially in the common case that w.H does not actually depend on its sref
parameter.

A world W (such as w↑) relates two expressions (∼W) iff (3a) it is inhabited ;
(3b) it is consistent ; and (3c) the expressions, when closed using pointwise related
substitutions, are related by the expression relation (see below). Inhabitance says
there exists a state at which W.H relates the empty heaps. Consistency is essentially
the same as for λµ, but extended straightforwardly to universal types. In all these
definitions, the global knowledge G is drawn from GK(W). As before, this enforces

46 CHAPTER 3. PARAMETRIC BISIMULATIONS

(−)× (−) ∈ TrSys→ TrSys→ TrSys
(T1 × T2).S := T1.S× T2.S
(T1 × T2).v := {((s1, s2), (s′1, s

′
2)) | s1 v s′1 ∧ s2 v s′2}

(T1 × T2).vpub := {((s1, s2), (s′1, s
′
2)) | s1 vpub s

′
1 ∧ s2 vpub s

′
2}

(−)⊗ (−) ∈ HRel→ HRel→ HRel
H1 ⊗H2 := {(h1 t h′1, h2 t h′2) | (h1, h2) ∈ H1 ∧ (h′1, h

′
2) ∈ H2 ∧

h1 t h′1 6= ⊥ ∧ h2 t h′2 6= ⊥}

(−)↑ ∈ LWorld→World
w↑.T := Wref .T× w.T
w↑.L(sref , s)(G) := Wref .L(sref)(G) ∪ w.L(sref , s)(G)
w↑.H(sref , s)(G) := Wref .H(sref)(G)⊗ w.H(sref , s)(G)
w↑.N := w.N

(−)⊗ (−) ∈ LWorld→ LWorld ⇀ LWorld
(w1 ⊗ w2).T := w1.T× w2.T
(w1 ⊗ w2).L(sref , s)(G) := w1.L(sref , s)(G) ∪ w2.L(sref , s)(G)
(w1 ⊗ w2).H(sref , s)(G) := w1.H(sref , s)(G)⊗ w2.H(sref , s)(G)
(w1 ⊗ w2).N := w1.N] w2.N

Figure 3.14: Lifting and separating conjunction of local worlds.

3.6. PARAMETRIC BISIMULATIONS FOR Fµ! 47

R′ ⊇Nref R :=
R′ ⊇ R ∧ (∀τ. R′(ref τ) = R(ref τ)) ∧ (∀n ∈ N . R′(n) = R(n))

GK(W) := {G ∈W.S→ VRelF |
(∀s, s′. s′ w s =⇒ G(s′) ⊇ G(s)) ∧ (∀s. G(s) ⊇W.Nref W.L(s)(G(s)))}

EW (G)(s0)(s)(τ) := {(e1, e2) |
∀(h1, h2) ∈W.H(s)(G(s)). ∀hF

1 , h
F
2 . h1 t hF

1 6= ⊥ ∧ h2 t hF
2 6= ⊥ =⇒

(div) 〈h1 t hF
1 ; e1〉↑ ∧ 〈h2 t hF

2 ; e2〉↑
∨ (eval) ∃h′1, h′2, v1, v2, s

′.
〈h1 t hF

1 ; e1〉 ↪→∗ 〈h′1 t hF
1 ; v1〉 ∧ 〈h2 t hF

2 ; e2〉 ↪→∗ 〈h′2 t hF
2 ; v2〉 ∧

s′ w s ∧ s′ wpub s0 ∧ (h′1, h
′
2) ∈W.H(s′)(G(s′)) ∧ (v1, v2) ∈ G(s′)(τ)

∨ (call) ∃h′1, h′2, τ ′,K1,K2, e
′
1, e
′
2, s
′.

(h1 t hF
1 , e1) ↪→∗ (h′1 t hF

1 ,K1[e′1]) ∧
(h2 t hF

2 , e2) ↪→∗ (h′2 t hF
2 ,K2[e′2]) ∧

s′ w s ∧ (h′1, h
′
2) ∈W.H(s′)(G(s′)) ∧ (e′1, e

′
2) ∈ U(G(s′), G(s′))(τ ′) ∧

∀s′′ wpub s
′. ∀G′ ⊇ G. (K1,K2) ∈ KW (G′)(s0)(s′′)(τ ′, τ)}

KW (G)(s0)(s)(τ)(τ ′) := {(K1,K2) |
∀(v1, v2) ∈ G(s)(τ). (K1[v1],K2[v2]) ∈ EW (G)(s0)(s)(τ ′)}

U(R,R′)(τ) :=

{(v1 v
′
1, v2 v

′
2) | ∃τ ′. (v1, v2) ∈ R(τ ′ → τ) ∧ (v′1, v

′
2) ∈ R′(τ ′)} ∪

{(v1 [], v2 []) | ∃τ1, τ2. τ = τ1[τ2/α] ∧ (v1, v2) ∈ R(∀α. τ1)}

Figure 3.15: Mutually coinductive definitions of expression equivalence, EW ∈
GK(W) → W.S × W.S → ERel, and continuation equivalence, KW ∈ GK(W) →
W.S×W.S→ KRel for Fµ!.

48 CHAPTER 3. PARAMETRIC BISIMULATIONS

inhabited(W) :=
∀G ∈ GK(W). ∃s0. (∅, ∅) ∈W.H(s0)(G(s0))

consistent(W) :=
∀G ∈ GK(W). ∀s. ∀τ. ∀(e1, e2) ∈ U(W.L(s)(G(s)), G(s))(τ).
(step(e1), step(e2)) ∈ EW (G)(s, s)(τ)

stable(w) :=
∀G ∈ GK(w↑). ∀sref , s. ∀(h1, h2) ∈ w.H(sref , s)(G(sref , s)). ∀s′ref w sref .
∀(h1

ref , h
2
ref) ∈Wref .H(s′ref)(G(s′ref , s)). h

1
ref t h1 6= ⊥ ∧ h2

ref t h2 6= ⊥ =⇒
∃s′ wpub s. (h1, h2) ∈ w.H(s′ref , s

′)(G(s′ref , s
′))

Env(Γ, R) :=

{(γ1, γ2) ∈ (dom(Γ)→ CVal)2 | ∀x:τ ∈ Γ. (γ1x, γ2x) ∈ R(τ)}

∆; Γ ` e1 ∼W e2 : τ :=
inhabited(W) ∧ consistent(W) ∧
∀G ∈ GK(W). ∀s. ∀δ ∈ ∆→ CTy. ∀(γ1, γ2) ∈ Env(δΓ, G(s)).
(γ1e1, γ2e2) ∈ EW (G)(s)(s)(δτ)

∆; Γ ` e1 ∼ e2 : τ :=
∀N ∈ P(TyNam). N countably infinite =⇒
∃w. w.N ⊆ N ∧ stable(w) ∧∆; Γ ` e1 ∼w↑ e2 : τ

Figure 3.16: Definitions of world consistency and program equivalence for Fµ!.

3.6. PARAMETRIC BISIMULATIONS FOR Fµ! 49

that G must contain the local knowledge. At reference types, and at abstract type
names owned by W , however, GK(W) also enforces that G must not extend the local
knowledge. Intuitively, this is because W should completely control the meaning of
those types. Furthermore, since G is state-indexed, it must, like the local knowledge
of W , be monotone w.r.t. any state changes.

3.6.6 Expression and Continuation Equivalence

The new definitions of E and K are also given in Figure 3.15. Notice that they are
now defined relative to a world W (as EW and KW) and that their types have changed
to GK(W) → W.S → W.S → ERel and GK(W) → W.S ×W.S → KRel, respectively:
they take both an “initial” state, s0, and a “current” state, s, as arguments.

Given a world W , a global knowledge G ∈ GK(W), states s0, s ∈ W.S, and
a type τ , we say that two expressions are “locally” equivalent, written (e1, e2) ∈
EW (G)(s0)(s)(τ), iff, when executed starting in heaps that satisfy the heap relation
of W at the current state s, then (as before) one of three cases holds:

Case div. Both expressions diverge (run forever).

Case eval. Both expressions run successfully to completion, producing related val-
ues. In this case, the values need not be related in the current state s, but rather
in some future state, s′ w s, which, however, must also be a public future state
of the initial state of the expression: s′ wpub s0. Moreover, this future state
must be consistent with the resulting heaps: (h′1, h

′
2) ∈W.H(s′)(G(s′)).

Case call. Both expressions reduce after some number of steps to some expressions
of the form Ki[e

′
i], where e′i are either both applications or both instantiations

that are related at some future state s′ w s. This state must be consistent
with the corresponding heaps. Finally, the continuations, K1 and K2, must be
equivalent under any public future state s′′ wpub s

′ and any (pointwise) larger
global knowledge G′ ⊇ G.

We restrict s′′ to be a public future state of s′ rather than an arbitrary future
state because the end-to-end effect of a function call (or universal instantiation)
is assumed to always be a public transition (recall the discussion of public vs.
private transitions in Section 2.2). For this assumption to be sound, in return
we will have to ensure that the end-to-end behaviors of equivalent function
bodies indeed change the state only into public future states. This is why we
thread the s0 argument through the mutual recursion and check that the final
state in case eval is a public future state of s0.

The intuitive reason for quantifying over a larger global knowledge G′ in K is
this: At the point when the continuations are run, not only might W ’s state s′

have changed to a future state s′′, but also the states of all other “modules”,
which is reflected by the growth of the global knowledge (also see the next
section). This was not needed in Section 3.5 due to the purity of λµ.

50 CHAPTER 3. PARAMETRIC BISIMULATIONS

In all three cases, the definition quantifies over “frame” heaps hF
1 and hF

2 : the
execution of e1 and e2 should not modify any part of the heap that they do not
own according to the heap relation of the current state. This framing aspect of our
definition is a semantic version of the frame rule of separation logic and allows us to
concentrate the reasoning about the heaps only on the parts of the heaps accessed
by the program. (Baking the frame rule into the semantic model is quite common
in more recent models of separation logic [10, 88], essentially because it allows one
to avoid proving any “safety monotonicity” or “frame” properties of the operational
semantics itself.)

3.6.7 Living in a Different World

In Chapter 2, we reviewed at a high level the idea of STSs and how they are used in
KLRs. While PBs build very closely on this technique, there are some big differences
in the implementation, which are not obvious due to the informal style of Chapter 2.

In KLRs, when proving the equivalence of two programs, we consider them in an
aribtrary initial world. As we step through the programs, we may move to a future
world, i.e., extend the current world with new state transition systems governing
newly allocated pieces of local memory and advance the states of existing state tran-
sition systems that we know about. In return, when establishing the relatedness of
functions or continuations, we are always forced to consider their behaviour in future
worlds. Intuitively, this means two things:

1. Since we extend the world “on the fly”, the STSs that we add are instance-
specific. They normally refer to the particular locations that were allocated in
one run of the programs that we are reasoning about.

2. However, due to the consideration of arbitrary initial and future worlds, the
worlds we work with do not only contain the STSs that we explicitly added
(even if we only explicitly care about those in our proof). They also contain (i)
those belonging to other instances of our programs, and (ii) those belonging to
the environment, i.e., governing other modules that our programs were linked
with.

Let us contrast this with how STSs function in PBs. Recall that here, in order to
prove two programs equivalent, we need to come up with a suitable world, and thus
a single STS, a priori.

1. This world must hence describe all possible instances of our programs, i.e.,
it must be module-specific rather than instance-specific (or, static rather than
dynamic). This typically means that the STS that we construct is an n-ary
version of what we would construct in a KLR setting (for unbounded n) and
thus more complex. The examples in Section 3.8 will make this clearer. The
same section also shows how this extra complexity can be reduced.

3.7. METATHEORY 51

2. What was the quantification over future worlds in KLRs, now is (i) the quantifi-
cation over future states, plus (ii) the quantification over larger global knowl-
edges. The latter is necessary because the world only contains our module’s
constraints, not those of other modules.

3.7 Metatheory

3.7.1 Basics

In a typical proof using PBS, we are given a global knowledge G ∈ GK(W) (recall
the definition of ∼). Sometimes, however, it is important that we can construct such
a global knowledge. We now define the least global knowledge for a given world.

Definition 3. For a monotone function F ∈ VRelF → VRelF and R ∈ VRelF, we
define [F]∗R as the least fixed point of the monotone function F (−) ∪R:

[F]∗R := µX. F (X) ∪R

Definition 4 (Least global knowledge). For W ∈ World we define [W] ∈ W.T.S →
VRelF as follows:

[W](s) := [W.L(s)]∗∅

Lemma 7 (Least global knowledge). For any W , we have [W] ∈ GK(W). Moreover,
[W] ⊆ G whenever G ∈ GK(W).

Next are three lemmas concerning product worlds. The first one says that a valid
global knowledge for a (lifted) product world is also valid for the (lifted) constituent
worlds, after fixing the respectively “missing” state. This generalizes Lemma 1.

Lemma 8. If w1, w2 ∈ LWorld and G ∈ GK((w1 ⊗ w2)↑), then:

1. ∀s2 ∈ w2.T.S. G(−,−, s2) ∈ GK(w1↑).

2. ∀s1 ∈ w1.T.S. G(−, s1,−) ∈ GK(w2↑).

(Note that the way the product world w1 ⊗ w2 is used as an argument to (−)↑
implicitly assumes that the product is defined, i.e., w1.N and w2.N are disjoint.)

The second lemma relates a product world’s E and K relations to those of its
constituent worlds. Its proof is illustrative because (i) it is the only one that relies on
stability, and (ii) its structure is representative of other metatheoretical proofs that
work by coinduction on E and K.

Lemma 9. Suppose w = w1 ⊗ w2 and G ∈ GK(w↑) and s0
ref , sref ∈ Wref .S and

s0
1, s1 ∈ w1.S and s0

2, s2 ∈ w2.S. If s2 wpub s
0
2 and stable(w2), then:

1. Ew1↑(G(−,−, s2))(s0
ref , s

0
1)(sref , s1) ⊆ Ew↑(G)(s0

ref , s
0
1, s

0
2)(sref , s1, s2)

52 CHAPTER 3. PARAMETRIC BISIMULATIONS

2. Kw1↑(G(−,−, s2))(s0
ref , s

0
1)(sref , s1) ⊆ Kw↑(G)(s0

ref , s
0
1, s

0
2)(sref , s1, s2)

And similarly for w2 if s1 wpub s
0
1 and stable(w1).

Proof. In order to be able to apply coinduction, we define auxiliaries E and K as
follows:

E(G)(s0
ref , s

0
1, s

0
2)(sref , s1, s2)(τ) = {(e1, e2) |

s2 wpub s
0
2 ∧ (e1, e2) ∈ Ew1↑(G(−,−, s2))(s0

ref , s
0
1)(sref , s1)(τ)}

K(G)(s0
ref , s

0
1, s

0
2)(sref , s1, s2)(τ ′)(τ) = {(K1,K2) |

s2 wpub s
0
2 ∧ (K1,K2) ∈ Kw1↑(G(−,−, s2))(s0

ref , s
0
1)(sref , s1)(τ ′)(τ)}

Note that it suffices to prove E ⊆ Ew↑ and K ⊆ Kw↑ (assuming stability of w2),
which we do by coinduction. Concretely, we have to show:

1. ∀G, s0
ref , s

0
1, s

0
2, sref , s1, s2, τ. ∀(e1, e2) ∈ E(G)(s0

ref , s
0
1, s

0
2)(sref , s1, s2)(τ).

∀(h1, h2) ∈ w↑.H(sref , s1, s2)(G(sref , s1, s2)).∀hF
1 , h

F
2 .

h1 t hF
1 6= ⊥ ∧ h2 t hF

2 6= ⊥ =⇒
(〈h1 t hF

1 ; e1〉↑ ∧ 〈h2 t hF
2 ; e2〉↑)

∨ (∃h′1, h′2, v1, v2, s
′.

〈h1 t hF
1 ; e1〉 ↪→∗ 〈h′1 t hF

1 ; v1〉 ∧ 〈h2 t hF
2 ; e2〉 ↪→∗ 〈h′2 t hF

2 ; v2〉 ∧
s′ w (sref , s1, s2) ∧ s′ wpub (s0

ref , s
0
1, s

0
2) ∧

(h′1, h
′
2) ∈ w↑.H(s′)(G(s′)) ∧ (v1, v2) ∈ G(s′)(τ))

∨ (∃h′1, h′2, τ ′,K1,K2, e
′
1, e
′
2, s
′.

(h1 t hF
1 , e1) ↪→∗ (h′1 t hF

1 ,K1[e′1]) ∧ (h2 t hF
2 , e2) ↪→∗ (h′2 t hF

2 ,K2[e′2]) ∧
s′ w (sref , s1, s2) ∧ (h′1, h

′
2) ∈ w↑.H(s′)(G(s′)) ∧ (e′1, e

′
2) ∈ U(G(s′), G(s′))(τ ′) ∧

(K1,K2) ∈ K(G)(s0
ref , s

0
1, s

0
2)(s′)(τ ′, τ))

2. ∀G, s0
ref , s

0
1, s

0
2, sref , s1, s2, τ

′, τ.

∀(K1,K2) ∈ K(G)(s0
ref , s

0
1, s

0
2)(sref , s1, s2)(τ ′, τ). ∀(v1, v2) ∈ G(sref , s1, s2)(τ ′).

(K1[v1],K2[v2]) ∈ E(G)(s0
ref , s

0
1, s

0
2)(sref , s1, s2)(τ)

Part (2) is straightforward. Let us look at part part (1). We are given heaps
h1, h2 related by the lifted product world w↑. We know that these are composed as
follows:

h1 = h′1] h′′1
h2 = h′2] h′′2

(ha1, h
a
2) ∈ w1↑.H(sref , s1)(G(sref , s1, s2)) (∗)

(hb1, h
b
2) ∈ w2.H(sref , s2)(G(sref , s1, s2))

Naturally, we use (∗) to instantiate the relatedness of (e1, e2) by Ew1↑ (in the
definition of E). As frame heaps, we choose hb1] hF

1 and hb2] hF
2 , so that the pro-

grams cannot violate the constraints imposed by w2. We do a case split on the
disjunct according to which e1 and e2 are related and in each case choose to show
the corresponding disjunct of the goal.

3.7. METATHEORY 53

Stability is required for the cases eval and call. For instance, suppose e1 and
e2 are related because they both terminate with related values in state (s′ref , s

′
1) w

(sref , s1). We know that the frame heaps have been preserved and that there are
ha1
′, ha2

′ (disjoint from the frames) and future states s′ref , s
′
1 with s′ref w sref , s′ref wpub

s0
ref , s

′
1 w s1, s1 wpub s

0
1, and

(ha1
′, ha2

′) ∈ w1↑.H(s′ref , s
′
1)(G(s′ref , s

′
1, s2)).

To show the goal, we must now find s′2 with s′2 w s2 and s′2 wpub s
0
2 such that

(ha1
′] hb1, ha2

′] hb2) ∈ w↑.H(s′ref , s
′
1, s
′
2)(G(s′ref , s

′
1, s
′
2)),

i.e., (using monotonicity of H and G) such that:

(hb1, h
b
2) ∈ w2.H(s′ref , s

′
2)(G(s′ref , s

′
1, s
′
2))

Relying on s2 wpub s
0
2 (enforced by the definition of E), stability of w2 yields exactly

what we need.

The third property of product worlds generalizes Lemma 2.

Lemma 10. If w = w1 ⊗ w2 with stable(w1) and stable(w2), then:

1. stable(w)

2. If inhabited(w1↑) and inhabited(w2↑), then inhabited(w↑).

3. If consistent(w1↑) and consistent(w2↑), then consistent(w↑).

The next lemma talks about composing continuations with other continuations
or expressions and generalizes Lemma 3.

Lemma 11. Given G, s0, s
′
0, s, τ, τ

′,K1,K2 such that

∀G′ ⊇ G. ∀s′. s′ w s ∧ s′ wpub s
′
0 =⇒ (K1,K2) ∈ KW (G′)(s0)(s′)(τ ′)(τ),

we have:

1. (e1, e2) ∈ EW (G)(s′0, s)(τ
′) =⇒ (K1[e1],K2[e2]) ∈ EW (G)(s0, s)(τ)

2. (K ′1,K
′
2) ∈ KW (G)(s′0, s)(τ

′′)(τ ′) =⇒ (K1[K ′1],K2[K ′2]) ∈ KW (G)(s0, s)(τ
′′)(τ)

Let us now come to the external call lemma, the generalization of Lemma 4. First
we parameterize E over the relation by which functions are related via call.

54 CHAPTER 3. PARAMETRIC BISIMULATIONS

Definition 5.

ER
W (G)(s0)(s)(τ) := {(e1, e2) |
∀(h1, h2) ∈W.H(s)(G(s)). ∀hF

1 , h
F
2 . h1 t hF

1 6= ⊥ ∧ h2 t hF
2 6= ⊥ =⇒

(〈h1 t hF
1 ; e1〉↑ ∧ 〈h2 t hF

2 ; e2〉↑)
∨ (∃h′1, h′2, v1, v2, s

′.
〈h1 t hF

1 ; e1〉 ↪→∗ 〈h′1 t hF
1 ; v1〉 ∧ 〈h2 t hF

2 ; e2〉 ↪→∗ 〈h′2 t hF
2 ; v2〉 ∧

s′ w s ∧ s′ wpub s0 ∧ (h′1, h
′
2) ∈W.H(s′)(G(s′)) ∧ (v1, v2) ∈ G(s′)(τ))

∨ (∃h′1, h′2, τ ′,K1,K2, e
′
1, e
′
2, s
′.

(h1 t hF
1 , e1) ↪→∗ (h′1 t hF

1 ,K1[e′1]) ∧ (h2 t hF
2 , e2) ↪→∗ (h′2 t hF

2 ,K2[e′2]) ∧
s′ w s ∧ (h′1, h

′
2) ∈W.H(s′)(G(s′)) ∧ (e′1, e

′
2) ∈ U(R(s′), G(s′))(τ ′) ∧

(K1,K2) ∈ KW (G)(s0)(s′)(τ ′)(τ))
}

Note how we use R(s′) rather than G(s′) as first argument to U. Other than
that, ER is identical to E. It is actually defined in terms of E, and not recursive
itself.

Lemma 12 (External call). Suppose consistent(W), G ∈ GK(W) and R ∈W.T.S→
VRelF. If R is the “external” part of G, i.e.,

∀s. G(s) = W.L(s)(G(s)) ∪R(s),

then EW (G) = ER
W (G).

Proof. The ⊇-direction is trivial due to monotonicity of U. For the other direction,
the high-level proof idea is the same as in the simple setting: we eliminate all uses of
the call disjunct of E where the invoked functions are related by W by relying on
W ’s consistency.

More formally, we prove by induction on n that

∀n. EW (G) ⊆ Xn(G),

where Xn is defined like ER
W except that divergence (↑) in the case div is replaced

with ↑n, meaning that the two programs can take at least n steps. Notice how this
universally quantified property is therefore equivalent to EW (G) ⊆ ER

W (G).
In the base case (n = 0), we are done immediately by choosing the div disjunct

of X0 (clearly any program can take at least 0 steps).
The inductive case is the interesting one. We assume EW (G) ⊆ Xn−1(G) and

must show EW (G) ⊆ Xn(G). So suppose (e1, e2) ∈ EW (G)(s0)(s)(τ). We are now
given related heaps and frame heaps as dictated by the definition of Xn and use
these to instantiate (e1, e2) ∈ EW (G)(s0)(s)(τ). This yields three cases, one per
disjunct. In case div, we are done because ↑ implies ↑n. In case eval, we are done
trivially. In case call we have e1 ↪→∗ K1[e′1] and e2 ↪→∗ K2[e′2] where e′1 and e′2 are
calls to G-related functions. Now, if these functions are related by R, the external
part of G, then we are done trivially again. Otherwise they are related by the local

3.7. METATHEORY 55

knowledge W.L. Since the world is consistent, we can exploit this fact to learn that
the beta-reduced calls step(e′1) and step(e′2) are related by EW (G). By Lemma 11,
K1[step(e′1)] and K2[step(e′2)] are related by EW (G) as well, and hence by Xn−1(G).
Since the initial programs take at least one step each to reach these intermediate
forms (i.e., ei ↪→+ Ki[step(e′i)]), we can conclude that e1 and e2 are in fact related
by Xn(G).

3.7.2 Symmetry

We now show that PBs are symmetric (see the final Theorem 3). The proof is not
complicated, but it does require a few definitions and lemmas.

Definition 6. Given R ∈ VRel (or VRelF), we define its inverse R−1 ∈ VRel (or
VRelF) pointwise:

R−1 := λτ. R(τ)−1

Lemma 13. ∀R ∈ VRelF. (R)−1 = R−1

Proof. By an easy induction.

Lemma 14. ∀R,R′ ∈ VRel. U(R−1, R′−1) =
(
U(R,R′)

)−1

Definition 7. Given w ∈ LWorld, we define w−1 ∈ LWorld as follows:

w−1.T := w.T

w−1.L(sref , s)(R) :=
(
w.L(s−1

ref , s)(R
−1)
)−1

w−1.H(sref , s)(R) :=
(
w.H(s−1

ref , s)(R
−1)
)−1

w−1.N := w.N

Here, s−1
ref is short for {(τ, l2, l1) | (τ, l1, l2) ∈ sref}.

Lemma 15. ∀w, sref , s, R. w−1↑.H(sref , s)(R) =
(
w↑.H(s−1

ref , s)(R
−1)
)−1

Proof.

w−1↑.H(sref , s)(R)

= Wref .H(sref)(R)⊗ w−1.H(sref , s)(R)

=
((
Wref .H(sref)(R)

)−1 ⊗
(
w−1.H(sref , s)(R)

)−1
)−1

=
(
Wref .H(s−1

ref)(R
−1)⊗ w.H(s−1

ref , s)(R
−1)
)−1

=
(
w↑.H(s−1

ref , s)(R
−1)
)−1

Lemma 16. ∀w, sref , s, R. w−1↑.L(sref , s)(R) =
(
w↑.L(s−1

ref , s)(R
−1)
)−1

Proof. Analogous to Lemma 15.

56 CHAPTER 3. PARAMETRIC BISIMULATIONS

Definition 8. Given G ∈ GK(w−1↑), we define its inverse G−1 as follows:

G−1(sref , s) := G(s−1
ref , s)

−1

Lemma 17. If G ∈ GK(w−1↑), then G−1 ∈ GK(w↑).

Proof. Monotonicity of G−1 follows immediately from monotonicity of G. It remains
to show

G−1(sref , s) ⊇w↑.Nref w↑.L(sref , s)(G
−1(sref , s))

for any sref , s. This is easy using Lemma 16:

G−1(sref , s)

= G(s−1
ref , s)

−1

⊇w↑.Nref

(
w−1↑.L(s−1

ref , s)(G(s−1
ref , s))

)−1

= w↑.L(sref , s)(G(s−1
ref , s)

−1)
= w↑.L(sref , s)(G

−1(sref , s))

Lemma 18. If stable(w), then stable(w−1).

Lemma 19. If inhabited(w↑), then inhabited(w−1↑).

Lemma 20. If G ∈ GK(w−1↑), then:(
Ew↑(G

−1)(s−1
ref 0

, s0)(s−1
ref , s)

)−1 ⊆ Ew−1↑(G)(sref0, s0)(sref , s)

Proof. By a straightforward coinduction.

Lemma 21. If consistent(w↑), then consistent(w−1↑).

Theorem 3.
∆; Γ ` e1 ∼ e2 : σ

∆; Γ ` e2 ∼ e1 : σ

Proof. Given N ∈ TyNam, we get a stable w with ∆; Γ ` e1 ∼w↑ e2 : σ as well as
w.N ⊆ N . Using w−1.N = w.N and Lemma 18, it remains to show:

∆; Γ ` e2 ∼w−1↑ e1 : σ

With Lemmas 19 and 21, this in turn reduces to showing:

(γ1e2, γ2e1) ∈ Ew−1↑(G)(sref , s)(sref , s)(δσ)

for any sref , s, δ and G ∈ GK(w−1↑) and (γ1, γ2) ∈ Env(δΓ, G(sref , s)).
Note that (γ2, γ1) ∈ Env(δΓ, G(sref , s)

−1) = Env(δΓ, G−1(s−1
ref , s)) with the help of

Lemma 13 and the definition of G−1. Using Lemma 17, ∆; Γ ` e1 ∼w↑ e2 : σ thus
yields:

(γ2e1, γ1e2) ∈ Ew↑(G
−1)(s−1

ref , s)(s
−1
ref , s)(δσ)

We are done by Lemma 20.

3.7. METATHEORY 57

3.7.3 Compatibilities

Compatibilities are very useful lemmas stating that the language’s constructs pre-
serve our equivalence. For each typing rule we have a corresponding compatibility.
Figure 3.17 lists them all. We have seen two of them—and their proof sketches—
earlier in the simple setting (Fix and App in Figure 3.9).

These proofs are somewhat tedious and, in general, similar to their counterparts
in a KLR setting. One of the key differences lies in the proofs concerning functions,
which we already sketched earlier. Here we show these proofs in detail, generalized
to the full Fµ! setting of this section.

Lemma 22 (Compatibility: App).

∆; Γ ` p1 ∼ p′1 : σ1 → σ2 ∆; Γ ` p2 ∼ p′2 : σ1

∆; Γ ` p1 p2 ∼ p′1 p′2 : σ2

Proof. Given a countably infinite set N ∈ P(TyNam), we can split it into two count-
ably infinite parts: N = N1] N2. Using these to instantiate the first and second
premise, respectively, we obtain two stable local worlds w1 and w2 whose product
w := w1 ⊗ w2 is defined and satisfies w.N ⊆ N . We use Lemma 10 to infer stability
of w and consistency and inhabitance of w↑. It thus remains to show

(γ(p1 p2), γ′(p′1 p
′
2)) ∈ Ew↑(G)(sref , s1, s2)(sref , s1, s2)(δσ2)

for substitutions (γ, γ′) ∈ Env(Γ, G(sref , s1, s2)). The first instantiated premise lets
us assume

(γp1, γ
′p′1) ∈ Ew1↑(G(−,−, s2))(sref , s1)(sref , s1)(δ(σ1 → σ2)),

which Lemma 9 turns into

(γp1, γ
′p′1) ∈ Ew↑(G)(sref , s1, s2)(sref , s1, s2)(δ(σ1 → σ2)).

By Lemma 11 it therefore suffices to show

(• γp2, • γ′p′2) ∈ Kw↑(G
′)(sref , s1, s2)(s′ref , s

′
1, s
′
2)(δσ1 → δσ2)(δσ2)

for any G′ ⊇ G and any (s′ref , s
′
1, s
′
2) wpub (sref , s1, s2). Given related values (v1, v

′
1) ∈

G′(s′ref , s
′
1, s
′
2)(δσ1 → δσ2), we therefore must show:

(v1 γp2, v
′
1 γ
′p′2) ∈ Ew↑(G

′)(sref , s1, s2)(s′ref , s
′
1, s
′
2)(δσ2)

Now, the second instantiated premise lets us assume

(γp2, γ
′p′2) ∈ Ew2↑(G

′(−,−, s′2))(sref , s1)(s′ref , s
′
1)(δσ1),

which Lemma 9 turns into

(γp2, γ
′p′2) ∈ Ew↑(G

′)(sref , s1, s2)(s′ref , s
′
1, s
′
2)(δσ1).

58 CHAPTER 3. PARAMETRIC BISIMULATIONS

∆ ` Γ x:σ ∈ Γ
∆; Γ ` x ∼ x : σ

∆ ` Γ
∆; Γ ` n ∼ n : nat

∆; Γ ` p0 ∼ p′0 : nat ∆; Γ ` p1 ∼ p′1 : σ ∆; Γ ` p2 ∼ p′2 : σ

∆; Γ ` ifz p0 then p1 else p2 ∼ ifz p′0 then p′1 else p′2 : σ

∆; Γ ` p1 ∼ p′1 : σ1 ∆; Γ ` p2 ∼ p′2 : σ2

∆; Γ ` 〈p1, p2〉 ∼ 〈p′1, p′2〉 : σ1 × σ2

∆; Γ ` p ∼ p′ : σ1 × σ2

∆; Γ ` p.1 ∼ p′.1 : σ1

∆; Γ ` p ∼ p′ : σ1 × σ2

∆; Γ ` p.2 ∼ p′.2 : σ2

∆; Γ ` p ∼ p′ : σ1 ∆; Γ ` σ2

∆; Γ ` inlσ2 p ∼ inlσ2 p
′ : σ1 + σ2

∆; Γ ` σ1 ∆; Γ ` p ∼ p′ : σ2

∆; Γ ` inrσ1 p ∼ inrσ2 p
′ : σ1 + σ2

∆; Γ ` p0 ∼ p′0 : σ1 + σ2 ∆; Γ, x:σ1 ` p1 ∼ p′1 : σ ∆; Γ, x:σ2 ` p2 ∼ p′2 : σ

∆; Γ ` case p0 (x. p1) (x. p2) ∼ case p′0 (x. p′1) (x. p′2) : σ

∆; Γ, f :(σ1 → σ2), x:σ1 ` p ∼ p′ : σ2

∆; Γ ` fix f(x:σ1):σ2. p ∼ fix f(x:σ1):σ2. p
′ : σ1 → σ2

∆; Γ ` p1 ∼ p′1 : σ1 → σ2 ∆; Γ ` p2 ∼ p′2 : σ1

∆; Γ ` p1 p2 ∼ p′1 p′2 : σ2

∆, α; Γ ` p ∼ p′ : σ
∆; Γ ` Λα. p ∼ Λα. p′ : ∀α. σ

∆; Γ ` p ∼ p′ : ∀α. σ1 ∆; Γ ` σ2

∆; Γ ` p [σ2] ∼ p′ [σ2] : σ1[σ2/α]

∆; Γ ` σ1 ∆; Γ ` p ∼ p′ : σ2[σ1/α]

∆; Γ ` pack 〈σ1, p〉 as ∃α. σ2 ∼ pack 〈σ1, p
′〉 as ∃α. σ2 : ∃α. σ2

∆; Γ ` p1 ∼ p′1 : ∃α. σ1 ∆, α; Γ, x:σ1 ` p2 ∼ p′2 : σ2 ∆; Γ ` σ2

∆; Γ ` unpack p1 as 〈α, x〉 in p2 ∼ unpack p′1 as 〈α, x〉 in p′2 : σ2

∆; Γ ` p ∼ p′ : σ[µα. σ/α]

∆; Γ ` rollµα. σ p ∼ rollµα. σ p
′ : µα. σ

∆; Γ ` p′ : µα. σ
∆; Γ ` unroll p ∼ unroll p′ : σ[µα. σ/α]

∆; Γ ` p ∼ p′ : σ
∆; Γ ` ref p ∼ ref p′ : ref σ

∆; Γ ` p1 ∼ p′1 : ref σ ∆; Γ ` p2 ∼ p′2 : σ

∆; Γ ` p1 := p2 ∼ p′1 := p′2 : unit

∆; Γ ` p ∼ p′ : ref σ

∆; Γ ` !p ∼ !p′ : σ

∆; Γ ` p1 ∼ p′1 : ref σ ∆; Γ ` p2 ∼ p′2 : ref σ

∆; Γ ` p1 == p2 ∼ p′1 == p′2 : nat

Figure 3.17: Compatibilities

3.7. METATHEORY 59

Again by Lemma 11 it suffices to show

(v1 •, v′1 •) ∈ Kw↑(G
′′)(sref , s1, s2)(s′′ref , s

′′
1, s
′′
2)(δσ1)(δσ2)

for anyG′′ ⊇ G′ and any (s′′ref , s
′′
1, s
′′
2) w (s′ref , s

′
1, s
′
2) with (s′′ref , s

′′
1, s
′′
2) wpub (sref , s1, s2).

Given related values (v2, v
′
2) ∈ G′′(s′′ref , s′′1, s′′2)(δσ1), we therefore must show

(v1 v2, v
′
1 v
′
2) ∈ Ew↑(G

′′)(sref , s1, s2)(s′′ref , s
′′
1, s
′′
2)(δσ2),

which is the interesting part of the proof. (In fact, the reasoning up to here is not
specific to function application but common to many other program forms involving
subterms. In our formal Coq development, some of the boilerplate is moved into
shared lemmas.)

To show this last goal we appeal to the call disjunct of E. Accordingly, it suffices
to show three things:

• (v1, v
′
1) ∈ G′′(s′′ref , s′′1, s′′2)(δσ1 → δσ2)

• (v2, v
′
2) ∈ G′′(s′′ref , s′′1, s′′2)(δσ1)

• (•, •) ∈ Kw↑(G
′′′)(sref , s1, s2)(s′′′)(δσ2)(δσ2) for any G′′′ ⊇ G′′ and any s′′′ w

(s′′ref , s
′′
1, s
′′
2) with s′′′ wpub (sref , s1, s2)

The second was an assumption, the first follows from the assumptions by monotonic-
ity, and the third, which talks about empty continuations, is easy to verify.

Lemma 23 (Compatibility: Fix).

∆; Γ, f :σ1 → σ2, x:σ1 ` e1 ∼ e2 : σ2

∆; Γ ` fix f(x). e1 ∼ fix f(x). e2 : σ1 → σ2

Proof. Given N ∈ P(TyNam), the premise yields a stable w1 such that w1.N ⊆ N
and ∆; Γ, f :σ1 → σ2, x:σ1 ` e1 ∼w1↑ e2 : σ2. We choose the local world in which
we prove the two functions related to be w := w1 ⊗ w2, where w2 is defined as the
following trivially stable single-state world:

w2.T.S := {1}
w2.L()()(R)(τ) := {(γ1fix f(x). e1, γ2fix f(x). e2) | ∃δ ∈ ∆→ CTy.

τ = δσ1 → δσ2 ∧ (γ1, γ2) ∈ Env(δΓ, R)}
w2.H()()() := {(∅, ∅)}
w2.N := ∅

With Lemma 10 and w.N = (w1 ⊗ w2).N = w1.N ⊆ N , it suffices to show:

∆; Γ ` fix f(x). e1 ∼w↑ fix f(x). e2 : σ1 → σ2

We need to show inhabited(w↑) and consistent(w↑)—the rest follows by construction
of w2. Regarding inhabitance, by Lemma 10 it suffices to show inhabited(w2↑), which

60 CHAPTER 3. PARAMETRIC BISIMULATIONS

is witnessed by state (∅, 1). Regarding consistency, using the same lemma, we could
simply show consistent(w2↑). However, since w2.L refers to e2 and e′2, there is no
hope to show this. Instead, we have to prove consistent(w↑) directly.

The part of consistent(w↑) concerning universal types follows easily by Lemma 9
from consistent(w1↑), because w2.L is empty at universal types.

Concerning arrow types, we are given G, sref , s1, s2, σ′1, σ′2, related functions

(v1, v2) ∈ w↑.L(sref , s1, s2)(G(sref , s1, s2))(σ′1 → σ′2)

and related arguments (v′1, v
′
2) ∈ G(sref , s1, s2)(σ′1), and must show:

(step(v1 v
′
1), step(v2 v

′
2)) ∈ Ew↑(G)(sref , s1, s2)(sref , s1, s2)(σ′2)

If the functions are related by w1↑,

(v1, v2) ∈ w1↑.L(sref , s1)(G(sref , s1, s2))(σ′1 → σ′2)

then the claim follows from consistent(w1↑) with Lemma 9.

Otherwise, the functions are necessarily from w2:

(v1, v2) ∈ w2.L(sref)(s2)(G(sref , s1, s2))(σ′1 → σ′2)

Hence σ′1 → σ′2 = δσ1 → δσ2 and v1 = γ1fix f(x). e1 and v2 = γ2fix f(x). e2 for some
δ and (γ1, γ2) ∈ Env(δΓ, G(sref , s1, s2)). Writing γ′i for γi, f 7→vi, x7→v′i, it remains to
show

(γ′1e1, γ
′
2e2) ∈ Ew↑(G)(sref , s1, s2)(sref , s1, s2)(δσ2),

which reduces by Lemma 9 to

(γ′1e1, γ
′
2e2) ∈ Ew1↑(G(−,−, s2))(sref , s1)(sref , s1)(δσ2).

This follows from the instantiated premise if we can show:

(γ′1, γ
′
2) ∈ Env(δ(Γ, f :σ1 → σ2, x:σ1), G(sref , s1, s2))

Given what we know about γ1, γ2, it suffices to focus on their extensions. We already
know that (v′1, v

′
2) ∈ G(sref , s1, s2)(δσ1). So it remains to show

(γ1fix f(x). e1, γ2fix f(x). e2) ∈ G(sref , s1, s2)(δσ1 → δσ2),

which, exploiting that G(−, s1,−) ∈ GK(w2↑), we do by showing

(γ1fix f(x). e1, γ2fix f(x). e2) ∈ w2↑.L(sref , s2)(G(sref , s1, s2))(δσ1 → δσ2).

Indeed, this holds by construction of w2.

3.7. METATHEORY 61

3.7.4 Congruency

By an easy induction, the compatibility lemmas from Figure 3.17 yield reflexivity for
well-typed programs.

Theorem 4 (Reflexivity).
∆; Γ ` p : σ

∆; Γ ` p ∼ p : σ

We also have transitivity of∼, hence it is a proper equivalence relation (we already
proved symmetry in Section 3.7.2).

Theorem 5 (Transitivity).

∆; Γ ` p1 ∼ p2 : σ ∆; Γ ` p2 ∼ p3 : σ

∆; Γ ` p1 ∼ p3 : σ

Proof. The subject of Section 3.9.

Lemma 24 (Context closure).

∆; Γ ` p1 ∼ p2 : σ ` C : (∆; Γ;σ) (∆′; Γ′;σ′)

∆′; Γ′ ` C[p1] ∼ C[p2] : σ′

Proof. By induction on the derivation of the context typing, in each case using the
corresponding compatibility lemma. For contexts containing subterms we also need
Theorem 4.

Lemma 25 (Substitutivity).

∆; Γ, x:τ ′ ` e1 ∼ e2 : τ ∆; Γ ` v1 ∼ v2 : τ ′

∆; Γ ` e1[v1/x] ∼ e2[v2/x] : τ

3.7.5 Soundness

Lemma 26 (Adequacy). If ` p1 ∼ p2 : τ , then for any heaps h1, h2:

1. either 〈h1; |p1|〉↑ ∧ 〈h2; |p2|〉↑,

2. or ∃h′1, h′2, v1, v2. 〈h1; |p1|〉 ↪→∗ 〈h′1; v1〉 ∧ 〈h2; |p2|〉 ↪→∗ 〈h′2; v2〉.

Proof. We instantiate the premise with TyNam and get w with ` p1 ∼w↑ p2 : τ .
Using the least global knowledge (Lemma 7), inhabitance of w↑ tells us that there is
s0 with (∅, ∅) ∈ w↑.H(s0)([w↑](s0)). Now we use this state to obtain

(e1, e2) ∈ Ew↑([w↑])(s0)(s0)(τ),

which by key Lemma 12 implies

(e1, e2) ∈ Eλs.∅
w↑ ([w↑])(s0)(s0)(τ).

62 CHAPTER 3. PARAMETRIC BISIMULATIONS

Instantiating this with the empty heaps (∅, ∅) ∈ w↑.H(s0)([w↑](s0)) as well as with
empty frame heaps, yields three cases. Cases div and eval imply the goal. Case
call cannot possibly hold, because the called functions would be related by the
empty relation.

Finally, combining adequacy and congruency, we can show our main soundness
theorem: for well-typed programs, our equivalence relation is included in contextual
equivalence.

Theorem 6 (Soundness). If ∆; Γ ` p1 : σ and ∆; Γ ` p2 : σ, then:

∆; Γ ` p1 ∼ p2 : σ =⇒ ∆; Γ ` p1 ∼ctx p2 : σ

Proof. Suppose ∆; Γ ` p1 ∼ p2 : σ as well as ` C : (∆; Γ;σ) (ε; ε; τ). By Lemma 24
we have ` C[p1] ∼ C[p2] : τ . By adequacy (Lemma 26) we have 〈h; |C[p1]|〉 ↑ ⇐⇒
〈h; |C[p2]|〉↑ for any h, so we are done.

3.8 Examples

In this section, we present several example PB equivalence proofs. Here we will
not actually rely on the ability of local knowledges and heap relations to depend
on the state of the reference world Wref . Consequently, the stability property in
the definition of program equivalence will be trivially satisfied (by choosing s′ :=
s). However, dependent worlds are of critical importance in the transitivity proof
discussed in Section 3.9.

3.8.1 Well-Bracketed State Change

Recall the example from Section 2.2.3 and its high-level proof-sketch using an STS.
We will now show in some formal detail how this proof is done using our method.
Concretely, we prove ` v1 ∼ e2 : τ , where:

τ := (unit→ unit)→ nat
v1 := λf. (f 〈〉; f 〈〉; 1)
e2 := let x = ref 0 in v2

v2 := λf. (x := 0; f 〈〉;x := 1; f 〈〉; !x)

Constructing a Suitable World We construct a local world w that we will then
show to be consistent and to relate v1 and e2.

w.T.S := Loc
fin
⇀ {0, 1} ⊂ Heap

w.T.v := {(s, s′) | dom(s) ⊆ dom(s′)}
w.T.vpub := {(s, s′) ∈ w.v | ∀(l, 1) ∈ s. (l, 1) ∈ s′}
w.L(, s)(G)(τ) := {(v1, v2[l/x]) | l ∈ dom(s)}
w.H(, s)(G) := {(∅, s)}
w.N := ∅

3.8. EXAMPLES 63

The STS that we build into w is essentially the one from Section 2.2.3:

x ↪→ 0 x ↪→ 1
--

mm

A state s ∈ w.S is to be understood as follows: for each running instance of e2,
identified by the location lx that that instance initially allocated, s(lx) says whether
the instance is in the (pictorially) left state (lx points to 0) or in the right one (lx
points to 1). Accordingly, the heap relation w.H at state s is just {(∅, s)}. Finally, the
local knowledge w.L at state s relates v1 with v2[lx/x] for any location lx belonging to
an instance. Finally, since the programs don’t involve abstract types, we can define
w.N to be empty.

It is easy to see that w ∈ LWorld. In particular, w.L and w.H are monotone as
required. Note that stable(w) (the dependency is vacuous) and that inhabited(w↑)
for s0 = (∅, ∅). To show ` v1 ∼w↑ e2 : τ , two parts remain.

Proving Its Consistency Establishing consistent(w↑) is the real meat of the proof.
Consider two functions related by w↑.L at a state (s1

ref , s1). Clearly, one is v1 and the
other is v2[l/x] for some l ∈ dom(s1). Now suppose we are given related arguments

(v′1, v
′
2) ∈ G1(s1

ref , s1)(unit→ unit). We need to show:

((v′1 〈〉; v′1 〈〉; 1), (l := 0; v′2 〈〉; l := 1; v′2 〈〉; !l)) ∈ Ew↑(G1)(s1
ref , s1)(s1

ref , s1)(nat)

Note that for (h1, h2) ∈ w.H(s1
ref , s1)(G(s1

ref , s1)) we know by construction that h1 = ∅
and h2 = s1. Consequently, for any frame heaps hF

1 , h
F
2 , we have

〈h1 t hF
1 ; (v′1 〈〉; v′1 〈〉; 1)〉

↪→∗ 〈h1 t hF
1 ; (v′1 〈〉; v′1 〈〉; 1)〉

〈h2 t hF
2 ; (l := 0; v′2 〈〉; l := 1; v′2 〈〉; !l)〉

↪→∗ 〈(s1\l) t [l 7→ 0] t hF
2 ; (v′2 〈〉; l := 1; v′2 〈〉; !l)〉

where s1\l denotes the restriction of s1 to domain dom(s1) \ {l}.
By the call disjunct in the definition of Ew↑ it now suffices to find s′1 w s1 such

that:

1. (∅, (s1\l) t [l 7→ 0]) ∈ w.H(s1
ref , s

′
1)(G1(s1

ref , s
′
1))

2. ((•; v′1 〈〉; 1), (•; l := 1; v′2 〈〉; !l)) ∈ Kw↑(G1)(s1
ref , s1)(s1

ref , s
′
1)(unit, nat)

Naturally, we pick s′1 = (s1\l) t [l 7→ 0]. Note that s′1 w s1 because their domains
coincide. Then (1) holds by construction of w and it remains to show (2).

After unfolding the definition of K and being given (s2
ref , s2) wpub (s1

ref , s
′
1) as well

as G2 ⊇ G1, we repeat the previous chain of arguments one more time and arrive at
the goal of finding s′2 w s2 such that:

3. (∅, (s2\l) t [l 7→ 1]) ∈ w.H(s2
ref , s

′
2)(G2(s2

ref , s
′
2))

64 CHAPTER 3. PARAMETRIC BISIMULATIONS

4. ((•; 1), (•; !l)) ∈ Kw↑(G2)(s1
ref , s1)(s2

ref , s
′
2)(unit, nat)

Naturally, we pick s′2 = (s2\l) t [l 7→ 1] w s2. Then (3) holds by construction of w
and it remains to show (4).

We observe that, for any (s3
ref , s3) wpub (s2

ref , s
′
2), it must be that s3(l) = 1 since

s′2(l) = 1. Hence for (h′1, h
′
2) ∈ w.H(s3

ref , s3)(G3(s3
ref , s3)) we know by construction

h′2(l) = 1. Consequently, for any frame heaps hF
1
′
, hF

2
′
, we have:

〈h′1 t hF
1
′
; (〈〉; 1)〉 ↪→∗ 〈h′1 t hF

1
′
; 1〉

〈h′2 t hF
2
′
; (〈〉; !l)〉 ↪→∗ 〈h′2 t hF

2
′
; 1〉

Hence we are done if we can show (s3
ref , s3) wpub (s1

ref , s1). Indeed, this is easy to
verify.

Showing the Programs Related By It Given how we constructed our local
world, this final goal is fairly easy to accomplish. Formally, we must show

(v1, e2) ∈ Ew↑(G)(sref , s)(sref , s)(τ)

for any G, sref , s. Note that if (h1, h2) ∈ w.H(sref , s)(G(sref , s)), then

〈h1; v1〉 ↪→∗ 〈h1; v1〉

〈h2; e2〉 ↪→ 〈h2 t [l 7→ 0]; v2[l/x]〉

for some fresh l. It therefore suffices to find s′ wpub s such that the following hold:

5. (h1, h2 t [l 7→ 0]) ∈ w.H(sref , s
′)(G(sref , s

′))

6. (v1, v2[l/x]) ∈ G(sref , s′)(τ)

We pick s′ = st[l 7→ 0]. Note that s′ is well-defined because l is fresh (so l /∈ dom(s)),
and that s′ wpub s as required. To show (6), it suffices by definition of GK to show
(v1, v2[l/x]) ∈ w.L(sref , s

′)(G(sref , s
′))(τ). This holds by construction of w and s′, and

so does (5).

Notice that our world in this proof was very simple—we didn’t actually use the
global knowledge parameter. An easy adaptation of the example programs, however,
would necessitate that—for instance, if we were to replace the constants 0 and 1 with
free variables a and b, respectively.

3.8. EXAMPLES 65

3.8.2 Twin Abstraction

This final example (originally due to Ahmed et al. [4]) demonstrates the interaction
of local state with abstract types.

τ := ∃α.∃β. (unit→ α)× (unit→ β)× (α× β → nat)
e1 := let x = ref 0 in

pack 〈nat, pack 〈nat, λ . x := !x+ 1; !x,
λ . x := !x+ 1; !x,
λp. p.1 = p.2〉〉

e2 := let x = ref 0 in
pack 〈nat, pack 〈nat, λ . x := !x+ 1; !x,

λ . x := !x+ 1; !x,
λp. 0〉〉

Both e1 and e2 return a name generator ADT consisting of two abstract types α
and β, together with a function for generating a fresh name of type α, a function
for generating a fresh name of type β, and a function for comparing an α name and
a β name for equality. Both implementations represent names as integers, and in
e1, the comparison operation really tests the names for equality. In e2, however, the
comparison just always returns false right away. Nevertheless, the two programs are
contextually equivalent because the α names and the β names are generated by the
same underlying integer counter, and thus no value can be both an α name and a β
name at the same time.

We now show the construction of a local world w that can be used to prove
` e1 ∼ e2 : τ . Let a countably infinite N ∈ P(TyNam) be given. Since Loc is also

countably infinite, we can think ofN as being split into {nαl | l ∈ Loc}]{nβl | l ∈ Loc}.

66 CHAPTER 3. PARAMETRIC BISIMULATIONS

We define w as follows:

w.T.S := {s ∈ Loc× Loc
fin
⇀ P(N>0)× P(N>0) |

dom(s) partial bijection ∧
∀(l1, l2, S1, S2) ∈ s. S1 ∩ S2 = ∅}

w.T.v := {(s, s′) | ∀(l1, l2, S1, S2) ∈ s. ∃S′1 ⊇ S1, S
′
2 ⊇ S2. (l1, l2, S

′
1, S
′
2) ∈ s′}

w.T.vpub := w.T.v

w.L(sref , s)(G) := {(nαl1 , n, n) | ∃l2, S1, S2. (l1, l2, S1, S2) ∈ s ∧ n ∈ S1}
] {(nβl1 , n, n) | ∃l2, S1, S2. (l1, l2, S1, S2) ∈ s ∧ n ∈ S2}
] {((unit→ nαl1),++l1,++l2) | (l1, l2) ∈ dom(s)}
] {((unit→ nβl1),++l1,++l2) | (l1, l2) ∈ dom(s)}
] {((nαl1 × nβl1 → nat), (λp. p.1 = p.2), (λp. 0)) | ∃l2. (l1, l2) ∈ dom(s)}

w.H(sref , s)(G) := {(h1, h2) |
dom(h1) = {l1 | ∃l2. (l1, l2) ∈ dom(s)} ∧
dom(h2) = {l2 | ∃l1. (l1, l2) ∈ dom(s)} ∧
∀(l1, l2, S1, S2) ∈ s. h1(l1) = h2(l2) = max ({0}] S1] S2)}

w.N := N

Here, ++l is short for λ . l := !l + 1; !l.

Similar to the world construction in Section 3.8.1, states s ∈ w.S are functions
defined for those locations (l1, l2) that, intuitively, were allocated in an instance of
e1 and e2, respectively. They are mapped to sets S1 and S2 of positive integers,
representing5 the current inhabitants of the abstract types α and β, respectively, for
that instance. The crucial invariant here is that S1 and S2 are always disjoint. The
local knowledge w.L declares e1’s functions equivalent to those of e2; it also defines
the meaning of type nαl1 as the identity relation restricted to those numbers that

inhabit α in the instance pair identified by l1 (and similarly for nβl1 and β).

According to this interpretation, the transition relation only allows S1 and S2

to grow (the distinction between public and private transitions is not needed for
this example). Finally, w.H says that the related heaps at state s are any (h1, h2)
where hi contains exactly those locations allocated in instances of ei, and each such
location stores the largest value handed out so far (no matter if at α or β). This
latter condition is critical to ensure that S1 and S2 stay disjoint in each instance.

Using this world, it is straightforward to finish the proof.

5To keep the definitions as simple as possible, the state space includes some states that actual
program behaviour cannot result in (but that nevertheless are consistent with the property we want
to prove).

3.8. EXAMPLES 67

3.8.3 World Generator

As explained in Section 3.6.7, and as one may observe from the previous examples,
worlds must often describe “n-ary” state spaces, where each state consists of n copies
of states drawn from some simpler state space, one copy for each dynamic instance
of the object or ADT. Thus, it would be convenient if one were able to reason about
program equivalence under the degenerate case of a single copy (i.e., n = 1). For-
tunately, it is not hard to (i) define a world generator that, given a single-instance
world, automatically performs the multiplexing; and (ii) show that consistency of
that single-instance world implies equivalence consistency of the multiplexed world.

Here we present the definition and properties of such a world generator. In the
next section, we use it to simplify the proof of (a variant of) the example from
Section 3.8.1

NLWorld := {W ∈ Names→ LWorld | ∀N . W(N).N ⊆ N}

Definition 9 (World generator). We define G ∈ NLWorld→ NLWorld as follows.

G(W)(N).T.S := {(s1, . . . , sn) | n ∈ N ∧ ∀i ∈ {1, . . . , n}. si ∈ W(Ni).S}
G(W)(N).T.v := see below
G(W)(N).T.vpub := see below
G(W)(N).L(sref , (s1, . . . , sn))(R) :=

⋃
i∈{1,...,n}W(Ni).L(sref , si)(R)

G(W)(N).H(sref , (s1, . . . , sn))(R) := ⊗i∈{1,...,n}W(Ni).H(sref , si)(R)

G(W)(N).N := N

Here {Ni} is a countably infinite splitting of N into coutably infinite sets, i.e., N =
N1] N2] N3] . . . and each Ni is countably infinite. Many such splittings exists,
and it does not matter which one we choose.

The transition relations G(W)(N).v and G(W)(N).vpub are defined as the least
preorders closed under the corresponding following rules.

s′1 wpub s1 . . . s′k wpub sk

(s′1, . . . , s
′
k) wpub (s1, . . . , sk) (s1, . . . , sk, sk+1) wpub (s1, . . . , sk)

s′1 w s1 . . . s′k w sk
(s′1, . . . , s

′
k) w (s1, . . . , sk)

s′ wpub s

s′ w s

Hence in addition to pointwise transitions, they also allow extensions (moving from
a state of arity k to one of arity k + n).

For the next lemmas, we define the following notation.

G[sk]k∈{n\i} := λsref , s
′
i. G(sref , (s1, . . . , si−1, s

′
i, si+1, . . . , sn))

Lemma 27.

∀G ∈ GK(G(W)(N)↑). ∀s1 . . . si−1, si+1 . . . sn. G[sk]k∈{n\i} ∈ GK(W(Ni)↑)

68 CHAPTER 3. PARAMETRIC BISIMULATIONS

Proof. The fact that G[sk]k∈{n\i} is monotone w.r.t. v follows directly from the
definition of v and monotonicity of G.

It remains to show

G[sk]k∈{n\i}(sref , si) ⊇Ni
ref W(Ni)↑.L(sref , si)(G[sk]k∈{n\i}(sref , si))

for any sref , si, which we do as follows.

G[sk]k∈{n\i}(sref , si)

= G(sref , s1, . . . , sn)

⊇Nref G(W)(N)↑.L(sref , s1, . . . , sn)(G(sref , s1, . . . , sn)) (G ∈ GK(G(W)(N)↑))
⊇Ni

ref G(W)(N)↑.L(sref , s1, . . . , sn)(G(sref , s1, . . . , sn)) (Ni ⊆ N)

⊇Ni
ref W(Ni)↑.L(sref , si)(G(sref , s1, . . . , sn))

= W(Ni)↑.L(sref , si)(G[sk]k∈{n\i}(sref , si))

The last inequality relies onW(Ni) ∈ LWorld and the disjointness of N1, . . . ,Nn.

Lemma 28. If W = G(W)(N)↑ and ∀N ′. stable(W(N ′)) and G ∈ GK(W), then:

1. EW(Ni)↑(G[sk]k∈{n\i})(s
0
ref , s

0
i)(sref , si) ⊆

EW (G)(s0
ref , s1, . . . , si−1, s

0
i , si+1, . . . , sn)(sref , s1, . . . , sn)

2. KW(Ni)↑(G[sk]k∈{n\i})(s
0
ref , s

0
i)(sref , si) ⊆

KW (G)(s0
ref , s1, . . . , si−1, s

0
i , si+1, . . . , sn)(sref , s1, . . . , sn)

Proof. By coinduction.

Lemma 29. Suppose ∀N . stable(W(N)).

1. ∀N . stable(G(W)(N))

2. If ∀N . consistent(W(N)↑), then ∀N . consistent(G(W)(N)↑).

Lemma 30. inhabited(G(W)(N)↑)

Proof. It is easy to check that (∅, ∅) ∈ G(W)(N)↑.H(∅, ())(R) for any R.

In the next section, we illustrate the use of G and these lemmas.

3.8.4 Twin Abstraction, Alternate Proof

Recall the example from Section 3.8.2. We now sketch how to prove it with the help
of the world generator from the previous section.

3.8. EXAMPLES 69

Constructing the world.

w.T.S := {s ∈ Loc× Loc
fin
⇀ P(N>0)× P(N>0) |

dom(s) partial bijection ∧
∀(l1, l2, S1, S2) ∈ s. S1 ∩ S2 = ∅}

w.T.v := {(s, s′) | ∀(l1, l2, S1, S2) ∈ s. ∃S′1 ⊇ S1, S
′
2 ⊇ S2. (l1, l2, S

′
1, S
′
2) ∈ s′}

w.T.vpub := w.T.v

w.L(sref , s)(G) := {(nαl1 , n, n) | ∃l2, S1, S2. (l1, l2, S1, S2) ∈ s ∧ n ∈ S1}
] {(nβl1 , n, n) | ∃l2, S1, S2. (l1, l2, S1, S2) ∈ s ∧ n ∈ S2}
] {((unit→ nαl1),++l1,++l2) | (l1, l2) ∈ dom(s)}
] {((unit→ nβl1),++l1,++l2) | (l1, l2) ∈ dom(s)}
] {((nαl1 × nβl1 → nat), (λp. p.1 = p.2), (λp. 0)) | ∃l2. (l1, l2) ∈ dom(s)}

w.H(sref , s)(G) := {(h1, h2) |
dom(h1) = {l1 | ∃l2. (l1, l2) ∈ dom(s)} ∧
dom(h2) = {l2 | ∃l1. (l1, l2) ∈ dom(s)} ∧
∀(l1, l2, S1, S2) ∈ s. h1(l1) = h2(l2) = max ({0}] S1] S2)}

w.N := N

First, we define W ∈ NLWorld as follows:

W(N ′).T.S := {(l1, l2, S1, S2) ∈ Loc× Loc× P(N>0)× P(N>0) | S1 ∩ S2 = ∅}
W(N ′).T.v := {((l1, l2, S1, S2), (l′1, l

′
2, S
′
1, S
′
2) | l1 = l′1 ∧ l2 = l′2 ∧ S1 ⊆ S′1 ∧ S2 ⊆ S′2}

W(N ′).T.vpub :=W(N ′).T.v
W(N ′).L(sref , (l1, l2, S1, S2))(R) :=

{(N ′(1), n, n) | n ∈ S1}] {(N ′(2), n, n) | n ∈ S2}]
{((unit→ N ′(1)),++l1,++l2)}] {((unit→ N ′(2)),++l1,++l2)}]
{((N ′(1)×N ′(2)→ nat), (λp. p.1 = p.2), (λp. 0))}

W(N ′).H := λ(l1, l2, S1, S2), R. {([l1 7→ n], [l2 7→ n]) | n = max ({0}] S1] S2)}
W(N ′).N := {N ′(1),N ′(2)}

where N ′(1) and N ′(2) denote two distinct elements of N ′.

3.8.5 A Free Theorem

The last example demonstrates the treatment of universal types, and the fact that
our method may be used to prove at least some simple so-called “free theorems” [90].
Suppose ` p : ∀α. α and |p| = v. We want to prove that 〈h; v []〉 ↑ for any h, which
implies that there are no closed values of type ∀α. α.

We start by applying reflexivity to obtain ` v ∼ v : ∀α. α. This gives us w with
` v ∼w↑ v : ∀α. α and w.N ⊆ TyNam \ {n} for some arbitrary n of our choosing. We

70 CHAPTER 3. PARAMETRIC BISIMULATIONS

now pick G := [w↑] ∈ GK(w↑) (recall Definition 4). From ` v ∼w↑ v : ∀α. α we then
get

(v, v) ∈ Ew↑(G)(s0)(s0)(∀α. α)

where s0 is the state witnessing inhabited(w↑). Notice that this can only hold due to
the second disjunct in E because v is a value. Consequently, we get s wpub s0 such
that:

1. (v, v) ∈ G(s)(∀α. α) = G(s)(∀α. α)

2. (∅, ∅) ∈ w↑.H(s)(G(s))

By construction we haveG(s) = w↑.L(s)(G(s)). Hence from (1) and consistent(w↑),
we can derive

(step(v []), step(v [])) ∈ Ew↑(G)(s)(s)(τ)

for any τ . So, in particular, we have:

(step(v []), step(v [])) ∈ Ew↑(G)(s)(s)(n)

In fact, due to the construction of G, Lemma 12 tells us

(step(v []), step(v [])) ∈ ER
w↑(G)(s)(s)(n)

for R = λs.∅. Together with (2), this allows only two cases for any heap h: either
〈h; step(v [])〉 diverges (then we are done), or it terminates and the resulting values
are related by G(s′)(n) for some s′ wpub s. However, because Wref .N = ∅ and

w.N ⊆ TyNam \ {n}, we know G(s′)(n) = w↑.L(s′)(G(s′))(n) = ∅, which rules out
that second case.

3.9 Transitivity

In Section 3.5, we presented parametric bisimulations for λµ, a very simple fragment
of Fµ! lacking quantified types and state. In particular, we sketched the proof of
transitivity in Section 3.5.4.

In this section, we generalize that proof of transitivity to account for the full
PB model of the full Fµ! language, which turns out (unsurprisingly) to be highly
non-trivial. We first describe the high-level structure of our extended transitivity
proof. The proof divides into two major parts, presented in Sections 3.9.2 and 3.9.3,
respectively. It is highly intricate, requiring several tricky auxiliary constructions.
In these sections, we highlight the key technical challenges, explain carefully the
central constructions and the intuitions behind them, give detailed proofs of the main
lemmas, and give proof sketches of other lemmas. The complete proof is of course
fully machine-checked in Coq. To give a rough sense of the complexity, it required
approximately 3200 lines of Coq, versus 1500 lines to formalize the language, 400
lines to formalize the model, and 2000 lines to prove soundness of the model w.r.t.
contextual equivalence.

3.9. TRANSITIVITY 71

3.9.1 Structure of the Transitivity Proof

Given that ∆; Γ ` e1 ∼ e2 : τ and ∆; Γ ` e2 ∼ e3 : τ , we must show ∆; Γ ` e1 ∼ e3 : τ .
Unfolding the definition of this goal, we are given a countably infinite set of type
names N and must construct a stable local world w such that (a) ∆; Γ ` e1 ∼w↑ e3 : τ
and (b) w.N ⊆ N (i.e., w.L defines no names outside of N). To do so, we split N
into three disjoint (and also countably infinite) pieces: N1, N2, and N∃. The first
two pieces are used to instantiate the assumptions regarding e1 ∼ e2 and e2 ∼ e3,
respectively, thus yielding two stable local worlds w1 and w2 such that

∆; Γ ` e1 ∼w1↑ e2 : τ (3.1)

and ∆; Γ ` e2 ∼w2↑ e3 : τ (3.2)

as well as w1.N ⊆ N1 and w2.N ⊆ N2. Keeping N1 and N2 disjoint is a matter of
basic hygiene: it ensures that w1 and w2, which we will be using in the construction
of w, do not step on each other’s toes by defining the same type name in incompatible
ways. As for the names in N∃, we reserve them for a special purpose to be explained
later.

At this point, the proof divides into two separate parts. In the first part, we
use w1 and w2 to directly construct a full world W such that ∆; Γ ` e1 ∼W e3 : τ
(and W.N ⊆ N). While this construction and the proof of the required properties is
quite subtle, they are essentially an extension of the transitivity proof for λµ that we
sketched in detail in Section 3.5.4 and which we present here in much greater detail.
The main novelty over that previous proof is that we now (in this first part) deal
with quantified types; reference types do not cause much of a problem.

However, the second part of the proof has all to do with references. Specifically,
the world W that we create in the first part does not have the required shape of
a lifted local world w↑. Thus, in the second part, we (i) develop a theory of weak
isomorphisms between worlds and prove that they preserve term equivalence, and
(ii) construct a stable local world w such that w↑ is weakly isomorphic to W .

3.9.2 First Part: Constructing the Full World W

3.9.2.1 High-Level Explanation

As mentioned above, this first part of the proof is essentially agnostic as to whether
the language/model supports mutable state. To ease the presentation, we therefore
gloss over any state-related details at first; we will be more precise in Section 3.9.2.2.
We also write Wi as shorthand for wi↑.

We want to construct W such that ∆; Γ ` e1 ∼W e3 : τ . The proofs of consistency
of W and E-relatedness of closed instances of (e1, e3) turn out to be very similar,
so let us focus on the latter here. We are given a global knowledge G ∈ GK(W)
and related substitutions γ1 and γ3. These substitutions map each variable bound
in Γ to related values (v1, v3) ∈ G(τ ′). In order to make use of (3.1) and (3.2), we
want to be able to: (i) “decompose” G into global knowledges G(1) ∈ GK(W1) and

72 CHAPTER 3. PARAMETRIC BISIMULATIONS

G(2) ∈ GK(W2) that would be suitable for instantiating (3.1) and (3.2), and (ii) find

a mediating substitution γ2 s.t. for each x ∈ dom(Γ), it is the case that G(1) relates

(γ1x, γ2x) and G(2) relates (γ2x, γ3x). Formally, we want:

G(τ) ⊆ G(1)(τ(1)) ◦G(2)(τ(2)) (3.3)

where ◦ is ordinary relational composition. (Pretend for now that τ(i) = τ . We will
soon see why that’s not good enough.)

If we have this, we can instantiate (3.1) and (3.2), thus obtaining (γ1e1, γ2e2) ∈
E(G(1))(τ(1)) and (γ2e2, γ3e3) ∈ E(G(2))(τ(2)). It thus remains for us to show (γ1e1, γ3e3) ∈
E(G)(τ). In other words, we must (unsurprisingly) show some kind of transitivity
property for E:

EW1(G(1))(τ(1)) ◦EW2(G(2))(τ(2)) ⊆ EW (G)(τ) (3.4)

Proving this will certainly require us to prove the analogous transitivity property for
values, which is the inverse of (3.3):

G(τ) ⊇ G(1)(τ(1)) ◦G(2)(τ(2)) (3.5)

It is therefore only natural that we will define W.L to at least include the composition
of W1.L and W2.L:

W.L(G)(τ) ⊇W1.L(G(1))(τ(1)) ◦W2.L(G(2))(τ(2)) (3.6)

In order to see what else we want to put into W , and how to define G(i) and τ(i),
let us consider proving (3.3) and (3.5). For a flexible type τ ′ the conjunction of (3.3)
and (3.5) is:

G(τ ′) = G(1)(τ
′
(1)) ◦G(2)(τ

′
(2)).

One simple (but inadequate) choice for G(i) would be to define it as the minimal
global knowledge in GK(Wi) (introduced in Definition 4). But there is no reason to
believe that for any (v1, v3) ∈ G(τ ′), there magically happens to be a “mediating”
value v2 such that W1.L relates (v1, v2) and W2.L relates (v2, v3), as required by the ⊆
part of the above equation. To work this magic, we will explicitly add such mediating
values to G(1) and G(2)! Concretely, we define G(1) as the smallest global knowledge
in GK(W1) that relates (v1, I(τ, v1, v3)) at τ(1) whenever G relates (v1, v3) at τ , and
similarly G(2) as the smallest global knowledge in GK(W2) that relates (I(τ, v1, v3), v3)
at τ(2) whenever G relates (v1, v3) at τ .

Now, what is this magic I? For proving (3.3), it could be anything that maps
to CVal. But for (3.5), it is crucial that each mediating value uniquely encodes the
corresponding value pair (v1, v3). We therefore require I to be injective. Since all
involved sets are countably infinite, such an encoding function exists and we do not
care about the particular choice—except that we will choose its range to be of rigid
type, specifically nat, for reasons we will explain shortly.

3.9. TRANSITIVITY 73

The proofs of (3.3) and (3.5) are by induction on the value closure (recall that
it is constructed as a least fixed point). The reason why we must add more to W.L
than just the composition in (3.6), and why τ(i) cannot just be τ in general, has to do
with abstract types. We illustrate the issue here for existential types, but the same
problem arises for universals (although in a different place, namely in the proof of
(3.4)).

Suppose τ(i) were the identity and consider (3.5) at some type ∃α. τ : We would

have to show that if (pack v1, pack v2) ∈ G(1)(∃α. τ) and (pack v2, pack v3) ∈
G(2)(∃α. τ), then (pack v1, pack v3) ∈ G(∃α. τ). Unfolding the value closure, this

means that given some τ ′1, τ ′2 with (v1, v2) ∈ G(1)(τ [τ ′1/α]) and (v2, v3) ∈ G(2)(τ [τ ′2/α]),

we must come up with τ ′ such that (v1, v3) ∈ G(τ [τ ′/α]). Now, if the two given rep-
resentation types happen to be the same (τ ′1 = τ ′2), then we could proceed by just
picking τ ′ := τ ′1. But of course in general τ ′1 and τ ′2 will be different!

The intuition behind our solution is quite simple: we pick τ ′ to be a fresh type
name, which we use to represent the semantic composition of τ ′1 and τ ′2. More con-
cretely, we use a type name n from N∃ (which we reserved for exactly this pur-
pose) to uniquely encode τ ′1 and τ ′2, then define n’s meaning in W to be precisely
G(1)(τ

′
1) ◦ G(2)(τ

′
2), and finally choose τ ′ to be n. Since we don’t know what τ ′1 and

τ ′2 are, we simply have to encode all pairs of types this way. To pick the names, we
use an injective function

A ∈ CTy × CTy→ N∃

which, like I, exists because all involved sets are countably infinite (and, as with I,
we do not care about its concrete definition). It should be clear by now what τ ′(i)
does and that it is crucial for making the induction go through: it decodes τ ′ by
traversing its structure and replacing each type name n that equals A(τ1, τ2)—for
some τ1, τ2—with τi.

That’s the intuition; the reality is a bit more complex. It turns out that, in order
to prove (3.3) and (3.5), the decoding must in fact be bijective, but the one sketched
above is not injective. For instance, A(nat, nat) and nat are obviously distinct types
but both decode to nat (by either projection). Fortunately, there is an easy way
to obtain the desired bijectivity: we only encode a type pair (τ1, τ2) directly as a
name A(τ1, τ2) if τ1 and τ2 are “sufficiently different”. If they share some structure,
however, we keep the parts that are the same and only apply A to the parts that are
different. To take a simple example: to encode (nat, unit), we would use the type name
A(nat, unit), but to encode (nat→ nat, nat→ unit), we would pick nat→ A(nat, unit)
instead of A(nat→ nat, nat→ unit).

Finally, property (3.4) is shown by coinduction. Recalling that E comprises three
cases (div, eval, call), the key here is that the case of E by which the first and
second terms—call them e′1 and e′2—are related should match the case by which
the second and third terms—e′2 and e′3—are related. In other words, out of the
3× 3 possible cases, 6 should never arise. As a representative example, consider the
situation where e′1 and e′2 are related because they reduce to related values (case

74 CHAPTER 3. PARAMETRIC BISIMULATIONS

eval), and e′2 and e′3 because they reduce to related calls with related continuations
(case call). By Lemma 12 we can assume that these calls are to external functions
related by G(2). But this means that the function called in e′2 must be of the form
I(τ, v1, v3), i.e., not a function at all (recall that we required I to map to rigid values)!
Hence, e′2 gets stuck, contradicting the assumption that it reduced to a value.

The remaining possibilities (where the cases of relatedness for (e′1, e
′
2) and (e′2, e

′
3)

match) are handled as follows:

Case div. Then both e′1 and e′3 diverge, so we are done.

Case eval. Then e′1, e′2, and e′3 reduce to values v1, v2, and v3, such that G(1)

relates (v1, v2) and G(2) relates (v2, v3). Thus, by (3.5), G relates (v1, v3) and
we are done.

Case call. We know that e′1 and e′2 reduce to related function calls in related con-
tinuations, and that the same applies to e′2 and e′3. Using Lemma 12 as above,
we know that all four function calls are actually stuck. Since, by determinacy,
e′2 cannot get stuck in two different ways, we have a unique function call and
a unique continuation in the middle. So, it suffices to show a corresponding
transitivity property for U and for continuations. The one for continuations
follows from (3.3) and the coinductive hypothesis. The one for U follows from
(3.5) and injectivity of I; when reasoning about type instantiations (fi []), we
must also make use of our type encoding A—dually to how we handle pack in
proving (3.5).

3.9.2.2 The Gory Details

We first formalize the syntactic encoding of types. The previously motivated notion
of two types being “sufficiently different” is defined as the negation of similarity.

Definition 10. Similarity, written ≈, is defined inductively via the following rules:

n /∈ N∃
n ≈ n α ≈ α unit ≈ unit nat ≈ nat

τ ∼ σ
ref τ ≈ ref σ

τ ∼ σ
µα. τ ≈ µα. σ

τ ∼ σ
∀α. τ ≈ ∀α. σ

τ ∼ σ
∃α. τ ≈ ∃α. σ

τ ∼ σ τ ′ ∼ σ′

τ → τ ′ ≈ σ → σ′
τ ∼ σ τ ′ ∼ σ′

τ × τ ′ ≈ σ × σ′
τ ∼ σ τ ′ ∼ σ′

τ + τ ′ ≈ σ + σ′

τ, σ ∈ CTy

τ ∼ σ
τ ≈ σ
τ ∼ σ

Two closed dissimilar types are encoded as a type name from N∃ using a bijection

A ∈ {(τ1, τ2) ∈ CTy × CTy | τ1 6≈ τ2} → N∃.

3.9. TRANSITIVITY 75

The encoding of two arbitrary closed types is a natural lifting of A. Instead of
defining it explicitly, we find it simpler to define the decoding and then state the
existence of a corresponding encoding.

Definition 11. We recursively define decoding projections (−)(i) ∈ Ty → Ty (for
i = 1, 2) as follows. Note that τ is closed iff τ(i) is closed.

n(i) :=

{
τi if n = A(τ1, τ2) for some τ1, τ2

n otherwise, i.e., n /∈ N∃
α(i) := α

unit(i) := unit
nat(i) := nat

(ref τ)(i) := ref τ(i)

(µα. τ)(i) := µα. τ(i)

(∀α. τ)(i) := ∀α. τ(i)

(∃α. τ)(i) := ∃α. τ(i)

(τ → τ ′)(i) := τ(i) → τ ′(i)
(τ × τ ′)(i) := τ(i) × τ ′(i)
(τ + τ ′)(i) := τ(i) + τ ′(i)

While we necessarily defined similarity and the decoding projections for arbitrary
types (Ty), ultimately we are only interested in closed types (CTy). The encoding of
two closed types is now implicit in the surjectivity part of the next lemma.

Lemma 31. (λτ. 〈τ(1), τ(2)〉) ∈ CTy→ CTy × CTy is bijective.

Proof. Injectivity (generalized to open types) can be easily shown by induction on
types using two sub-lemmas:

(a) ∀τ. τ(1) ∼ τ(2), which is shown by straightforward induction on τ .

(b) ∀τ. τ(1) ≈ τ(2) ⇐⇒ τ 6∈ N∃, which is shown by case analysis on τ using (a).

Surjectivity is generalized as follows:

∀τ1, τ2. τ1 ∼ τ2 =⇒ ∃τ. τ(1) = τ1 ∧ τ(2) = τ2

(Note that if τ1 and τ2 are closed, the premise holds trivially.) This property can be
proven by induction on τ1. In each case we ask if τ1 ≈ τ2 holds. If it does, we use the
inductive hypothesis; otherwise, the premise implies that τ1, τ2 are closed and thus
we can pick τ to be A(τ1, τ2).

Now, let us define the decomposition of value relations. This will eventually be
used to decompose a global knowledge for the yet-to-be-defined W into one for W1

and one for W2.

76 CHAPTER 3. PARAMETRIC BISIMULATIONS

Definition 12. Given R ∈ VRelF, we define R{i} ∈ VRelF and R∗(i) ∈ Wi.T.S →
VRelF (for i = 1, 2) as follows.

R{1}(τ1) := {(v1, I(τ, v1, v3)) | ∃τ ∈ CTyF
\N
\ref . τ1 = τ(1) ∧ (v1, v3) ∈ R(τ)}

R{2}(τ2) := {(I(τ, v1, v3), v3) | ∃τ ∈ CTyF
\N
\ref . τ2 = τ(2) ∧ (v1, v3) ∈ R(τ)}

R∗(i)(s) := [Wi.L(s)]∗(R{i})

Here, CTyF
\N
\ref stands for CTyF \ (N ∪ {ref τ ∈ CTy}) and I is an injective function

in CTy × CVal× CVal → CVal. By construction, R∗(i) is the least fixed point of Wi.L

that contains R{i} (recall Definition 3).

With the help of this, we can now finally construct W .

W.T := W1.T×W2.T

W.L(s1, s2)(R)(τ) :=

R∗(1)(s1)(τ(1)) ◦R∗(2)(s2)(τ(2)) if τ ∈ N∃
W1.L(s1)(R∗(1)(s1))(τ(1)) if τ 6∈ N∃
◦W2.L(s2)(R∗(2)(s2))(τ(2))

W.H(s1, s2)(R) := W1.H(s1)(R∗(1)(s1)) ◦W2.H(s2)(R∗(2)(s2))

W.N := N

Its well-formedness is easy to check. Note that, although W only actually defines
names from N∃, we declare that it owns the larger set N in order to reduce the set
of global knowledges that we have to worry about.

Next, some notation for decomposing a global knowledge.

Definition 13. Given G∈GK(W), we define Gs2(1) ∈ W1.S → VRelF for s2 ∈ W2.S,

and Gs1(2) ∈W2.S→ VRelF for s1 ∈W1.S.

Gs2(1)(s) := G(s, s2)∗(1)(s) Gs1(2)(s) := G(s1, s)
∗
(2)(s)

Note that if the global knowledge argument R in the definition of W.L and W.H
is of the form G(s1, s2) for G ∈ GK(W), then the corresponding argument passed to
W1.L and W1.H is exactly Gs2(1)(s1) (and similarly for W2). It remains to show that

Gs2(1)(s1) and Gs1(2)(s2) are in fact valid global knowledges for W1 and W2, respectively:

Lemma 32. For any G ∈ GK(W):

• ∀s2. G
s2
(1) ∈ GK(W1)

• ∀s1. G
s1
(2) ∈ GK(W2)

Proof. We show the first part (the second is analogous). Monotonicity of Gs2(1) is

proven by induction (recall the construction) using the fact that G, (−){1} and

W1.L are monotone. Gs2(1)(s1) ⊇W1.N
ref W1.L(s1)(Gs2(1)(s1)) follows from Gs2(1)(s1)(τ) =

W1.L(s1)(Gs2(1)(s1))(τ) ∪ G(s1, s2){1}(τ). (Note that G(s1, s2){1}(τ) = ∅ if τ is a ref-

erence type or a name in W1.N = N1 ⊆ N .)

3.9. TRANSITIVITY 77

We now come to the main lemma of this part, namely the conjunction of properties
(3.3) and (3.5) from Section 3.9.2.1:

Lemma 33. ∀G ∈ GK(W). ∀τ ∈ CTy. ∀s1, s2.

Gs2(1)(s1)(τ(1)) ◦Gs1(2)(s2)(τ(2)) = G(s1, s2)(τ)

Proof. The ⊇ part is proven by induction on G(s1, s2) (recall that (−) is defined as
a least fixed point). The other part is equivalent to Gs2(1)(s1)(τ) ⊆ X, where X is{

(v1, v2) | ∀σ, v3. τ = σ(1) ∧ (v2, v3) ∈ Gs1(2)(s2)(σ(2)) =⇒ (v1, v3) ∈ G(s1,s2)(σ)
}
.

This is proven by (generalized) induction on Gs2(1)(s1).
The base cases of both inductive proofs follow from

Gs2(1)(s1)(τ(1)) ◦Gs1(2)(s2)(τ(2)) = G(s1, s2)(τ)

for flexible τ (i.e., τ ∈ CTyF), which we now show by case analysis on τ . If τ ∈ N∃,
then

G(s1, s2)(τ) = W.L(s1, s2)(G(s1, s2))(τ) (G ∈ GK(W))

= Gs2(1)(s1)(τ(1)) ◦Gs1(2)(s2)(τ(2)) (def. of W.L)

and we are done. Otherwise (τ ∈ CTyF \ N∃), we have:

Gs2(1)(s1)(τ(1)) ◦Gs1(2)(s2)(τ(2))

= Gs2(1)(s1)(τ(1)) ◦Gs1(2)(s2)(τ(2))

= (W1.L(s1)(Gs2(1)(s1))(τ(1)) ∪G(s1, s2){1}(τ(1))) ◦
(W2.L(s2)(Gs1(2)(s2))(τ(2)) ∪G(s1, s2){2}(τ(2)))

Now, if τ is a reference type or a name from N1]N2, we finish by rewriting as follows:

(W1.L(s1)(Gs2(1)(s1))(τ(1)) ∪G(s1, s2){1}(τ(1))) ◦
(W2.L(s2)(Gs1(2)(s2))(τ(2)) ∪G(s1, s2){2}(τ(2)))

= (W1.L(s1)(Gs2(1)(s1))(τ(1)) ∪ ∅) ◦
(W2.L(s2)(Gs1(2)(s2))(τ(2)) ∪ ∅) (def. of (−){i})

= W.L(s1, s2)(G(s1, s2))(τ) (def. of W.L)
= G(s1, s2)(τ) (G ∈ GK(W))

Otherwise (τ ∈ CTyF
\N
\ref), we continue by distributing ◦ over ∪:

(W1.L(s1)(Gs2(1)(s1))(τ(1)) ∪G(s1, s2){1}(τ(1))) ◦
(W2.L(s2)(Gs1(2)(s2))(τ(2)) ∪G(s1, s2){2}(τ(2)))

= (W1.L(s1)(Gs2(1)(s1))(τ(1)) ◦W2.L(s2)(Gs1(2)(s2))(τ(2))) ∪
(G(s1, s2){1}(τ(1)) ◦G(s1, s2){2}(τ(2))) ∪
(W1.L(s1)(Gs2(1)(s1))(τ(1)) ◦G(s1, s2){2}(τ(2))) ∪
(G(s1, s2){1}(τ(1)) ◦W2.L(s2)(Gs1(2)(s2))(τ(2)))

78 CHAPTER 3. PARAMETRIC BISIMULATIONS

The first disjunct equals W.L(s1, s2)(G(s1, s2))(τ) by construction of W ; the second
equals G(s1, s2)(τ) by construction of (−){i}, injectivity of I and the injectivity part
of Lemma 31; and the third and the fourth are empty by construction of (−){i}:
thanks to the FixVal and GenVal restriction (cf. Figure 3.12), no rigid value (such
as the I-encoded values in G(s1, s2){i}) can be related by a local knowledge. So,
the big union above simply becomes W.L(s1, s2)(G(s1, s2))(τ) ∪ G(s1, s2)(τ). Since
G ∈ GK(W), the second disjunct already contains the first and we are done.

The inductive cases of both inductive proofs boil down to showing that for any
R1, R2, R ∈ VRelF and S1, S2 ∈ VRel and τ /∈ CTyF the equation

FR1(S1)(τ(1)) ◦ FR2(S2)(τ(2)) = FR(S1 • S2)(τ)

holds, where FR ∈ VRel→ VRel denotes the monotone generating function of R (i.e.,
the function of which R is the least fixed-point, and which can be easily inferred from
Figure 3.11), and (S1 • S2)(τ) := S1(τ(1)) ◦ S2(τ(2)). This is straightforward to show
by case analysis on τ . The only really interesting case is for existential types, where
(in one direction) we are given two witness types τ1 and τ2 and then apply Lemma 31
to find a witness type τ satisfying τ(1) = τ1 and τ(2) = τ2.

Finally, we can prove transitive compositionality of E and then the original goal
of this first part.

Lemma 34. ∀G ∈ GK(W). ∀τ ∈ CTy. ∀s1, s2.

EW1(Gs2(1))(s1)(τ(1)) ◦EW2(Gs1(2))(s2)(τ(2)) ⊆ EW (G)(s1, s2)(τ)

Proof. By coinduction, following the sketch in Section 3.9.2.1 (and choosing the mid-
dle frame heap, hF

2 , to be empty).

Lemma 35. ∆; Γ ` e1 ∼W e3 : τ

Proof. Inhabitation of W follows easily from that of W1 and W2 and the construction
of W.H. The proofs of consistency and relatedness of (e1, e3) by EW are very similar
and straightforward, using Lemmas 33 and 34.

3.9.3 Second Part: Constructing the Corresponding Local World w

We now come to the second and final part of our transitivity proof. Conceptually
it is quite simple, but the formal details are very subtle. Recall that we basically
want to create a world that relates the same things as W from the previous section,
but has the shape of a lifted world, i.e., has the form w↑ for some local world w.
By definition, the state space of a lifted world is of the form Wref .S × . . . , and thus
cannot be the same as W ’s state space (Wref .S× w1.S)× (Wref .S× w2.S).

Instead of trying to define w directly and then trying to prove that W and w↑ give
rise to the same equivalences, we take a more principled approach. We first develop
a simple notion of world isomorphism in order to characterize what it means for two

3.9. TRANSITIVITY 79

worlds with different state spaces to “relate the same things”. Subsequently, we find
an isomorphism between W and a lifted local world. Although somewhat tailored to
its application in the transivity proof, the isomorphism theory can be useful in other
cases.

3.9.3.1 World Isomorphisms

Roughly, two (full) worlds Wa, Wb are isomorphic iff they declare the same type
names, and each state of Wa corresponds to a state of Wb (and vice versa) such that
the same values and heaps are related at corresponding states. Different kinds of
isomorphism arise depending on what counts as a correspondence. For our purpose,
a one-to-one correspondence is too strong. If, say, Wb contains an “inconsistent”
state (i.e., a state at which Wb’s heap relation is empty), then we should not have to
worry about finding a similarly irrelevant state in Wa. So, instead of a full one-to-one
correspondence, we use a partial one, wherein a state s in one world is permitted to
have no correspondent in the other if s is inconsistent. This plays a crucial role in
our transitivity proof, as we will see in a moment.

Definition 14. For any Wa,Wb ∈World, a function φ ∈Wa.S→ P(Wb.S) is a weak
morphism from Wa to Wb iff:

(1) ∀sa, s′a. ∀sb ∈ φ(sa). ∀s′b ∈ φ(s′a). sa v s′a =⇒ sb v s′b

(2) ∀sa, s′a. ∀sb ∈ φ(sa). ∀s′b ∈ φ(s′a). sa vpub s
′
a =⇒ sb vpub s

′
b

(3) ∀sa. ∀sb ∈ φ(sa). Wa.L(sa) = Wb.L(sb)

(4) ∀sa. ∀G ∈ GK(Wa). Wa.H(sa)(G(sa)) ⊆
⋃
sb∈φ(sa)Wb.H(sb)(G(sa))

(5) Wa.N = Wb.N

It is easy to see that worlds and weak morphisms form a category.

Although we actually allow a state from one world to be mapped to a whole set
of states from the other world, for the purpose of the transitivity proof this set will
always be a singleton or empty.

Definition 15. For any Wa,Wb ∈ World, functions φ ∈ Wa.S → P(Wb.S) and
ψ ∈ Wb.S → P(Wa.S) form a weak isomorphism, written φ : Wa

∼= Wb : ψ, iff they
are weak morphisms and satisfy the following:

• ∀sa. ∀sb ∈ φ(sa). ∀s′a ∈ ψ(sb). sa vpub s
′
a

• ∀sb. ∀sa ∈ ψ(sb). ∀s′b ∈ φ(sa). sb vpub s
′
b

Theorem 7 (Weak isomorphisms preserve equivalences). If φ : Wa
∼= Wb : ψ, then

for any ∆,Γ, e1, e2, τ :

∆; Γ ` e1 ∼Wa e2 : τ ⇐⇒ ∆; Γ ` e1 ∼Wb
e2 : τ

80 CHAPTER 3. PARAMETRIC BISIMULATIONS

Proof. The proof is both somewhat tricky and tedious, and omitted here. At the
heart are the following two global knowledge constructions. Recall that for a mono-
tone function F ∈ VRelF → VRelF and R ∈ VRelF, we write [F]∗R for the least fixed
point of the monotone function F (−) ∪R.

For φ : W1 →W2 and G ∈ GK(W2):

←−
Gφ ∈ GK(W1)
←−
Gφ(s1) := [W1.L(s1)]∗⋃{G(s′2) | ∃s′1vs1. s′2∈φ(s′1)}

For φ : W1 →W2, G ∈ GK(W1), and s1 ∈W1.S:

−−→
Gs1φ ∈ GK(W2)
−−→
Gs1φ (s2) = [W2.L(s2)]∗⋃{G(s′1) | s′1vs1 ∧ ∃s′2. s′2vs2 ∧ s′2∈φ(s′1)}

Before moving on, we show three simple examples of weak isomorphisms.

Theorem 8 (The pruning isomorphism). Given W ∈ World, we write prune(W)
for the world obtained by removing all invalid states from W ’s state space, where
“invalid” means that no heaps are related at these states. Intuitively, these states
simply do not matter, as they can never be meaningfully used in a proof. It is easy
to show that W and prune(W) are weakly isomorphic.

Formally, the transformation is defined as follows.

prune(W).T.S := {s ∈W.T.S | ∃G ∈ GK(W). ∃(h1, h2) ∈W.H(s)(G(s))}
prune(W).T.v := W.T.v
prune(W).T.vpub := W.T.vpub

prune(W).L := W.L
prune(W).H := W.H
prune(W).N := W.N

We have φ : W ∼= prune(W) : ψ, where:

φ(s) := {s | ∃G ∈ GK(W). ∃(h1, h2) ∈W.H(s)(G(s))}
ψ(s) := {s}

(Note that φ(s) is either empty or a singleton set.)

Theorem 9 (The flattening isomorphism). Given W ∈World, we write flatten(W)
for the world obtained by flattening W ’s state space, in the sense that at each new
state at most one pair of heaps is related. This is done by pairing each state with

3.9. TRANSITIVITY 81

two heaps and defining the heap relation to be empty if these heaps are not related
at the state. Formally, flattening is defined as follows.

flatten(W).T.S := W.T.S× Heap×Heap
flatten(W).T.v := {((s′, h′1, h′2), (s, h1, h2)) | s′ v s}
flatten(W).T.vpub := {((s′, h′1, h′2), (s, h1, h2)) | s′ vpub s}
flatten(W).L(s, h1, h2) := W.L(s)
flatten(W).H(s, h1, h2)(R) := {(h1, h2)} ∩W.H(s)(R)
flatten(W).N := W.N

We have φ : W ∼= flatten(W) : ψ, where:

φ(s) := {(s, h1, h2) | h1, h2 ∈ Heap}
ψ(s, h1, h2) := {s}

Theorem 10 (The swapping isomorphism). Given w ∈ LWorld with w.S = S1×S2,
we write swap(w) for the local world obtained by swapping w’s state space. Formally,
swapping is defined as follows.

swap(w).T.S := S2 × S1

swap(w).T.v := {((s′2, s′1), (s2, s1)) | (s′1, s
′
2) v (s1, s2)}

swap(w).T.vpub := {((s′2, s′1), (s2, s1)) | (s′1, s
′
2) vpub (s1, s2)}

swap(w).L(sref , (s2, s1)) := w.L(sref , (s1, s2))
swap(w).H(sref , (s2, s1)) := w.H(sref , (s1, s2))
swap(w).N := w.N

We have φ : w↑ ∼= swap(w)↑ : ψ, where:

φ(sref , (s1, s2)) := {(sref , (s2, s1))}
ψ(sref , (s2, s1)) := {(sref , (s1, s2))}

Given local worlds w1, w2 ∈ LWorld, note that swap(w1 ⊗ w2) = w2 ⊗ w1. Hence
we particularly have φ : (w1 ⊗ w2)↑ ∼= (w2 ⊗ w1)↑ : ψ. This can be used, for instance,
to immediately obtain the two symmetric cases of Lemma 9.

Remark. Our notions of morphism and isomorphism are somewhat simple-minded
and there ought to be more general versions. In particular, our morphisms by them-
selves seem not particularly useful. It is not the case, for instance, that a morphism
between two worlds implies one direction of Theorem 7. We have played with the idea
of morphisms as lenses[15] where a morphism from world W1 to W2 would mean that
W2 can be viewed as W1, e.g., by ignoring some of W2’s constraints. Two particulary
important instances of such lenses would be the morphisms from wi↑ to (w1 ⊗ w2)↑,
which should then automatically yield Lemma 9. This remains future work, however.

82 CHAPTER 3. PARAMETRIC BISIMULATIONS

3.9.3.2 Defining w

Recall that lifting a local world means linking it with the shared world Wref , which
provides the meaning of reference types. Accordingly, the to-be-constructed local
world w’s knowledge must not relate anything at reference types, and, in order for
w↑ to be isomorphic to W , must correspond to W.L at all other types. This is easy
to achieve by just choosing w’s state space to be the same as W ’s and then defining
w.L(sref)(s) to be W.L(s) for non-reference types. Regarding reference types, we have
to satisfy (by the definition of lifting):

Wref .L(sref)(R)(ref τ) = W.L(s)(R)(ref τ)

This is problematic. Recall that W.T = W1.T × W2.T, so s really has the form
((sref

1 , sloc
1), (sref

2 , sloc
2)) (we will later omit the inner parentheses for convenience),

with sref
1 , sref

2 being states of Wref , and sloc
1 , sloc

2 being states of w1, w2, respectively.
Unfolding the definition of W.L, the above equation is equivalent to

Wref .L(sref)(R)(ref τ) = Wref .L(sref
1)(R∗(1)(s

ref
1 , sloc

1))(ref τ(1)) ◦
Wref .L(sref

2)(R∗(2)(s
ref
2 , sloc

2))(ref τ(2)),

which in turn simplifies to sref = sref
1 • sref

2 , where

sref
1 • sref

2 := {(τ, `1, `3) | ∃`2. (τ(1), `1, `2) ∈ sref
1 ∧ (τ(2), `2, `3) ∈ sref

2 }.

This clearly cannot be true in general as all three states may be arbitrary. Remember,
however, that we do not have to worry about inconsistent states! So the solution is
easy: in the states where the equation holds—i.e., where sref and s are coherent—we
are fine; we just need to make sure that in any other case w↑’s heap relation is empty.
And since w’s heap relation may depend on the shared state sref , this can be easily
achieved. Accordingly, the w↑ state corresponding to s will be (sref

1 • sref
2 , s), and the

W state corresponding to (sref , s) will be s—but only if sref happens to be sref
1 • sref

2 .
What should w.H relate when sref = sref

1 • sref
2 does hold? For such states, we

want the following equation to be true (ignoring the global knowledge parameter to
avoid clutter):

w↑.H(sref , s) = W.H(s) (3.7)

Let us look at what we know about heaps (h1, h3) related by W.H(s). First, by
construction of W , there is some h2 mediating between w1↑ and w2↑. By definition of
lifting, h1 and h2 can be split between Wref .H(sref

1) and w1.H(sref
1)(sloc

1), and similarly
h2 and h3 can be split between Wref .H(sref

2) and w2.H(sref
2)(sloc

2). Of course, in general
the two splits of h2 may be arbitrarily different. This situation is depicted in the first
diagram of Figure 3.18.

Note that w↑.H(sref , s) in (3.7) unfolds to Wref .H(sref)⊗w.H(sref , s). So basically
all we have to do is define w.H(sref , s) to be the “septraction” [89] of Wref .H(sref)
from W.H(s). The way we do this is essentially by describing, in the definition of
w.H, the situation from the figure but leaving out the pieces related by Wref .H(sref).

3.9. TRANSITIVITY 83

href
1

hloc
1

sref
1

sloc
1

href
2a

hloc
2a

href
2b

hloc
2b

hloc
2b

sref
2

sloc
2

sloc
2

href
3

hloc
3

hloc
3

h1︷︸︸︷ h2︷︸︸︷ h2=︷︸︸︷ h3︷︸︸︷
sref

1 • sref
2

h◦1

hloc
1

s◦1

sloc
1

h◦2a

hloc
2a

h◦2b

hloc
2b

hloc
2b

s◦2

sloc
2

sloc
2

h◦3

hloc
3

hloc
3

h′1︷︸︸︷ h′2︷︸︸︷ h′2=︷︸︸︷ h′3︷︸︸︷
h•1 h•3

Heap structure enforced by W Heap structure enforced by w↑
Figure 3.18: Construction of a stable local world w ∈ LWorld such that w↑ is weakly
isomorphic to W .

This is shown in the second diagram of Figure 3.18: w.H relates heaps h′1, h
′
3 iff

h′i = hloc
i th◦i (6= ⊥), where h◦i is the sub-heap of href

i not covered by sref = sref
1 • sref

2 .
The missing pieces, h•1 and h•3, are then going to be related by Wref .H(sref) when w
is lifted.

Formally, w is defined as follows.

w.T := W.T
w.L(sref , s)(R)(τ) := {(v1, v3) ∈W.L(s)(R)(τ) | @τ ′. τ = ref τ ′}
w.H(sref , s)(R) := {(h′1, h′3) |

∃sref
1 , sloc

1 , sref
2 , sloc

2 , h◦1, h
loc
1 , h◦2a, h

loc
2a , h

◦
2b, h

loc
2b , h

◦
3, h

loc
3 .

s = (sref
1 , sloc

1 , sref
2 , sloc

2) ∧ sref = sref
1 • sref

2 ∧
h′1 = h◦1 t hloc

1 ∧ h◦2a t hloc
2a = h◦2b t hloc

2b ∧ h′3 = h◦3 t hloc
3 ∧

dom(hloc
2a) ∩ dom[2](s

ref
1) = dom(hloc

2b) ∩ dom[1](s
ref
2) = ∅ ∧

(h◦1, h
◦
2a) ∈Wref .H(s◦1)(R∗(1)(s

ref
1 , sloc

1)) ∧
(h◦2b, h

◦
3) ∈Wref .H(s◦2)(R∗(2)(s

ref
2 , sloc

2)) ∧
(hloc

1 , hloc
2a) ∈ w1.H(sref

1)(sloc
1)(R∗(1)(s

ref
1 , sloc

1)) ∧
(hloc

2b , h
loc
3) ∈ w2.H(sref

2)(sloc
2)(R∗(2)(s

ref
2 , sloc

2))}
w.N := W.N

As explained, its heap relation w.H is empty whenever sref is not compatible with
sref

1 and sref
2 . The sub-heap h◦1 (and similarly h◦3) is characterized by saying that

it is related by Wref to a sub-heap h◦2a of href
2a at the state obtained by essentially

subtracting those parts from sref
1 that are involved in sref

1 • sref
2 .

3.9.3.3 Showing w’s Stability

The well-formedness of w (i.e., w ∈ LWorld) is fairly easy to check, but proving
stable(w) is tricky (because w.H’s dependency on sref is tricky)6. Recall that stability

6In fact, this proof of transitivity was the whole motivation for allowing a local world’s heap
relation to depend on the shared state in the first place.

84 CHAPTER 3. PARAMETRIC BISIMULATIONS

is crucial for soundness, as it ensures that a local world’s dependency on the shared
state is compatible with any changes to that state.

Preliminary to that proof, we define the conversion of a global knowledge for w↑
to one for W .

Lemma 36. If sref
1 , sref

2 ∈Wref .S, then sref
1 • sref

2 ∈Wref .S.

Proof. This relies on the injectivity part of Lemma 31.

Definition 16. For G ∈ GK(w↑), we define
←−
G ∈W.S→ VRelF as follows:

←−
G(sref

1 , sloc
1 , sref

2 , sloc
2) := G(sref

1 • sref
2 , (sref

1 , sloc
1 , sref

2 , sloc
2))

Lemma 37. ∀G ∈ GK(w↑).
←−
G ∈ GK(W)

Lemma 38. stable(w)

Proof. Suppose that G ∈ GK(w↑), s = (sref
1 , sloc

1 , sref
2 , sloc

2), ŝref w sref , h′1 t ĥ•1 6= ⊥,
h′3 t ĥ•3 6= ⊥,

(h′1, h
′
3) ∈ w.H(sref , s)(G(sref , s)) (3.8)

and (ĥ•1, ĥ
•
3) ∈ Wref .H(ŝref)(G(ŝref , s)). (3.9)

Our goal is to find ŝ = (ŝref
1 , ŝloc

1 , ŝref
2 , ŝloc

2) w s such that

(h′1, h
′
3) ∈ w.H(ŝref , ŝ)(G(ŝref , ŝ)).

The main idea is to use stable(wi) to obtain ŝloc
i (for i = 1, 2).

In order to do so, we must first construct suitable states and heaps needed for
instantiating those stabilities. From (3.8) we know sref = sref

1 • sref
2 and that h′1, h

′
3

are structured as depicted in the diagram of Figure 3.19. From ŝref w sref we know
ŝref = sref] s+ for some s+. Thus by (3.9), ĥ•1, ĥ

•
3 can be split as ĥ•i = h•i t h+i such

that

(h•1, h
•
3) ∈ Wref .H(sref)(G(ŝref , s)) (3.10)

and (h+1 , h
+
3) ∈ Wref .H(s+)(G(ŝref , s)), (3.11)

as depicted in the left part of the diagram in Figure 3.19.
We will now “horizontally” decompose s+ and sref , as shown in the right part of

Figure 3.19. Since sref
i ⊇ s◦i , there is s•i such that sref

i = s◦i]s•i ; consequently we have
dom[2](s

•
1) = dom[1](s

•
2) and s•1 • s•2 = sref

1 • sref
2 = sref . To decompose s+, we choose

a set of fresh locations L (of appropriate size) for the middle, i.e., we define s+i such
that s+1 • s

+

2 = s+ and dom[2](s
+

1) = dom[1](s
+

2) = L. We can then define ŝref
i (used to

instantiate stable(wi)) as ŝref
i := s◦i] s•i] s

+

i , so we have ŝref
1 • ŝref

2 = sref] s+ = ŝref .
The mediating heaps h+2 (with domain L) and h•2 are constructed as follows. Since

ŝref
i ⊇ sref

i , we know

←−
G(ŝref

1 , sloc
1 , ŝref

2 , sloc
2) = G(ŝref , (ŝref

1 , sloc
1 , ŝref

2 , sloc
2)) ⊇ G(ŝref , s) (3.12)

3.9. TRANSITIVITY 85

by monotonicity of G. From (3.10), (3.11), (3.12), monotonicity of Wref .H, and Lem-
mas 37 and 33, we can then find mediating values to construct h•2 and h+2 satisfying
(for ? ∈ {•, +})

(h?1, h
?
2) ∈ Wref .H(s?1)(

←−
G

(ŝref2 ,sloc2)

(1) (ŝref
1 , sloc

1)) (3.13)

and (h?2, h
?
3) ∈ Wref .H(s?2)(

←−
G

(ŝref1 ,sloc1)

(2) (ŝref
2 , sloc

2)). (3.14)

We will now prepare to instantiate stable(wi), starting with stable(w1). First,

observe that
←−
G

(ŝref2 ,sloc2)

(1) ∈ GK(w1↑), thanks to Lemmas 37 and 32. Next, by mono-

tonicity of G, we have that (for ? ∈ {ŝref
1 , sref

1 })

←−
G

(ŝref2 ,sloc2)

(1) (?, sloc
1) =

←−
G(?, sloc

1 , ŝref
2 , sloc

2)∗(1) ⊇ G(sref , s)∗(1)

and thus (3.8), along with monotonicity of Wref .H and w1.H and the definition of
w.H in Figure 3.18, gives us:

(h◦1, h
◦
2a) ∈ Wref .H(s◦1)(

←−
G

(ŝref2 ,sloc2)

(1) (ŝref
1 , sloc

1)) (3.15)

and (hloc
1 , hloc

2a) ∈ w1.H(sref
1 , sloc

1)(
←−
G

(ŝref2 ,sloc2)

(1) (sref
1 , sloc

1)). (3.16)

Thus, by (3.13), (3.15), (3.16), and ŝref
1 ⊇ sref

1 , we can instantiate stable(w1), yielding
ŝloc

1 w sloc
1 such that

(hloc
1 , hloc

2a) ∈ w1.H(ŝref
1 , ŝloc

1)(
←−
G

(ŝref2 ,sloc2)

(1) (ŝref
1 , ŝloc

1)). (3.17)

In a similar manner, stable(w2) yields ŝloc
2 w sloc

2 such that

(hloc
2b , h

loc
3) ∈ w2.H(ŝref

2 , ŝloc
2)(
←−
G

(ŝref1 ,sloc1)

(2) (ŝref
2 , ŝloc

2)). (3.18)

Finally, let ŝ := (ŝref
1 , ŝloc

1 , ŝref
2 , ŝloc

2). By monotonicity of G, Wref .H, and wi.H, and
by definition of w.H, we get

(h′1, h
′
3) ∈ w.H(ŝref , ŝ)(

←−
G(ŝ)) = w.H(ŝref , ŝ)(G(ŝref , ŝ))

from (3.8), (3.17), and (3.18), as desired.

3.9.3.4 Proving W and w↑ Isomorphic

We now show that W and w↑ are weakly isomorphic. Then we can put all the pieces
together, arrive at our goal and thereby finishing the proof of transitivity.

Lemma 39. ∃φ, ψ. φ : W ∼= w↑ : ψ

86 CHAPTER 3. PARAMETRIC BISIMULATIONS

sref
1 •sref

2 (=sref)

h◦1

hloc
1

s◦1

sloc
1

h◦2a

hloc
2a

h◦2b

hloc
2b

hloc
2b

s◦2

sloc
2

sloc
2

h◦3

hloc
3

hloc
3

h′1︷︸︸︷ h′2︷︸︸︷ h′2=︷︸︸︷ h′3︷︸︸︷
h•1 h•3

s+h+1 h+3

h◦1

hloc
1

s◦1

sloc
1

h◦2a

hloc
2a

h◦2b

hloc
2b

hloc
2b

s◦2

sloc
2

sloc
2

h◦3

hloc
3

hloc
3

h′1︷︸︸︷ h′2︷︸︸︷ h′2=︷︸︸︷ h′3︷︸︸︷
s•1 s•2h•1 h•2 h•3

s+1 s+2h+1 h+2 h+3

Figure 3.19: “Horizontal” decomposition of ŝref in proof of stable(w).

Proof. We define φ ∈W.S→ P(w↑.S) and ψ ∈ w↑.S→ P(W.S) as discussed earlier.

φ(sref
1 , sloc

1 , sref
2 , sloc

2) := {(sref
1 • sref

2 , (sref
1 , sloc

1 , sref
2 , sloc

2))}

ψ(sref , (sref
1 , sloc

1 , sref
2 , sloc

2)) := {(sref
1 , sloc

1 , sref
2 , sloc

2) | sref =sref
1 • sref

2 }

Showing that φ and ψ form a weak isomorphism is mostly straightforward, but for
condition (4) of each morphism quite tedious. The key idea behind the proofs of
these is the same as that behind Lemma 38: splitting the given heaps as depicted
in the diagrams of Figure 3.18. In particular, the proof of morphism condition (4)

for ψ is very similar to that of Lemma 38 in the way it uses the construction
←−
G and

Lemma 37.

Theorem 11 (Transitivity). ∆; Γ ` e1 ∼ e3 : τ

Proof. We have ∆; Γ ` e1 ∼w↑ e3 : τ by Lemmas 35 and 39 and Theorem 7. The
result then follows from Lemma 38.

3.10 Stuttering Parametric Bisimulations

PBs, as described earlier, suffer from a limitation: they fail to validate the eta law
for function values,

f :(σ → τ) ` f ∼ (λx. f x) : σ → τ ,

as well as more complex equivalences (e.g., the syntactic minimal invariance prop-
erty [12]) which depend on it.

In this section, we sketch stuttering parametric bisimulations (SPBs), a variant
of PBs that overcomes this limitation. The full details are beyong the scope of this
thesis and can be found in a technical report [35].

The key behind SPBs is the use of a logical reduction semantics that permits finite
but unbounded stuttering steps in between actual “physical” steps. Such stuttering
steps effectively enable proofs of equivalence of programs to engage in a game of

3.10. STUTTERING PARAMETRIC BISIMULATIONS 87

“hot potato”, whereby the burden of proof may be tossed back and forth between
different parts of the programs, until eventually some part makes a physical step
of computation. This technique is inspired by the key idea in well-founded [58] and
stuttering [17] bisimulations, adapted in the cited report for the first time to reasoning
about open, higher-order programs.

Interestingly, this mechanism also helps overcome a second limitation, which ap-
pears at first glance to be completely unrelated: PBs bake in the assumption that
the language in question has a “uniform” reduction semantics, i.e., that the reduc-
tion relation is parametric in the evaluation context. This assumption is of course
not valid in the presence of control flow constructs like callcc, so one may naturally
wonder how to adapt PBs to a language supporting such features.

3.10.1 The Problem with Eta

Let us examine the inherent problem with eta in the PB model, for simplicity in
the setting of λµ (Section 3.5). The eta law for an arbitrary function type τ ′ → τ
corresponds to the following equivalence:

f :(τ ′ → τ) ` f ∼ (λx. f x) : τ ′ → τ

This equivalence does not hold. Here we prove as much for the case of τ ′ = τ = nat.

Proof. By definition the equivalence holds iff there exists a consistent local knowledge
L such that for any global knowledge G ∈ GK(L) and any related values (v1, v2) ∈
G(nat → nat) we have (v1, λx. v2 x) ∈ E(G)(nat → nat). Being values of function
type, such v1 and λx. v2 x are related by E(G) iff they are related by G. Thus,
in order to disprove the eta law, it suffices to construct a “bad” global knowledge
G ∈ GK(L) that relates v1 and v2 but does not relate v1 and λx. v2 x.

This is an easy task. Let G be the least global knowledge that subsumes L and
also relates λy. 0 and λy. 1 at nat→ nat. Then we have:

G (nat→ nat) = L(G)(nat→ nat) ∪ {(λy. 0, λy. 1)}

It remains to prove that G does not relate λy. 0 and λx. (λy. 1) x. Arguing by con-

tradiction, assume it does. Then from consistent(L) and, say, (42, 42) ∈ G (nat) we
know (step((λy. 0) 42), step((λx. (λy. 1) x) 42)) ∈ E(G)(nat), i.e., (0, (λy. 1) 42) ∈
E(G)(nat). Since 0 is a value, this can only mean that (λy. 1) 42 reduces to a related

value, i.e., (0, 1) ∈ G (nat), which by definition of G is false.

To understand better what is going on here, let us now try to prove the eta law
and see what goes wrong. As is evident from the reasoning at the beginning of the
above disproof, we would have to construct a consistent local knowledge L such that
any G subsuming it relates v1 and λx. v2 x whenever it relates v1 and v2. Since the
only leverage we have over G is what we put in L, the only way to force G to relate
certain things is to choose L so that it relates them. Luckily, our definition of L

88 CHAPTER 3. PARAMETRIC BISIMULATIONS

may depend on G as a parameter, so in order to obtain the aforementioned closure
property, we can attempt to define the local knowledge such that:

Lη(R)(τ ′ → τ) = {(v1, λx. v2 x) | (v1, v2) ∈ R(τ ′ → τ)}

Intuitively, this local knowledge corresponds exactly to what we want to claim:
if our context provides us with values v1 and v2 that are equivalent at τ ′ → τ ,
then we are prepared to claim that v1 and λx. v2 x are equivalent at the very same
type. Unfortunately, this Lη may be inconsistent! Specifically, suppose we are given
G ∈ GK(Lη) and related arguments (v′1, v

′
2) ∈ G(τ ′). For any (v1, v2) ∈ G(τ ′ → τ),

we must show (step(v1 v
′
1), step((λx. v2 x) v′2)) ∈ E(G)(τ). The trouble is that, while

we know that step((λx. v2 x) v′2) = v2 v
′
2, we have no idea what step(v1 v

′
1) is.7

The problem here essentially is that the global knowledge G is under no obligation
to be sound w.r.t. contextual equivalence. As a result, if we define a local knowledge
like Lη that “re-exports” function values (like v1) obtained from G, there is no way
to know whether applications of such values reduce to well-behaved terms.

3.10.2 Guardedness Revisited

Recall that the requirement of “taking a step” in the definition of PB’s consistency
is crucial in ensuring soundness because it guarantees that coinductive reasoning is
suitably guarded. As the failed proof attempt above shows, however, the guardedness
condition appears to be a little too strict. Note that if we were not forced to take
that step, then we could easily finish the proof of consistent(Lη) by appealing to
(v1 v

′
1, v2 v

′
2) ∈ E(G)(τ), which follows from (v1, v2) ∈ G(τ ′ → τ) and (v′1, v

′
2) ∈ G(τ ′)

(both given), and (•, •) ∈ K(G)(τ)(τ), using the third disjunct of E.

Of course, we cannot simply drop the stepping requirement, since this would im-
mediately result in unsoundness—we must have some way of ensuring “productivity”
of proofs. What we want to do then, in order to obtain a model that validates the eta
law, is to find a slightly weaker guardedness condition (leading to a weaker notion
of consistency) that enables the sketched proof of the eta law to go through but is
nevertheless strong enough to guarantee soundness of the model.

We achieve this by generalizing the physical notion of “taking a step” to a logical
one.

3.10.3 Logical Reduction and the Stutter Budget

The idea is very simple. We introduce into the model what we call a stutter budget
(or just budget, for short): two natural numbers, one for each program, that spec-
ify how many times one may “stutter”—i.e., avoid taking a reduction step (thus
seemingly making no progress)—before eventually taking a step. More precisely, a
local knowledge will contain items of the form (n1, v1, n2, v2) rather than just (v1, v2).
When proving consistency for such an item, i.e., when showing that the applications

7In fact, it may not even exist: for instance, if v1 is the integer 5, then step(v1 v
′
1) is undefined.

3.10. STUTTERING PARAMETRIC BISIMULATIONS 89

of (v1, v2) to related arguments (v′1, v
′
2) are related, one then has to make a choice

for each application before continuing the reasoning: either one reduces it by one
physical step (as before), or one leaves it untouched but decreases the correspond-
ing budget instead (n1 for the application of v1, and n2 for the application of v2).
When one chooses the latter option, one temporarily shirks one’s responsibility to
make physical progress, passing the proof burden—or “hot potato” as we called it
earlier—to the subgoal of showing that the applications are in the E relation. Using
the third disjunct (the call case), the E relation may then do the same thing and
pass the hot potato back to the local knowledge. The important thing is that, each
time around this seemingly circular proof path, the respective stutter budgets (n1

and/or n2) must be decreased, so we know the hot potato game cannot go on forever.

The way we formulate this is that one is actually required to perform a reduction
step on both sides, as before, but only a logical one. This logical reduction relation,
operating on an expression and its budget, is defined as follows.

Definition 17 (Logical Reduction).

e ↪→ e′

n, e ↪→ n′, e′
n′ < n

n, e ↪→ n′, e

That is, a logical step is either a physical step, in which case one may pick an
arbitrary budget n′ to continue with, or a stutter step, in which case the budget
must be decreased.

To get an intuition for why the proposed change to the model is sound, first
observe that, since the stutter budget is finite, progress (in the form of a physical
step) will eventually be made. Second, note that logical (non-)termination coincides
with physical (non-)termination. Thus, logical reduction gives us more flexibility in
terms of local reasoning about v1 and v2, and this added flexibility is perfectly sound
in that it will not enable us to equate terminating and divergent programs.

3.10.4 Eta Revisited

Using the refined model, we can now indeed prove the eta law along the lines of the
earlier attempt by picking the following local knowledge:

Lη(R)(τ) := {(n′1, v1, n
′
2, λx. v2 x) | ∃τ ′, τ ′′. τ = τ ′ → τ ′′ ∧

∃n1, n2. n1 < n′1 ∧ (n1, v1, n2, v2) ∈ R(τ)}

Like before, we relate v1 and λx. v2 x whenever v1 and v2 are related by R. But note
the budgets: we choose n′1, the budget at which we “export” v1 to be larger than
n1, the budget at which we import it. (Intuitively, n1 := n1 + 1 would suffice, but
local knowledges in SPBs must be upwards-closed in their budgets.) The budget for
λx. v2 x, on the other hand, can be arbitrary. It doesn’t matter because an application
of that function can always take a physical reduction step (beta reduction).

90 CHAPTER 3. PARAMETRIC BISIMULATIONS

3.10.5 First-Class Continuations

It turns out that SPBs also enable reasoning about first-class continuations, e.g., in
the presence of callcc (recall that λµ and Fµ! do not feature control effects).

Basically, in such a setting, one wants the local and global knowledge to also relate
continuations (evaluation contexts). Continuations can be thought of as functions, so
it makes sense to treat them similarly—in particular to have an analogous concistency
condition for the continuations related by the local knowledge. The issue then is that
one frequently needs to show consistency of continuations that are constructed on
top of continuations related by the global knowledge. A representative example is
the following:

L(R)(nat) := {(K1[inl •],K2[inl •]) | (K1,K2) ∈ R(nat + τ)}

Here, we import continuations K1 and K2, and export two continuations that are
defined in terms of them. To show consistency, we are given related values v1 and
v2 and must establish that (step(K1[inl v1]), step(K2[inl v2])) are related by E. Since
the injection of a value into a sum type does not require any computation (i.e., inl vi
does not take a step because it is itself a value), we are stuck.

This problem is obviously very similar to the one that we faced with eta. It should
then no longer be a surprise that SPBs solve it as well. Using the stutter budget, we
can define a local knowledge like the one above as follows:

L(R)(nat) := {(n′1,K1[inl •], n′2,K2[inl •]) |
∃n1 < n′1, n2 < n′2. (n1,K1, n2,K2) ∈ R(nat + τ)}

The consistency of this knowledge is easy to show using logical reduction for both
programs.

3.10.6 Comparison to Step-Indexing

There is a superficial sense in which SPB proofs may seem similar to step-indexed
KLR (SKLR) proofs, namely that they both involve a certain element of “step-
counting”. The key difference is which steps they are counting: in SKLR proofs
one counts physical reduction steps (because the model is built by induction on such
steps), whereas in SPB proofs one only counts the stuttering steps (to ensure the
absence of infinite stuttering). In essence, SPBs are “non-step”-indexed relations!

Consequently, with SKLRs this step-counting is essential—one cannot ignore
physical steps—whereas with SPBs it is often unnecessary. Indeed, when using SPBs
to reason about the many examples that PBs already handle, one may usually ignore
the extra flexibility provided by SPBs’ logical reduction, avoiding step-counting by
restricting one’s proofs to only rely on physical reduction.

Finally, unlike step-indexing, SPB’s stutter budgets cause no problems with tran-
sitivity. The technical report [35] contains a detailed proof of transitivity for SPBs.
It largely follows the one for PBs but contains some interesting twists.

3.11. GREATEST LOCAL KNOWLEDGE 91

3.11 Greatest Local Knowledge

Writing down a suitable local knowledge at the beginning of a proof can be quite
tedious for complex equivalences (even more so in SPBs). While not really an issue
in paper proofs, this quickly becomes very tiresome in formal proofs such as these in
our Coq formalization. Fortunately, we can employ parameterized coinduction [34, 56]
to avoid this issue completely and instead write proofs in an incremental style, where
we basically start with a knowledge containing just the functions in question, and
extend it (in an implicit fashion) as the proof evolves. Indeed, this is how we prove
a big part of soundness in Coq.

In order to get there, we need to express the property of a local knowledge being
consistent as that local knowledge being a postfixed point of some monotone func-
tion. Then the greatest fixed point of that function is automatically the greatest
consistent local knowledge, and so we can use the incremental reasoning principle
from parameterized coinduction to do proofs about it. For simplicity, here we do this
in the setting of λµ (Section 3.5). The generalization to Fµ! is straightforward.

Definition 18. We define the wanted function f ∈ LK
mon→ LK.

f(L)(R)(τ) := {(v1, v2) | ∀G ∈ GK(L). G ⊇ R =⇒
∀τ ′. ∀(e1, e2) ∈ U({τ 7→ (v1, v2)}, G)(τ ′).
(step(e1), step(e2)) ∈ E(G)(τ ′)}

Here, {τ 7→ (v1, v2)} is short for the typed value relation λτ ′. {(v1, v2) | τ ′ = τ}
(containing a single element).

It is easy to verify that f is well-defined, i.e., that it always returns a valid local
knowledge and is itself monotone. The reason for quantifying over larger G is to
ensure monotonicity of the returned local knowledge.

Lemma 40. L ⊆ f(L) ⇐⇒ consistent(L)

Definition 19 (Parameterized greatest consistent local knowledge).

L ∈ LK→ LK
L(L) := νX. f(X ∪ L)

Corollary 1 (Greatest consistent local knowledge).

1. consistent(L(∅))

2. ∀L ∈ LK. consistent(L) =⇒ L ⊆ L(∅)

Theorem 12. Γ ` e1 ∼ e2 : τ ⇐⇒ Γ ` e1 ∼L(∅) e2 : τ

Proof. The “if” direction is trivial due to the first part of Corollary 1.
Regarding the “only if” direction: From Γ ` e1 ∼ e2 : τ we know Γ ` e1 ∼L e2 : τ

with consistent(L). Hence L ⊆ L(∅) by the second part of Corollary 1. It is easy to
check that Γ ` e1 ∼L e2 : τ implies Γ ` e1 ∼L′ e2 : τ for any L′ ⊇ L, so in particular
for L(∅).

92 CHAPTER 3. PARAMETRIC BISIMULATIONS

Thanks to the construction of L as a greatest parameterized fixed point, we have
the expected incremental reasoning principle.

Lemma 41. L ⊆ L(L′) ⇐⇒ L ⊆ L(L ∪ L′)

Finally, a few words about the generalisation to the Fµ! setting, where we have not
only local knowledges but whole worlds. There we define an operation that completes
a world by overwriting its local knowledge component with the greatest consistent
local knowledge. Consequently, one constructs a world as usual (defines the STS and
so on), but can leave its local knowledge empty or include only the initial functions.
Then one applies the completion operator to the world and works with the resulting
world instead. There is one point to note, though: since there is no consistency
condition on values related at type names n, completion does not touch these parts
of the local knowledge. Hence the initial local knowledge must already contain any
such needed values.

3.12 Comparison To Logical Relations

Let us conclude this chapter with high-level comparison of parametric (bi-)simulations
and logical relations.

As we have seen, parametric bisimulations emerge from prior work on KLRs [4,
22] in an attempt to overcome its limitations concerning transitivity. In fact, both
PBs and KLRs support the same high-level reasoning principles for higher-order
imperative programs; they just do so in technically different ways.

Let us consider the two key principles concerning higher-order functions:

Principle 1 (Showing Behavioral Equivalence): To show that two higher-
order functions va and vb behave equivalently, it suffices to show that their appli-
cations behave equivalently when the arguments fa and fb passed in are assumed
equivalent.

Principle 2 (Using Assumed Equivalence): If fa and fb are assumed equiv-
alent, then fa 〈〉 and fb 〈〉 behave equivalently.

So what does it mean to “behave equivalently”? This is really the big question, for
which KLRs and PBs give different answers. Rather than try to answer it directly, we
will instead describe two informal proof principles concerning behavioral equivalence
that, at the level of abstraction we are working at here, are supported by both
proof methods, and we will finish the proof sketch by just appealing to these proof
principles. After that, we will explain how the different proof methods implement
these principles.

Note that these proof principles make a distinction between when two functions
behave equivalently and when they are assumed equivalent. We explain the difference
between these notions below. Note also that we restricted Principle 2 here to functions
with unit argument; this is merely to simplify our informal discussion.

3.12. COMPARISON TO LOGICAL RELATIONS 93

Logical relations. Both KLRs and PBs allow one to turn the above proof sketch
into a proper proof. The key difference between them is how they formalize behavioral
vs. assumed equivalence.

KLRs formalize this by defining a relation, which says—once and for all—what
it means for two expressions to be indistinguishable at a certain type. One then
uses this same “logical” relation as the definition of both behavioral and assumed
equivalence. For expressions, the logical relation says that they are equivalent if
they either both run forever or they both evaluate to equivalent values. For function
values, which both the v’s and the f ’s in our example are, the logical relation says
that they are equivalent if they map logically-related arguments to logically-related
results. Principles 1 and 2 both fall out of this definition as immediate consequences.

The main difficulty with logical relations is that, by conflating behavioral and
assumed equivalence, they introduce an inherent circularity in the construction of
the logical relation. In particular, the definition of equivalence of function values
refers recursively to itself in a negative position (when quantifying over equivalent
arguments). Traditionally, for simpler languages (e.g., without recursive types or
higher-order state), this circularity is handled by defining the logical relation by
induction on the type structure. For richer languages, such as our source language
S, induction on types is no longer sufficient, but step-indexing can be used instead
to stratify the construction by the number of steps of computation in the programs
being related [4]. This is the approach taken by Hur and Dreyer [33] in their earlier
work on compositional compiler correctness. However, it is not known how to prove
transitivity of logical relations for step-indexed models (at least in a way that is
capable of scaling to handle inter-language reasoning, which we need for compiler
verification).

Parametric bisimulations. This problem with transitivity was one of the key
motivations for parametric bisimulations (PBs). Unlike logical relations, PBs treat
behavioral and assumed equivalence as distinct concepts. In particular, rather than
trying to define assumed equivalence, PBs take assumed equivalence as a parameter
of the model (hence the name “parametric bisimulations”). That is, a PB proof
that two expressions are behaviorally equivalent is parameterized by an arbitrary
unknown relation G (the global knowledge) representing assumed equivalence, and
G could relate any functions fa and fb!

To make use of this unknown G parameter, PBs update the definition of behav-
ioral equivalence accordingly. For function values, one can show them behaviorally
equivalent precisely as suggested by Principle 1, i.e., if they map G-related (assumed
equivalent) arguments to behaviorally equivalent results. For expressions, behav-
ioral equivalence extends the definition from logical relations with a new possibility,
namely that the expressions may call functions fa and fb related by G. This amounts
to baking Principle 2 directly into the definition of behavioral equivalence. The reason
this is necessary—i.e., the reason Principle 2 does not just fall out of the definition
otherwise—is that G is a parameter of behavioral equivalence. Knowing that fa and

94 CHAPTER 3. PARAMETRIC BISIMULATIONS

fb are assumed equivalent according to G tells us absolutely nothing about them!
Consequently, Principle 2 must be explicitly added to the definition of behavioral
equivalence as an extra case (the call disjunct).

One can understand PBs as defining a “local” notion of behavioral equivalence:
two expressions are behaviorally equivalent if they behave the same in their local
computations, ignoring what happens during calls to (G-related) external functions
passed in from the environment. Intuitively, this is perfectly sound: it just means
each module in a program is responsible for its own local computations, not the local
computations of other modules. Moreover, as we have observed already, it is largely
a technical detail: PBs can support the same high-level protocol-based reasoning as
KLRs do.

The major benefit of PBs over KLRs is that they avoid the problems with the
circularity of KLRs which necessitated step-indexing. In particular, note that by
taking Principle 1 as the definition of behavioral equivalence for function values,
we avoid the negative self-reference that plagues logical relations: the arguments
fa and fb are simply drawn from the global knowledge G. This avoidance of step-
indexing was essential in making it possible to establish that PBs do in fact support
transitivity, but the proof of transitivity was far from easy.

Chapter 4

Parametric Inter-Language
Simulations

4.1 Overview

PILS generalize PBs to the inter-language setting of compiler verification. Concretely
we are interested in compiling from an ML-like source language S to a target machine
language T . In this section, we give an overview over the results of this chapter and
the subsequent chapter.

The main component of our development is a relation between target modules
and source modules: Γ `MT -T S MS : Γ′, to be defined later, intuitively states that
target module MT refines source module MS and that they import the functions
listed in Γ and export those in Γ′. The first key result, Theorem 13, applies to whole
programs, i.e., well-typed modules that import nothing and export at least a main
function (Fmain) of appropriate type. It states that our relation implies the standard
behavioral refinement:

Theorem 13 (Adequacy for whole programs).

ε `MT -T S MS : Γ (Fmain : unit→ τ) ∈ Γ

Behav(MT) ⊆ Behav(MS)

Behav(−) denotes the set of I/O and termination behaviors that a program can
have. The theorem implies for instance that, if MS always successfully terminates,
then so does MT and moreover they produce the same outputs.

If we have a compiler that respects our relation -T S , then Theorem 13 gives us the
same result as traditional whole-program compiler verification would. However, our
relation also satisfies the following crucial property (omitting a few well-formedness
side conditions–see Section 4.7 for the full statement and its proof).

Theorem 14 (Preservation under linking, a.k.a. modularity).

Γ `M1
T -T S M

1
S : Γ1 Γ,Γ1 `M2

T -T S M
2
S : Γ2

Γ ` link(M1
T ,M

2
T) -T S link(M1

S ,M
2
S) : Γ1,Γ2

95

96 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

The theorem says that if we link two target modules, each of which is related to
a source module, then the resulting target module is related to the linking of those
source modules. Notice that, for the linking to make sense, the types of the first
module’s exported functions (in Γ1) need to match the second module’s assumptions.
Of course, if a program consists of more than two modules, this theorem can be
iterated as necessary and once linking results in a whole program, we can apply
Theorem 13.

Observe that these properties don’t mention any particular compiler but are
stated in terms of arbitrary related modules. The missing link is a theorem say-
ing that the desired compilers adhere to our relation. We prove this for Pilsner and
Zwickel, our compilers from S to T . Their correctness theorems (slightly edited here
for presentation) apply to any well-typed source module:

Theorem 22 (Correctness of Pilsner).

Γ `MS : Γ′

Γ ` Pilsner(MS) -T S MS : Γ′

Theorem 23 (Correctness of Zwickel).

Γ `MS : Γ′

Γ ` Zwickel(MS) -T S MS : Γ′

While Zwickel carries out a straightforward direct translation from S to T , Pil-
sner is more sophisticated: as shown in Figure 1.1, it compiles via an intermediate
language I and performs several optimizations. We will discuss Pilsner and Zwickel
in detail in Chapter 5.

These results mean that we can preserve correctness not only by linking, say,
Pilsner-produced code with other Pilsner-produced code, but also by linking it with
code produced by Zwickel.

Moreover, we would like to stress two important points. PILS were designed with
flexibility in mind and make only few assumptions about the translation of source
programs, namely details of the calling convention and in-memory representation of
values (see the subsequent sections). Consequently:

1. Nothing stops us from proving a theorem analogous to the previous two for yet
another compiler from S to T , perhaps even using several different intermediate
languages.

2. Nothing stops us from proving the relatedness of a source and target module
by hand, e.g., when the target module is not the direct result of a compiler run
but was manually optimized (see Section 5.13 for an extreme example of this,
where the target module overwrites its own code at run time).

Hence, we can also preserve correctness when linking with code that was produced
by other compilers or even hand-translated. We only have to ensure that these
translations are also correct w.r.t. -T S , such that Theorem 14 applies.

4.2. LANGUAGES 97

4.1.1 Transitivity

Proving a property like Theorem 22 can require a lot of effort: the more complex the
compiler, the more complex its correctness proof. It is thus crucial that a correctness
proof can be broken up into several pieces, e.g., one sub-proof per compiler pass.
PILS support such a decomposition thanks to a transitivity-like property. In our
setting, where Pilsner compiles via one intermediate language I, we can show the
following:

Theorem 15 (Transitivity).

|Γ| `MT -T I MI : |Γ′| |Γ| `MI -∗II M ′I : |Γ′|

Γ `M ′I -IS MS : Γ′

Γ `MT -T S MS : Γ′

Here, -T I relates target modules to intermediate modules, -II relates inter-
mediate modules to intermediate modules, and -IS relates intermediate modules to
source modules. All are very similar to -T S and support similar reasoning principles.
We will say more about them in the following sections; for now suffice it to say that,
since -T I and -II involve only untyped languages,1 the relations themselves are
“untyped” and we erase the typing annotations in their environments (e.g., written
|Γ|), leaving just a list of function labels. Notice how using the transitive closure
of -II in the second premise of the rule allows us to verify each IL transformation
separately.

4.2 Languages

4.2.1 Language-Generic Approach

In order to avoid duplicate work, we define PILS in a language-generic way, i.e., we
define similarity -AB for two abstract languages A and B (for some notion of abstract
language to be described), and then instantiate it with different language pairs in
order to obtain the desired relations. This has two important benefits:

1. Most of the metatheory, which is quite involved, can be established once and
for all. This is particularly crucial because PILS were developed from the
start in Coq, and over time the definitions—and thus proofs—had to undergo
countless changes. This might simply have been infeasible if it weren’t for the
language-generic setup.

2. One can easily instantiate PILS with a different intermediate language (or sev-
eral of them) in order to verify a different compiler. Using modularity (Theo-
rem 14), one can then of course safely link T code produced by this compiler
with Pilsner-produced code.

1In order to demonstrate that PILS are not inherently tied to typed languages, we consider a
type-erasing compiler, not a completely type-directed one.

98 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

In (1), we say “most of the metatheory” because transitivity and the parts of
modularity and adequacy that deal with details of module loading are actually not
proven generically. Ultimately, it would be nice to do so but it would require some
effort to properly axiomatize various properties of the abstract language that these
proofs rely on. Moreover, it might require a distinction between intermediate language
and non-intermediate language, with slightly different sets of requirements. For now,
it is much easier to simply prove the theorems for the concrete instances (of course
this involves many generically proven lemmas). The downside of this is that, in order
to verify a compiler using different intermediate languages, one needs to reprove the
corresponding transitivity property. Adequacy and modularity, on the other hand,
do not need to be reproven as they do not involve the intermediate languages.

To instantiate the generic PILS model and obtain one of the desired similarity
relations requires us to provide: (i) the pair of concrete languages, and (ii) the global
world for this pair. The latter can be seen as a predefined protocol (in the sense of
Chapter 2) responsible for fixing calling conventions and data representations. We
will discuss global worlds further in Section 4.4.

One point that we glossed over so far is that our generic definition is also not
entirely generic—as we will see in the next section, it still essentially bakes in our
source language’s type structure. Consequently, instantiating PILS as-is with a dif-
ferent source language most likely won’t make much sense. This is fine, because we
focus on a single source language in this work. Extending this to multiple source
languages, perhaps even allowing interoperability between them, is clearly important
but left to future work.

Another point we glossed over is that we actually define two generic models: a
typed one and an untyped one. The former is used when the input language is S,
the latter is used in all other cases (where no involved language has static types).
However, we will continue to refer to them as just “the generic model”, because the
untyped one is obtained simply by erasing all the type arguments from the typed
one.

4.2.2 Language Specification

We now describe the language abstraction in terms of which PILS are defined. In
the subsequent sections, we then present the concrete languages under consideration
(S, I, T). Common to all languages are a set of events and a countably infinite set
of labels:

t ∈ Evt ::= ι | ?n | !n F1, F2, . . . ∈ Lbl

Events are produced by an executing program; they consist of internal computation
(ι) and I/O operations (reading or writing a number n, respectively). Labels are
used to identify module components; in this work, we consider a simplistic notion of
module as the unit of compilation.

Figure 4.1 presents the abstract language in terms of a signature that any concrete
language must implement. Keep in mind that we need to account for a very high-

4.2. LANGUAGES 99

Domains: Val,Cont,Conf ,Mach,Mod,Anch

Operators and relations:
• · ∈ Conf → Conf → Conf
• ∅ ∈ Conf
• ↪→ ∈ P(Mach× Evt×Mach)
• real ∈ Conf → P(Mach)
• cload ∈ Mod→ Anch→ (Lbl×Val)∗ → P(Conf ×Conf)
• vload ∈ Mod→ Anch→ (Lbl×Val)∗ → Lbl→ P(Val)
• frame ∈ P(Conf)
• core ∈ P(Conf)

• halted := {m ∈Mach | @t,m′. m
t
↪→ m′}

• error := {m ∈Mach | ∀c. m /∈ real(c)}

Properties:
• Conf forms a commutative monoid with · and ∅.
• ∀m, t,m′. m

t
↪→ m′ ∧m′ /∈ error =⇒ m /∈ error

• ∀m, t,m′. m /∈ error ∧m
t
↪→ m′ ∧m′ ∈ error =⇒ t = ι

• ∀c1, c2, c
′
1, c
′
2,m. c1 ∈ core ∧ c2 ∈ core ∧m ∈ real(c1 · c′1) ∩ real(c2 · c′2) =⇒

c1 = c2 ∧ c′1 = c′2
• ∅ ∈ frame
• ∀c, c′. c ∈ frame ∧ c′ ∈ frame =⇒ c · c′ ∈ frame

Figure 4.1: Language specification

100 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

level language (S) on the one extreme and a very low-level language (T) on the other
extreme.

A language must come with a set Val of values, a set Cont of continuations, a
set Conf of configurations, a set Mach of machines, a set Mod of modules, and a
set Anch of anchors (think: load addresses). The operational semantics is given in
the form of a transition system (↪→) of machines, whose transitions are labelled with
events t. Configurations can be thought of as partial machines—they play different
roles in different contexts (e.g., they might represent just an S expression, or just an
I heap, or even a full T machine). If a configuration c is complete, it is realized by a
set of machines real(c). (In all our instantiations, this is either empty, meaning the
configuration is invalid or incomplete, or it contains exactly one machine.) Config-
urations must form a commutative monoid with composition · and neutral element
∅. This monoid is implicitly partial in the sense that a composition may not be
realizable. (Having · itself be total is more convenient for mechanization [59]).

We single out two kinds of configurations, described by frame and core. Cores
are what PILS’s E will (primarily) relate—they can be thought of as expressions.
Frames are configurations that may be contributed by other modules; they generalize
the frame heaps that we have seen in Section 3.6. Intuitively, cores and frames
are disjoint, although we do not formally require this. Note that there may be
configurations that cannot be decomposed into only a core and a frame.

For core we require a uniqueness property saying that a realizable configuration
can contain only one core. For frame we require two very natura properties: the
empty configuration must be a frame; and composition of frames must again yield a
frame.

We say a machine is halted, m ∈ halted, iff it cannot step any further. It
denotes an error, m ∈ error, iff it does not realize any configuration. We require
two properties of error (i.e., of real). The first is that an error “cannot be undone”;
apart from this we will actually never care about steps from an erroneous machine.
The second says that an error can only be produced silently. It is not needed for the
PILS metatheory but, if violated, the model won’t validate some basic refinements.

4.2.2.1 Behavior

Based on these constructs, we can define the set of observation traces that machines
can produce.

Definition 20 (Observation traces). The set Obs of observation traces is defined
coinductively (as the greatest fixed point of a monotone function in a powerset lattice)
such that:

Obs = {$,∞}] (Evt\{ι} × Obs)

Accordingly, an observation trace o is a sequence of externally visible events (i.e.,
I/O events) that

1. either goes on infinitely, representing a computation that never stops issuing
I/O operations,

4.2. LANGUAGES 101

2. or ends with a termination marker ($), representing a computation that pro-
duces a finite number of I/O events and then halts,

3. or ends with a divergence marker (∞), representing an execution that produces
a finite number of I/O events but never stops performing internal computations.

A machine m’s behavior is the set of observation traces that m can possibly
generate.

Definition 21 (Machine behavior). We define behav ∈Mach → P(Obs) coinduc-
tively such that:

behav(m) = {o | ∃m′. m
ι
↪→
∗
m′ ∧

(Err) m′ ∈ error
∨ (Halt) o = $ ∧m′ ∈ halted

∨ (Inf) o =∞∧ ∃m′′. m′
ι
↪→ m′′ ∧∞ ∈ behav(m′′)

∨ (Evt) ∃t, o′,m′′. o = t, o′ ∧m′
t
↪→ m′′ ∧ t 6= ι ∧ o′ ∈ behav(m′′)}

Notice that errors cannot be be observed explicitly. Instead, when an execution
produces an error, then from that point on anything can happen, i.e., an arbitrary
trace is appended.

4.2.2.2 Modules

Modules, the units of compilation (and linking), can be thought of as collections
of labelled values (the exports). These values may refer to external functions (the
imports) by their unique labels.

In the language specification, the module interface consists of two operations,
cload and vload. The former, cload, takes an anchor saying “where” the mod-
ule is to be loaded and values for each of its imports. It then returns the set of
configurations—split into a global and a local part—in which the module is con-
sidered loaded as part of a complete program (this will become clearer in the next
section). Given the same inputs and additionally the label of one of the exported
values, vload looks up the module’s corresponding value.

The reason why the language specification does not talk about a linking operator
is that we will not prove modularity at the language-generic level (cf. Section 4.2.1).

4.2.3 Source Language S

4.2.3.1 Syntax and Static Semantics

The source language S is essentially a straightforward extension of Fµ! (Section 3.3)
with simple modules and numeric I/O. Figure 4.2 presents the additions to syntax
and typing, as well as new definitions.

102 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

p ::= . . . | F | input | output p
Σ ::= ε | F :σ,Σ
M ∈ Mod ::= · | F=p,M

∆; Γ; Σ ` p : σ

· · ·
∆ ` Γ; Σ F :σ ∈ Σ

∆; Γ; Σ ` F : σ

∆ ` Γ; Σ

∆; Γ; Σ ` input : nat

∆; Γ; Σ ` p : nat

∆; Γ; Σ ` output p : unit

Σ `M : Σ′

∀σ ∈ Σ. ∃τ, τ ′. σ = τ → τ ′ ∨ σ = ∀α. τ
Σ ` ε : ε

ε; ε; Σ ` p : σ Σ, F :σ `M : Σ′ F /∈ Σ |p| = v σ = τ → τ ′ ∨ σ = ∀α. τ
Σ ` (F=p,M) : (F :σ,Σ′)

Σ `M1 : Σ1 Σ,Σ1 `M2 : Σ2

Σ ` link(M1,M2) : Σ1,Σ2

Figure 4.2: Syntax and Static Semantics of the Source language S

The syntax is extended with labels (F), a construct for reading input, and one for
writing output. The typing judgment now also carries an environment Σ mapping la-
bels to types. Types are the same as in Fµ!. All typing rules from Fµ! carry over (they
simply ignore the new Σ component), and the three new ones are straightforward.

A module M is simply an ordered list of labelled “programs” p. The module
typing judgment Σ ` M : Σ′ is also presented in Figure 4.2. For now, ignore the
third rule, which we discuss in the next section. The typing ensures the following:

• The module has no free variables.

• The module’s imports are faithfully described by Σ.

• The module’s exports are faithfully described by Σ′ as well as uniquelly labelled
and disjoint from its imports.

• The module’s components may refer to the labels of other components from the
same module, but only in a strict left-to-right dependency order. (Notice how,
in the premise of the second rule, F moved from the exports to the imports
when checking the remaining module.)

• The module’s components all are function values (values of function or ∀ types).

The last two restrictions are made to keep the module semantics simple and avoid
too much distraction. Note, however, that S supports universal and existential types
and thus can in principle be used to code up ML-style modules [70]. Also, PILS
themselves do not bake in any restriction on the dependency order and, being a
coinductive method, are perfectly compatible with mutual recursion.

4.2. LANGUAGES 103

e ::= . . . | F | input | output e
K ::= . . . | output K

h ∈ Heap := (Loc
fin
⇀ Val)⊥

ρ ∈ Env := Lbl ⇀ Val

〈h; ρ; e〉 t
↪→ 〈h′; ρ; e′〉

〈h; ρ; e〉 ι
↪→ 〈h′; ρ; e′〉 (〈h; e〉 ↪→ 〈h′; e′〉)

〈h; ρ;K[F]〉 ι
↪→ 〈h; ρ;K[v]〉 (v = ρ(F))

〈h; ρ;K[input]〉 ?n
↪→ 〈h; ρ;n〉

〈h; ρ;K[output n]〉 !n
↪→ 〈h; ρ; 〈〉〉

〈h; ρ; e〉 ι
↪→ 〈⊥; ρ; e〉 (e 6= v and none of the previous rules apply)

Linking and loading:

link ∈ Mod×Mod→ Mod
link(M1,M2) := M1,M2

load ∈ Mod ⇀ Heap× Env × Exp
load(M) := (∅,M, |p| 〈〉) if M(Fmain) = p

Figure 4.3: Dynamic Semantics of Source language S

4.2.3.2 Dynamic Semantics

As shown in Figure 4.3, expressions e are extended in the obvious way, as are eval-
uation contexts K. (Since we are not interested in S’s contextual equivalence, we
no longer care to define arbitrary contexts.) The notion of value is unchanged from
that of Fµ!, i.e., labels are not values. Instead, they are looked up in a read-only en-
vironment ρ when in evaluation position. The reduction relation is therefore defined
between triples of heap, expression, and label environment (rather than just heap
and expression like before).

With the goal of a convenient implementation of configuration composition (·),
we change our notion of heap to include an undefined heap, i.e., we work with
Heap = (Loc ⇀ Val)⊥ rather than Loc ⇀ Val. The undefined heap ⊥ is not to be
confused with the empty heap (λl. ⊥), for which we continue to write ∅. We overload
the t notation to refer to the obvious merging of two lifted heaps that returns ⊥ if
one of the heaps is ⊥ (and, as before, when the heaps overlap). Note that the empty
heap ∅ is its neutral element and ⊥ its absorbing element.

The reduction relation is now also labelled with events t ∈ Evt. Let us look at the
four rules in Figure 4.3. The first rule incorporates any step from Fµ!, labelling it as

104 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

internal computation (this includes Fµ!’s non-deterministic allocation). The second
rule describes label lookups via ρ. The third and fourth describe numeric input and
output, respectively, which are labelled accordingly. Note that the rule for input is
(externally) non-deterministic. Finally, whenever none of these rules are applicable
and the expression is not a value, the last rule fires. It transitions to a designated error
state, where the heap component is invalidated (we will see in a moment how this
naturally fits the language specification). For instance, the last rule fires whenever a
label is looked up that is not covered by ρ; it also fires whenever (i) the expression
is a read or write memory operation but the heap component doesn’t contain the
location being read or written, respectively, (ii) the expression is an allocation but
the heap already contains any possible location, (iii) the expression is any of these
but the heap is invalid (⊥).

Module linking is simply concatenation (and thus asymmetric). Indeed, the third
module typing rule in the previous Figure 4.2, which talks about linking, can be
derived from the first two rules. A complete program is a module without imports
(be it the result of linking or not) that exports a designated main function (Fmain)
of type unit→ τ (for an arbitrary τ). In order to execute it, it has to be load-ed: the
initial heap is empty, the (constant) label environment is the module itself, and the
initial expression is a call to the main function. Note that since this call is done in the
empty evaluation context, the machine will be halted when the function eventually
returns (if it returns) thanks to the side condition e 6= v in the last rule. This matters
for adequacy, as will be explained in Section 4.7.2.

4.2.3.3 Implementation of the Language Specification

Figure 4.4 presents the way in which we decide S to implement the abstract language
from Section 4.2.1. Values, continuations, and modules are self-explanatory. Since
there is no need for anchors in the source language, we set them to be the singleton
set 1 . Machines are the triples for which we defined the reduction ↪→, and ↪→ is
precisely ↪→. We write m.hp to project the heap component out of the tuple m.

In order to define configurations, we make use of the following lifting operation.

Definition 22. Given a set X, we write X⊥,∅ for the commutative monoid with
carrier X] {∅,⊥} (i.e., X extended with two new elements) and a composition (⊕)
that is defined as follows:

∀y ∈ X⊥,∅. ∅ ⊕ y = y = y ⊕ ∅
∀y ∈ X⊥,∅. ⊥⊕ y = ⊥ = y ⊕⊥
∀x1, x2 ∈ X. x1 ⊕ x2 = ⊥

Accordingly, ∅ is neutral, ⊥ is absorbing, and composition is exclusive in that it maps
any two original elements to ⊥.

Configurations are machines where one or more components may be missing or
invalid. For a machine m to realize a configuration c, it must match the configuration

4.2. LANGUAGES 105

Val := Val
Cont ::= Cont
Mod ::= Mod
Anch := 1
Mach := Heap× Env × Exp
Conf := Heap× Env⊥,∅ × Exp⊥,∅

Conf monoid:
∅ := (∅, ∅, ∅) (h, ρ, e) · (h′, ρ′, e′) := (h t h′, ρ · ρ′, e · e′)

↪→ := ↪→
real(c) := {m | m = c ∧m.hp 6= ⊥ ∧m.hp finite}
cload(M)()(ρ) := {(c,∅) | ∃ρ′. c = (∅, ρ]M] ρ′, ∅)}
vload(M)()()(F) := {v | ∃p. v = |p| ∧ (F=p) ∈M}

Figure 4.4: Implemenation of Language Specification for S

(m = c with the obvious embedding of Mach in Conf). Moreover, it must carry
a valid and finite heap (finiteness guarantees that allocation will succeed). Notice
that the definition of Conf and its pointwise composition operation (·) imply that
heaps can successfully be split across several configurations, but label environments
and expressions cannot—they must be defined in exactly one component in order for
the composition to be realizable.

The implementation of vload is straightforward: it simply looks up the given
label in the module. Since the anchor argument carries no information, it is ignored
(we write to indicate this). The imported values are ignored as well since labels
are looked up at runtime (this is also why linking in S is just concatenation). The
implementation of cload permits any configuration whose heap is empty, whose ex-
pression component is missing, and whose environment contains the imported values
and the exported values (i.e., the module itself). Note that the environment may
contain additional values (ρ′), thus accounting for other modules that M may be
linked with.

4.2.4 Intermediate Language I

Pilsner’s intermediate language I is an untyped, or rather, dynamically typed CPS-
variant of S, inspired by Kennedy’s intermediate language [39]. Its syntax is shown
in Figure 4.5, together with a notion of well-formedness carving out the subset of the
language that we are interested in (to be discussed in a moment).

106 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

a ∈ BExp ::= 〈〉 | n | x.1 | x.2 | inl x | inr x | 〈x1, x2〉 | x1 == x2 | x1 � x2 |
fix f(y, k). e | Λk. e

e ∈ Exp ::= let y = a in e | let k = cont y. e in e | y ← input; e | output x; e |
y ← ref x; e | x1 := x2; e | y ← !x; e | ifnz x then e1 else e2 |
case x (y. e1) (y. e2) | x1 x2 k | x [] k | k x | haltn

M ∈ Mod ::= · | F=a,M
Z ::= ε | x, Z | k, Z

Z ` a

Z ` 〈〉 Z ` n
x ∈ Z
Z ` x.1

x ∈ Z
Z ` x.2

x ∈ Z
Z ` inl x

x ∈ Z
Z ` inr x

x1, x2 ∈ Z
Z ` 〈x1, x2〉

x1, x2 ∈ Z
Z ` x1 � x2

x1, x2 ∈ Z
Z ` x1 == x2

Z†, f, y, k ` e
Z ` fix f(y, k). e

Z†, k ` e
Z ` Λk. e

Z ` e
Z ` a Z, y ` e
Z ` let y = a in e

Z, y ` e Z, k ` e′

Z ` let k = cont y. e in e′

Z, y ` e
Z ` y ← input; e

x ∈ Z Z ` e
Z ` output x; e

x ∈ Z Z ` e1 Z ` e2

Z ` ifnz x then e1 else e2

x ∈ Z Z, y ` e1 Z, y ` e2

Z ` case x (y. e1) (y. e2)

x1, x2, k ∈ Z
Z ` x1 x2 k

x, k ∈ Z
Z ` x [] k

k, x ∈ Z
Z ` k x

x ∈ Z Z, y ` e
Z ` y ← ref x; e

x ∈ Z Z, y ` e
Z ` y ← !x; e

x1, x2 ∈ Z Z ` e
Z ` x1 := x2; e

L `M : L′

L ` ε : ε

L ` a L, F `M : L′ F /∈ L
L ` (F=a,M) : (F,L′)

Figure 4.5: Intermediate language I: Syntax and Well-formedness

4.2. LANGUAGES 107

4.2.4.1 Syntax

Being in continuation-passing style, every subexpression is explicitly named and
functions never “return”. Concretely, we distinguish between (i) pure expressions
a ∈ BExp, which are evaluated in let-bindings and always result in a value but never
in any side effects, and (ii) control expressions e ∈ Exp. Ignoring conditionals, every
control expression is essentially a sequence of let-bindings ending in a function or
continuation invocation. For instance, let k = cont y. e1 in e2 defines a new continua-
tion k with argument y and body e1, and then executes e2 (which may use k). Here
y ∈ TVar is term variable, while k ∈ KVar is a continuation variable. Any x in the
language syntax is a meta-variable standing for either a term variable or a label, i.e.,
ranges over TVar] Lbl but not KVar. Any y is in binding position.

Functions in I explicitly take a continuation argument k, and that the syntax
for function calls accounts for that as well. Jumping to a continuation k, which can
either be the one initially given, or a self-defined one, is written k x, where x is the
continuation’s argument (in case k is a function’s initial continuation, x should be
thought of as the function’s return value). Note that one cannot evade the initial
continuation: defining a new continuation requires a pre-existing continuation for
the final control expression. Also note that continuations are second-class citizens
in the sense that the syntax does not allow them to be components of pairs, regular
arguments to functions, etc.

The other syntactic forms are self-explanatory (but see below for haltn).

4.2.4.2 Well-formedness

The well-formedness predicates in Figure 4.5 ensure that programs are well-scoped.
For instance, Z ` a guarantees that the only labels and free variables that occur in
a are (a subset of) those in Z.

More interestingly, however, well-formedness also enforces that continuations are
used in an affine fashion [39], i.e., called at most once. Affinity is exploited by
Pilsner’s code generation pass, as discussed in Section 5.10. Responsible for enforcing
affinity are the rules for functions (the one for fix f(y, k). e and the one for Λk. e):
when checking the body e in the premise, we not only extend the original environment
Z with the function’s bindings, but we also remove all continuations variables from
Z, written Z†. Hence the only continuation initially available to a function is the
one it is passed, namely k. This enforces affinity because, roughly, the only way a
continuation could be used multiple times is by embedding it into a function closure.
Consider the following example, which is ruled out by well-formedness:

fix f(y, k).
let g = (fix g(, k′). k y) in
k g

The function f defines a function g that refers to f ’s continuation k (which well-
formedness forbids). It then passes g to k. If k were now to call its argument g, this

108 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

would cause a second invocation of k.
Well-formedness for modules is what one would expect.

4.2.4.3 Dynamic Semantics

Figure 4.6 presents I’s dynamic semantics (which does not care about well-formedness).
In contrast to the source language, I employs an environment-based semantics, where
continuations and functions evaluate to closures of code and environment. This avoids
the need to reason about substitutions when verifying optimizations, which is often
a hassle.

Run-time values consist of the unit value, numbers, pairs, left/right tagged values,
and closures 〈σ; a〉. A closure’s environment component σ is a mapping from variables
(including labels) to values2.

In order to give the semantics of let-bindings, we first define a straightforward
evaluation function that evaluates a pure expression a in an environment σ, written
JaKσ. It is total on inputs whose free variables are covered by σ. The small-step
reduction relation is fairly straightforward as well. As one can easily see, the pure
expression component a of a closure is always either a function or continuation ex-
pression. For instance, we execute a continuation definition let k = cont y. e1 in e2

by creating a new closure consisting of the current environment σ as well as the
continuation’s code cont y. e1, and add this value to the environment under name k.
We would then proceed to execute e2 in this extended environment.

The haltn expression form is merely a technical device that we use in the transi-
tivity proof (Section 4.8). The compiler is oblivious to it. Since I is an intermediate
language, used internally by Pilsner, adding such a dummy expression is unproblem-
atic. Note that reduction is defined to be stuck (halted) for such an expression. It
is even ruled out by the well-formedness relation above.

4.2.4.4 Implementation of the Language Specification

Figure 4.7 shows how we implement the language specification with I. Modules,
anchors, configurations, etc. are fairly similar to those in the source language. We
define Cont simply as Val because continuations are already values in the language.

Since I’s semantics is closure-based, expressions and their run-time environment
(σ) are tightly coupled, and we do not need to allow configurations containing an
environment but no expression, or vice versa. Hence, in the implementation of Conf ,
we lift Env and Exp not individually but together as (Env × Exp)⊥,∅.

For the same reason, the implementation of cload is trivial: because function
values already contain their environment, there is nothing else to load, so both the
global and local configuration are empty. The implementation of vload, on the
other hand, is consequently more complicated than before. Defined by recursion on
the structure of the given module, it looks up the function expression a associated

2The operational semantics of I treats term variables, continuation variables, and labels all in a
uniform way.

4.2. LANGUAGES 109

l ∈ Loc
v ∈ Val ::= 〈〉 | n | l | 〈v1, v2〉 | inl v | inr v | 〈σ; a〉 | 〈σ; cont y. e〉
h ∈ Heap := (Loc

fin
⇀ Val)⊥

σ ∈ Env := Lbl] TVar] KVar ⇀ Val

JaKσ ∈ Val⊥

J〈〉Kσ := 〈〉
JnKσ := n

J〈x1, x2〉Kσ := 〈v1, v2〉 (σ(x1) = v1 ∧ σ(x2) = v2)
Jx.1Kσ := v1 (σ(x) = 〈v1, v2〉)
Jx.2Kσ := v2 (σ(x) = 〈v1, v2〉)
Jinl xKσ := inl v (σ(x) = v)
Jinr xKσ := inr v (σ(x) = v)

Jfix f(y, k). eKσ := 〈σ; fix f(y, k). e〉
JΛk. eKσ := 〈σ; Λk. e〉

Jx1 � x2Kσ := J�K (n1, n2) (σ(x1) = n1 ∧ σ(x2) = n2)
Jx1 == x2Kσ := 1 (σ(x1) = l = σ(x2))
Jx1 == x2Kσ := 0 (σ(x1) = l1 6= l2 = σ(x2))

〈h;σ, e〉 t
↪→ 〈h′;σ′, e′〉
〈h;σ, let y = a in e〉 ι

↪→ 〈h;σ[y 7→v], e〉 (JaKσ = v)

〈h;σ, let k = cont y. e1 in e2〉
ι
↪→ 〈h;σ[k 7→〈σ; cont y. e1〉], e2〉

〈h;σ, (y ← input; e)〉 ?n
↪→ 〈h;σ[y 7→n], e〉

〈h;σ, (output x; e)〉 !n
↪→ 〈h;σ, e〉 (σ(x) = n)

〈h;σ, ifnz x then e1 else e2〉
ι
↪→ 〈h;σ, e2〉 (σ(x) = 0)

〈h;σ, ifnz x then e1 else e2〉
ι
↪→ 〈h;σ, e1〉 (σ(x) = n 6= 0)

〈h;σ, case x (y. e1) (y. e2)〉 ι
↪→ 〈h;σ[y 7→v], e1〉 (σ(x) = inl v)

〈h;σ, case x (y. e1) (y. e2)〉 ι
↪→ 〈h;σ[y 7→v], e2〉 (σ(x) = inr v)

〈h;σ, k x〉 ι
↪→ 〈h;σ′[y 7→v], e〉 (σ(k) = 〈σ′; cont y. e〉)

(σ(x) = v)

〈h;σ, x1 x2 k〉
ι
↪→ 〈h;σ′[f, y, k′ 7→v1, v2, v], e〉

(σ(x1), σ(x2), σ(k) = v1, v2, v)
(v1 = 〈σ′; fix f(y, k′). e〉)

〈h;σ, x [] k〉 ι
↪→ 〈h;σ′[k′ 7→v], e〉 (σ(x) = 〈σ′; Λk′. e〉)

(σ(k) = v)

〈h;σ, (y ← ref x; e)〉 ι
↪→ 〈h t [l 7→ v];σ[y 7→l], e〉 (σ(x) = v)

(h t [l 7→ v] 6= ⊥)

〈h;σ, (y ← !x; e)〉 ι
↪→ 〈h;σ[y 7→v], e〉 (σ(x) = l)

(h(l) = v)

〈h t [l 7→ v];σ, (x1 := x2; e)〉 ι
↪→ 〈h t [l 7→ v′];σ, e〉 (σ(x1) = l)

(σ(x2) = v′)

〈h;σ, e〉 ι
↪→ 〈⊥;σ, e〉 (e 6= haltn)

(no other rule applicable)

Figure 4.6: Intermediate language I: Dynamics

110 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Val := Val
Cont ::= Val
Mod ::= Mod
Anch := 1
Mach := Heap× (Env × Exp)
Conf := Heap× (Env × Exp)⊥,∅

Conf monoid:
∅ := (∅, ∅) (h, x) · (h′, x′) := (h t h′, x⊕ x′)

↪→ := ↪→
real(c) := {m | m = c ∧m.hp 6= ⊥ ∧m.hp finite}

vload(ε)()(ρ)(F) := ∅
vload(F ′=a,M)()(ρ)(F) := {〈ρ; a〉} (F ′ = F)
vload(F ′=a,M)()(ρ)(F) := vload(M)()(ρ, (F ′, 〈ρ; a〉))(F) (F ′ 6= F)

cload(M)()(ρ) := {(∅,∅)}

Figure 4.7: Intermediate language I: implementation of the language specification

with the given label F and constructs a suitable environment for it. This environment
is the given one (σ) extended with all the values previously defined in the module,
which are computed recursively.

4.2.5 Target Language T

As shown in Figure 4.8, our target language T is an idealized machine language
featuring instructions for arithmetic, control flow (e.g., conditional jump), memory
access, and numeric I/O. Some of them support multiple addressing modes. For
instance, if operand o is 〈r1 ± n〉, then the instruction sto o r2 stores the contents
of register r2 on the stack at the address contained in register r1, offset by ±n. If
o = [r1 ± n], then it stores it on the heap instead. The lpc instruction loads the
current program counter into the given register.

Code is encoded as data (using an injective function E) and can thus be modified
using the standard store instruction (sto).

The alloc instruction allocates a chunk of heap memory of the given size. We
assume the choice of memory to be deterministic (but otherwise arbitrary).
T is idealized also in the sense that machine words are unbounded natural num-

bers and stack and heap are unbounded as well. The set of registers, though, is fixed
(their names, by the way, are merely suggestive and the language semantics does not
differentiate them).

4.2. LANGUAGES 111

r ∈ Reg ::= sp | clo | arg | env | ret | aux1 | aux2 | aux3
o ∈ Opr ::= n | r | 〈r ± n〉 | [r ± n]
z ∈ Instr ::= jmp o | jnz r o | ld r o | sto o r | lpc r | bop � r o1 o2 |

input r | output r | alloc r1 r2

E ∈ Instr→Word (injective)

Word := N
R ∈ RegFile := Reg→Word
q ∈ Stack := (Word ⇀ Word)⊥
h ∈ Heap := (Word ⇀ Word)⊥

J−K (−,−,−) ∈ Opr→ RegFile× Stack× Heap ⇀ Word
JnK (R, q, h) := n
JrK (R, q, h) := R(r)
J〈r ± n〉K (R, q, h) := w (q(R(r)± n) = w)
J[r ± n]K (R, q, h) := w (h(R(r)± n) = w)

store ∈Word× RegFile× Stack× Heap→Word→ Opr ⇀ Word× RegFile× Stack× Heap
store(n,R, q, h)(w)(r) := (n+ 1, R[r 7→w], q, h)
store(n,R, q, h)(w)(〈r ± n′〉) := (n+ 1, R, q t [R(r)± n′ 7→ w], h)
store(n,R, q, h)(w)([r ± n′]) := (n+ 1, R, q, h t [R(r)± n′ 7→ w])

(n,R, q, h)
t
↪→ (n′, R′, q′, h′) (n 6= 0 and matching entry in table)

(n,R, q, h)
ι
↪→ (n,R, q,⊥) (n 6= 0 and no matching entry in table)

Instruction z Condition Reduction

jmp o JoK (R, q, h) = n′
ι
↪→ (n′, R, q, h)

jnz r o R(r) = 0
ι
↪→ (n+ 1, R, q, h)

jnz r o R(r) 6= 0 ∧ JoK (R, q, h) = n′
ι
↪→ (n′, R, q, h)

ld r o JoK (R, q, h) = w
ι
↪→ (n+ 1, R[r 7→w], q, h)

sto o r store(n,R, q, h)(R(r))(o) = Ω
ι
↪→ Ω

lpc r
ι
↪→ (n+ 1, R[r 7→n], q, h)

bop � r o1 o2 Jo1K (R, q, h) = n1 ∧ Jo2K (R, q, h) = n2

∧ store(n,R, q, h)(J�K (n1, n2))(r) = Ω
ι
↪→ Ω

alloc r1 r2 alloc(h,R(r2)) = w
ι
↪→ (n+ 1, R[r1 7→w], q,

h t [w 7−→ 0R(r2)])

input r
?i
↪→ (n+ 1, R[r 7→i], q, h)

output r
!R(r)
↪→ (n+ 1, R, q, h)

Figure 4.8: Target language T

112 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

The reduction relation is defined between quadruples consisting of a program
counter n, a register file R, a stack q, and a heap h. The program counter always
refers to the heap.

The table in Figure 4.8 lists the regular reduction rules and is to be interpreted
as follows: (n,R, q, h) steps according to the “Reduction” column if h(n) = E(z)
(i.e., the current instruction is z) and the condition in the second column holds.
For instance, if h(n) encodes the load instruction ld r o and JoK (R, q, h) = w, then

(n,R, q, h)
ι
↪→ (n+1, R[r 7→w], q, h). This rule makes use of the auxiliary function J−K

for evaluating the instruction’s operand o, resulting in a word w. Its definition, also
given in the figure, is straightforward. A second auxiliary function, store, is used to
compute the result of a memory write (it is undefined for a numeric operand). Finally,
if none of the rules from the table apply, then an error rule can fire, analogous to
S and I. This is the case, for instance, if the program counter does not point
to a valid instruction, or if a store instruction tries to access an invalid memory
address. The exception is when the program counter is 0, which we take to be the
system continuation used in loading a whole program (see below). For adequacy
(Section 4.7.2) we want such machines to be stuck, i.e., not take any step at all, not
even an error step.

4.2.5.1 Stack

Stack and heap are separate simply because both are unbounded in size. There
are actually no special instructions for operating the stack, just the standard load
and store instructions (ld and sto) in combination with the stack addressing operand
〈r ± n〉. We do, however, adopt the convention that the sp register functions as the
stack pointer (high-water mark).

We define the set of stacks analogous to that of heaps such that it includes ⊥.
Regarding the operational semantics, this is merely for the sake of uniformity: in
fact, we only ever care about stacks that are fully defined, i.e., store a value for every
address and thus are infinite. This makes sense because the way to “allocate” stack
cells is by bumping up the stack pointer and not via a designated instruction whose
reduction rule could extend the stack accordingly.

4.2.5.2 Calling Convention

In order to support linking of machine language modules (to be defined in a moment)—
no matter their origin—all modules have to agree upon a calling convention. We
therefore dictate the following contract for calls to imported functions:

1. Write the function value into register clo.

2. Write the argument value into register arg.

3. Write the return address into register ret.

4.2. LANGUAGES 113

4. Jump to [clo + 0], i.e., to wherever the value in the heap at address clo points
to.

If and when control eventually reaches the return address, the following must hold3:

5. The function’s result resides in register arg.

6. Registers env and sp have been preserved, i.e., these are callee-save registers
while the rest are caller-save.

7. The contents of the stack (up to the stack pointer) have been preserved as well.

(For simplicity, we will also follow this convention for intra-module calls, but this is
an implementation detail of our compilers.)

4.2.5.3 Modules, Loading, and Linking

We now come to Figure 4.9. An S or I module will be translated to a group in T . A
group g consists of two components: a code pointer table and a data block. The table
associates each exported function (label) with the index in the data block where its
code starts. The data block is just a sequence of words.

If we define T modules to be such groups, then linking and relocation would
become tricky. Instead, we define T modules to be collections of groups. The idea is
that the code in each group can assume that its imported functions will at run time
be located in memory right before the group’s data block (this will be ensured by
the loader), so the code can address them relative to the current program counter.
This way, linking can be defined simply as concatenation (think: taking the union)
and there is no need for maintaining information about—or performing operations
related to—relocation.

Loading requires some work, of course. We first define a recursive auxiliary func-
tion load ′. Here and elsewhere in the figure, some constructions use meta-level stan-
dard operations from functional programming, such as enumerate, which turns a list
a, b, c into a list of pairs (1, a), (2, b), (3, c). load ′ constructs the initial heap (split into
a global and local part, so that it can be reused for the implementation of cload)
and also returns a mapping from the exported labels to their function values. The
argument n denotes the address at which to load the module. In the recursive use of
load ′, this address is increased by nu + nc + nc + nd, the amount of heap cells used
for the current group g. The last nd of these cells simply contain g’s data block (see
the second part in the definition of h2). The preceding cells form the group header.

The first nu cells of the group header (n to n + nu − 1) contain the imported
“function values” for g (in the terminology of the calling convention above), i.e., they
enable code in g to use its imports. Note that these function values are not the code
pointers but point to the code pointers. This is to enable a uniform compilation of

3A module may assume these for its imports and must guarantee them for its exports.

114 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

module-level and internal functions, the latter of which cannot simply be represented
by code pointers because they generally also need to carry an environment.

It remains to explain the nc + nc cells in between. Recall that in the source lan-
guage’s module typing rules, when checking a function, there is no formal distinction
between those labels that are imports of the module and those that are defined by
the module itself (“left” of the function in question) and thus may be referenced by
the function. It is also convenient not to make such a distinction when implementing
a compiler from S to T . For this reason, the loader prepares for each group g a
homogeneous environment not only consisting of the group’s imports but also of its
exports, to be referenced by the group’s code. We call this the group’s label envi-
ronment. We already discussed the first part of it, namely the first nu cells of h2.
Cells n+ nu to n+ nu + nc − 1 make up the second part: they contain the exported
function values.

What are these values? They must be the addresses of heap cells containing the
corresponding code pointers. These cells need to be placed somewhere, so the loader
simply places them right after the label environment and right before the code. This
means that cells n + nu to n + nu + nc − 1 contain the addresses n + nu + nc to
n+ nu + nc + nc − 1 (see h1), and cells n+ nu + nc to n+ nu + nc + nc − 1 contain
the code pointers listed in the group’s table c (after shifting them by the appropriate
offset). The reason for putting the exported function values into the global heap (h1)
and all the rest into the local heap (h2) will become clear in Section 4.4. For now,
this separation should be ignored.

Figure 4.10 sums up the heap layout created by load ′. The dashed chunk is not
included in the global heap created by load ′ but will be added to it in the definition
of cload in the next section.

We define a basic well-formedness predicate on target modules, ` M : L. Any
module produced by our compilers will satisfy this predicate. It states that L lists the
labels that M exports (in the order in which they appear in M ’s groups). Morever,
the predicate ensures that the code pointer tables are valid: if (a, b) is a group in M
and its table a says that n is the code pointer for export F , then n is a valid index
into the data b.

Defining the actual load function is now easy. load(M) uses load ′ with address
0 (any would work) and empty import list (since M is assumed to be complete) to
compute heaps h1, h2, and export mapping x. It then returns a machine whose heap
is the union of h1 and h2 (note that these are always valid disjoint heaps); whose
stack is filled with zeroes; whose register file is zeroed (R0) except that clo stores
w, the value of the program’s main function; and whose program counter is n, the
value stored at w (i.e., the main function’s code pointer). Notice that this simulates
a function call to the main function. Also note that since sp is 0, the stack is logically
empty. Requiring the stack to physically contain only zeroes is an arbitrary choice.

Note that the definition shown in the figure assumes that M provides a main
function, i.e., x(Fmain) 6= ⊥, and that its value is a valid heap address, i.e., h1(w) 6=
⊥. When that is not the case, then load(M) is not defined either, i.e., load(M) = ⊥.

4.2. LANGUAGES 115

g ∈ Group := (Lbl×Word)∗ ×Word∗

M ∈ Mod := Group∗

link ∈ Mod×Mod→ Mod
link(M1,M2) := M1,M2

load ′ ∈ Mod→Word→Word∗ → Heap× Heap× (Lbl×Word)∗

load ′(ε)(n)(u) := (∅, ∅, ε)
load ′(g,M)(n)(u) := (h1 t h′1, h2 t h′2, (x, x′))

where (c, d) := g
nρ := length(ρ)
nc := length(c)
nd := length(d)
x := enumerate (map fst c) (n+ nρ + nc)
h1 := [n+ nu + nc 7−→ map (λ(F,w).n+ nu + nc + nc + w) c]
h2 := [n 7−→ u,map snd x] t [n+ nu + nc + nc 7−→ d]
(h′1, h

′
2, x
′) := load ′(M)(n+ nu + nc + nc + nd)(u,map snd x)

load ∈ Mod ⇀ Word× RegFile× Stack× Heap
load(M) := (n,R0[clo 7→w], (λ .0), h1 t h2)

where (h1, h2, x) := load ′(M)(0)(ε)
w := x(Fmain)
n := h1(w)

`M : L :=
L = flatten (map (map fst ◦ fst)M) ∧
∀(a, b) ∈M. ∀(F, n) ∈ a. n < length(b)

Figure 4.9: Target language T : Modules

Figure 4.10: Heap layout as set up by load ′.

116 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Example To illustrate the heap construction by load , let us look at an example.
Suppose we have two modules Ma and Mb, each consisting of a single group (e.g., as
procuded by one of our compilers):

Ma = ga
ga = ((Ff , 0), (Fg, 20), da)

Mb = gb
gb = ((Fmain, 0), db)

Module Ma exports two functions Ff and Fg, whose code starts at offsets 0 and 20
in da, respectively. Module Mb exports one function (the “main” function) Fmain,
whose code starts at offset 0 in db. We are interested in the complete program

M = link(Ma,Mb) = ga, gb

obtained by linking Ma and Mb, so the assumption is that Ma has no imports, while
Mb’s imports are Ma’s exports.

The result of load ′(M)(0)(ε) is (h1, h2, x), which looks as follows:

h1 = ha1 t hb1
h2 = ha2 t hb2
x = (Ff , 2), (Fg, 3), (Fmain, na + 7)

ha1 = [2 7−→ 4, 24]
hb1 = [na + 7 7→ na + 8]

ha2 = [0 7−→ 2, 3] t [4 7−→ da]
hb2 = [na + 4 7−→ 2, 3, na + 7] t [na + 8 7→ db]

na = length(da)

For instance, Mb’s only label environment, used by the code in db to look up functions,
starts at address na+ 4 and takes up three cells. (Since Mb is the “last” module, this
environment’s contents correspond to the export map x.) So if Fmain wants to call
Fg, then Fmain’s code in db will read the heap at address na + 5 and find the number
3. Indeed, 3 is Fg’s function value: the heap at address 3 stores 24, which is Fg’s
code pointer because da starts at address 4.

Note that Fg’s function value, 3, is not known at Mb’s compile time. On the other
hand, db knows where to look for Fg because it knows the size of its own environment
and thus can access na + 5 relative to its starting address (na + 8).

4.2.5.4 Implementation of the Language Specification

Let us now show how we implement the language specification with T . Values
are words (numbers, heap addresses, stack addresses), anchors are words (heap ad-

4.2. LANGUAGES 117

Val := Word
Anch := Word
Mod ::= Mod
Cont := Word
Mach := Word× RegFile× Stack× Heap
Conf := Word⊥,∅ × RegFile⊥,∅ × Stack× Heap

Conf monoid:
∅ := (∅, ∅, ∅, ∅) (n,R, q, h) · (n′, R′, q′, h′) := (n⊕ n′, R⊕R′, q t q′, h t h′)

↪→ := ↪→
real(c) := {m | m = c ∧m.hp 6= ⊥ ∧m.hp finite ∧m.st 6= ⊥}

vload(M)(n)(ρ)(F) := {v | ∃h1, h2, x.
load ′(M)(n)(map snd ρ) = (h1, h2, x) ∧ x(F) = v}

cload(M)(n)(ρ) := {(c1, c2) | ∃h1, h2, x,R, h.
load ′(M)(n)(map snd ρ) = (h1, h2, x) ∧ dom(h) = {w | ∃F. (F,w) ∈ ρ} ∧
h t h1 t h2 6= ⊥ ∧R(sp) = 0 ∧ c1 = (∅, R, (λ .0), h t h1) ∧ c2 = (∅, ∅, ∅, h2)}

Figure 4.11: Target language T : Implementation of the Language Specification

dresses), and continuations are words (code pointers, i.e., heap addresses). The con-
figuration monoid and real are defined mostly analogously to the previous languages
(heap and stack can be split, the rest cannot).

Both the implementation of vload and that of cload make use of load ′4. vload
simply looks up the given label F in the generated export map x. cload relies on the
other two components instead, the global heap h1 and the local heap h2. It allows
for any global configuration c1 whose program counter is missing; whose register file
is defined and stores 0 in the stack pointer register sp; whose stack is constant zero
(matching load); and whose heap is h1 plus some disjoint h. Intuitively, h contains
the imported function values (this will become clearer once we see how cload is
used). Accordingly, cload requires that h’s domain corresponds to the import map
ρ; it must also be disjoint from h2, but apart from that, h can be arbitrary. The
local configuration, c2, is restricted to be empty except for its heap component, which
must be exactly h2.

4Note that load ′ does not care if the module is complete or not.

118 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

4.3 Worlds

Like in PBs (Chapter 3), worlds play a central role in PILS. Before, we distinguished
between local worlds and full worlds. A local world was constructed on a per-proof
basis, and turned into a full world by linking it with a predefined shared world. This
basic story is still true for PILS. However, we have to generalize the notion of shared
world somewhat. Instead of only governing global references, the shared world’s pur-
pose is now also to formalize the calling convention and data representation that all
modules have to agree upon. Moreover, since we are dealing with multiple languages,
instead of having a single shared world, we will have one for each language pair of
interest: we will define the global worlds ΩT I , ΩII , ΩIS , and ΩT S .

As previously mentioned, we are going to define PILS generically, i.e., parame-
terized by two languages A and B and a global world for them, and we are going to
have two versions of this generic definition: one where the relations are type-indexed,
and one where they are not. We present both at the same time (in several figures to
come) by showing the typed version but highlighting (in color) all the type-related
components that simply need to be erased in order to obtain the untyped version.

The structure of worlds is shown in Figure 4.12, following some preliminary def-
initions. First, the set of types used by the typed versions of the model is the same
as for PBs, because S’s type language is the same as Fµ!’s. Recall that we extend
this language with type names n. The set CTyF of (closed) flexible types is slightly
different from before: only function types and type names are considered flexible,
reference types are not. In PBs, the treatment of reference types as flexible was
convenient, but did not make so much sense conceptually since local worlds could
not influence their interpretation. The generalization of PBs to PILS naturally leads
to a cleaner treatment of reference types.

Global worlds Ω ∈ GWorldA,B generalize PBs’s shared world Wref (from Sec-
tion 3.6.3.1). They consist of a transitition system T, a configuration relation C, and
a query component Q. The notion of transition systems is the same as before (TrSys
was defined in Section 3.6.1). Configuration relations generalize PBs’s heap relations.
The query component is completely new; it provides several methods for “querying”
the global state (see below). We write A.Val to denote language A’s implementation
of the abstract notion Val, and so on.

Full worlds W ∈ WorldA,B look like extensions of global worlds. They addition-
ally contain an algebraic well-founded ordered set O, which will be used to facilitate
stuttering in proofs (Section 4.5.1). For now, it can be safely ignored.

In the typed setting only, full worlds also contain a type name interpretation N.
This component provides a set NS of owned type names and a relational interpretation
NR of these names (in PBs, this was part of the local knowledge). Local worlds
w ∈ LWorldTA,B are like full worlds except that they don’t contain the global query
handlers and that their configuration relation must only relate frames. As before,
local worlds can depend on the state of the global world. We will see the lifting of
local worlds to full worlds in a moment.

4.3. WORLDS 119

n ∈ TyNam
σ ∈ Ty ::= α | n | unit | nat | σ1 × σ2 | σ1 + σ2 | σ1 → σ2 | ∀α. σ | ∃α. σ |

µα. σ | ref σ

CTy ::= {σ ∈ Ty | fv(σ) = ∅ }
CTyF := {(τ1 → τ2) ∈ CTy} ∪ {(∀α. τ) ∈ CTy} ∪ {n ∈ CTy}

VRelFA,B := CTyF→ P(A.Val×B.Val)
VRelA,B := CTy→ P(A.Val×B.Val)
CRelA,B := P(A.Conf ×B.Conf)
MRelA,B := P(A.Mach×B.Mach)
ERelA,B := CTy→ CRelA,B
KRelA,B := CTy→ CTy→ P(A.Cont×B.Cont)

Queries (v,v′ ∈ L.Val and k ∈ L.Cont):
vq ∈ VQryL ::= unit | natn | pair v v′ | inl v | inr v | roll v | pack v | fix | gen |

goodfix | goodgen
cq ∈ CQryL ::= app v v′ k | inst v k | ret v k

QHT
A,B := { (vqha ∈ T.S

mon→ VQryA → P(A.Val)

, vqhb ∈ T.S
mon→ VQryB → P(B.Val)

, cqha ∈ T.S→ CQryA → P(A.Conf)
, cqhb ∈ T.S→ CQryB → P(B.Conf)

, rqh ∈ T.S mon→ VRelA,B) }

CRTA,B := (T.S→ VRelFA,B)
mon→ T.S→ CRelA,B

LCRTA,B := (T.S→ VRelFA,B)
mon→ T.S→ P(A.frame×B.frame)

NITA,B := { (NS ∈ P(TyNam)

,NR ∈ (T.S→ VRelFA,B)
mon→ T.S

mon→ TyNam→ P(A.Val×B.Val)) |
∀G, s. ∀n /∈ NS. NR(G)(s)(n) = ∅ }

GWorldA,B := { (T ∈ TrSys,C ∈ CRT
A,B,Q ∈ QHT

A,B) }
LWorldTA,B := { (T ∈ TrSys,C ∈ LCRT×TA,B ,N ∈ NIT×TA,B ,O ∈ AWFO) }
WorldA,B := { (T ∈ TrSys,C ∈ CRT

A,B,Q ∈ QHT
A,B,N ∈ NITA,B,O ∈ AWFO) }

Figure 4.12: Worlds

120 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

At this point, the reader is probably wondering where the local knowledge com-
ponent has gone (apart from the interpretion of type names), which played such a
crucial role in PBs. We have seen in Section 3.11 how one can in princple always
pick the local knowledge to be the greatest consistent relation. Here we go one step
further by getting rid of the local knowledge component in worlds altogether. We
will explain this in detail in Section 4.5.

4.3.1 Queries

Let us talk about a (global) world’s query component. It provides five query methods,
as shown in the definition of QHT

A,B in Figure 4.12. Part of their purpose is to act
as the interface to access information stored in the global world’s state. We will see
later how they are used exactly but we want to give some intuition here.

Configuration Queries Recall that PBs’s ret case asserts that the two compu-
tations have finished and returned similar values (e.g., Section 3.5). In our source
language S, termination is a syntactic property and is trivial to check. But what
does it mean for a low-level T computation to be “finished”?

In order to define PILS in a language-generic fashion, we require the global world
to provide a way of answering such a question. This is done in the form of two
query handlers cqha (for the “output” language A) and cqhb (for the input language
B). There are three queries cq ∈ CQryL concerning the configurations of a language
L. The query app f v k asks for the configurations that currently represent a call of
function f with argument v and continuation k; inst g k asks for the configurations
that represent an instantiation of generalization g with continuation k; and ret v k
asks for those that represent a return of value v to continuation k. The reason
why we care about continuations here as well is that in low-level languages such as
T , we cannot tell whether a computation has returned without knowing its initial
continuation (think: return address).

In effect, this means that the global world’s implementation of cqha and cqhb

determines a major aspect of the calling conventions.

Value Queries Recall that PBs’s ret and step/call cases require that certain
values (e.g., the returned results) are related by the value closure of the global knowl-
edge. The value closure is a straightforward lifting of a relation from functions to
other value forms, e.g., by saying that two pairs are related iff their first projections
are related (recursively) and their second projections as well.

In order to define the value closure operation generically in the PILS setting, we
first need to have a uniform way of determining how S’s value forms are represented
by the two languages A and B. This is easy for our source and intermediate language:
given a value, it is trivial to tell whether it represents, say, a certain pair. On the
machine language side, though, values are just machine words, and whether or not

4.3. WORLDS 121

〈〈−〉〉(−) ∈ VRelFA,B → T.S→ VRelA,B (implicit: A,B; T ∈ TrSys; Q ∈ QHT
A,B)

〈〈R〉〉s := { (τ → τ ′,va,vb) ∈ R | va ∈ Q.vqha(s)(fix) ∧ vb ∈ Q.vqhb(s)(fix) }
∪ { (∀α. τ,va,vb) ∈ R | va ∈ Q.vqha(s)(gen) ∧ vb ∈ Q.vqhb(s)(gen) }
∪ { (n,va,vb) ∈ R | vb ∈ Q.vqhb(s)(name) }
∪ { (unit,va,vb) | va ∈ Q.vqha(s)(unit) ∧ vb ∈ Q.vqhb(s)(unit) }
∪ { (nat,va,vb) | ∃n. va ∈ Q.vqha(s)(natn) ∧ vb ∈ Q.vqhb(s)(natn) }
∪ { (τ1 × τ2,va,vb) | ∃v1

a,v
2
a,v

1
b,v

2
b. (v1

a,v
1
b) ∈ 〈〈R〉〉s(τ1) ∧ (v2

a,v
2
b) ∈ 〈〈R〉〉s(τ2) ∧

va ∈ Q.vqha(s)(pair v1
a v2

a) ∧ vb ∈ Q.vqhb(s)(pair v1
b v2

b) }
∪ { (τ1 + τ2,va,vb) | ∃v1

a,v
1
b. (v1

a,v
1
b) ∈ 〈〈R〉〉s(τ1) ∧

va ∈ Q.vqha(s)(inl v1
a) ∧ vb ∈ Q.vqhb(s)(inl v1

b) }
∪ { (τ1 + τ2,va,vb) | ∃v2

a,v
2
b. (v2

a,v
2
b) ∈ 〈〈R〉〉s(τ2) ∧

va ∈ Q.vqha(s)(inr v2
a) ∧ vb ∈ Q.vqhb(s)(inr v2

b) }
∪ { (µα. τ,va,vb) | ∃v′a,v′b. (v′a,v

′
b) ∈ 〈〈R〉〉s(τ [µα. τ/α]) ∧

va ∈ Q.vqha(s)(roll v′a) ∧ vb ∈ Q.vqhb(s)(roll v′b) }
∪ { (ref τ,va,vb) | (va,vb) ∈ Q.rqh(s)(τ) }

G(s) := 〈〈G(s)〉〉s

Figure 4.13: Value Closure.

a given word represents a pair typically very much depends on the memory in which
it is considered (and similarly for other forms).

We therefore require that the global world provide a mechanism to answer ques-
tions such as: does value v currently represent a pair of values v1 and v2? This
mechanism takes the form of two value query handlers vqha and vqhb, very much like
the configuration query handlers that we have just seen. They take a state and a
value query vq ∈ VQryL (for L ∈ {A,B}), and return a set of values. The above ex-
ample translates into v ∈ vqha(s)(pair v1 v2), for instance. Crucially, these handlers
must be monotone in their state argument w.r.t. v, reflecting the immutability of
values (e.g., “once a pair, always a pair”).

For global reference values, the global world also needs to keep track of which A
locations correspond to which B locations (in the two modules one reasons about).
Recall the global world Wref from PBs, where a state sref was a partial bijection
between heap locations. In PILS, a global world must provide rqh for querying
this correspondence. (Essentially, each of the global worlds that we will define, will
still carry such a partial bijection in its state, and rqh is simply the interface to
it.) Actually, since we will never be interested in asking whether some value is a
reference without also asking about its counterpart, the language of value queries
(VQryL) mentioned above does not include a construct for references.

122 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

4.3.2 Value Closure

With the help of these three query handlers, the generalization of PBs’s value closure
operator is fairly straightforward. It is shown in Figure 4.135 as 〈〈−〉〉(−). Like before,
it is defined as a least fixed point. Unlike before, however, it now takes the world’s
transition system T and query method collection Q (both implicitly) as well as the
current state s (explicitly) as arguments, so that it can invoke Q’s query methods on
s to ensure that the values have the right “shape”. Note that references are dealt
with using Q.rqh, and all the rest using Q.vqha and Q.vqhb. There are a few points
to note.

• Admittedly, the name “value closure” is no longer justified since 〈〈R〉〉s is not
always a superset of R. We nevertheless keep the name for the sake of consis-
tency.

Related to this, we will see in the later parts of this section that PILS are set
up such that whenever we take related values from the global knowledge, we
do so via its value closure—never directly from the unfiltered global knowledge
(in contrast to PBs).

• The reason why the operator does not simply take the whole global world
as implicit argument is that in the definition of our particular global worlds
(Section 4.4), we already want to make use of the value closure operator—
hence there would be a cycle.

• As a convenient shorthand, we write G(s) for 〈〈G(s)〉〉s, i.e., the value closure
over G(s) relative to state s.

• The asymmetry in the case of type names seems odd: we require vb to satisfy
the name query as expected, but we require nothing of va. What is name
anyway?

Like in PBs, type names allow us to attach relational interpretations to abstract
types, and it is important that these relations can be essentially arbitrary. In
our PILS transivitity proof, it turns out that it is also important that the
untyped value closure has a “type name” case, namely when showing something
along the lines of G(n) ⊆ G1 ◦ G2(n) (see Lemma 64 in Section 4.8). There
we must be able to somehow decompose the relational interpretation of n.
However, we cannot simply add an unrestricted case of the form

∪ { (n,va,vb) ∈ R }

to the value closure, because then inverting G, in order to reason about pro-
grams that use related values, would force us to deal with the ever-present
possibility of essentially not knowing anything at all about these values.

5Here and in other places, we sometimes write W.S short for W.T.S, and similar for other com-
ponents when there is no ambiguity.

4.3. WORLDS 123

To avoid this hopeless situation, we introduced the name query and require in
the value closure’s type name case that the left-side values satisfy it. Moreover,
we defined I’s value query handler such that it only admits a very particular
class of values (cf. Figure 4.18). These values suffice for the purposes of our
transitivity proof, and, crucially, they cannot ever be succesfully used: any
attempt to deconstruct them results in an error (this implies that they are dis-
tinct from all other value forms occurring in the value closure). This knowledge
makes it easy to deal with the artifical type name case in proofs.

• The reader may also wonder about the two value queries that are not used by
the value closure operator: goodfix and goodgen. These are the PILS verions of
PBs’s FixVal and GenVal. They will be imposed on what the PILS substitute
for PBs’s local knowledge is. Like before, their purpose is to ensure that certain
relational compositions that come up in the proof of transitivity are empty. This
will become clear in Section 4.8.2.

4.3.3 Lifting and Separating Conjunction of Local Worlds

Figure 4.14 shows the PILS versions of lifting and separating conjunction of local
worlds (the PB versions were defined in Section 3.6.4). All definitions in this figure
take as implicit arguments two languages A and B; some also implicitly take the
global world Ω ∈ GWorldA,B or just a transition system T . We will make sure that
it is clear from the context how these implicit arguments are instantiated when using
the operators later on.

The first construct in the figure is the separating conjunction ⊗, generalizing ⊗
(Figure 3.14) from heap relations to configuration relations.

Next is the lifting operator. It composes its argument w with the global world
Ω much like in PBs. Note how the resulting full world w↑ forwards any queries to
Ω. Also note that, when accessing Ω’s configuration relation Ω.C, we need to pass it
a global knowledge indexed by Ω.T states, but the one we are given (G) is indexed
by w↑.T states; thus, instead of passing G, we pass G(−, s). (This does not apply to
w.C, because it uses the product transition system anyways.)

The product ⊗ of local worlds is defined iff their name sets are disjoint, like for
PBs. The definition is straightforward except for one point: both in the construction
of the product’s configuration relation and its name interpretation, we are given a
G indexed by T × (w1 ⊗ w2).T states, but need to pass one indexed by T × w1.T
states to w1, and one indexed by T × w2.T states to w2. We would like to pass
λ(s′g, s

′
1). G(s′g, (s

′
1, s2)) to w1 (and similarly for w2), but this is not guaranteed

to be monotone in s2. Consequently, we wouldn’t be able to show the required
monotonicity of the composed NR. For this reason, we first monotonize the global
knowledge constructions, written Gs2〈1〉 and Gs1〈2〉. This monotization is harmless
because ultimately we are only interested in monotone G anyways.

124 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

(−)⊗ (−) ∈ CRelA,B → CRelA,B → CRelA,B
R⊗R′ := { (c1 · c′1, c2 · c′2) | (c1, c2) ∈ R ∧ (c′1, c

′
2) ∈ R′ }

(−)↑ ∈ LWorldΩ.T
A,B →WorldA,B

w↑.T := Ω.T× w.T
w↑.Q.vqha(sg, s) := Ω.Q.vqha(sg)
w↑.Q.vqhb(sg, s) := Ω.Q.vqhb(sg)
w↑.Q.cqha(sg, s) := Ω.Q.cqha(sg)
w↑.Q.cqhb(sg, s) := Ω.Q.cqhb(sg)
w↑.Q.rqh(sg, s) := Ω.Q.rqh(sg)
w↑.C(G)(sg, s) := Ω.C(G(−, s))(sg)⊗ w.C(G)(sg, s)
w↑.N := w.N
w↑.O := w.O

(−)
(−)
〈1〉 ∈ ((Ω.T× (T1 × T2)).S→ VRelFA,B)→ T2.S→ (Ω.T× T1).S→ VRelFA,B

Gs2〈1〉(sg, s1) :=
⋃
{G(sg, (s1, s

′
2)) | s′2 v s2 }

(−)
(−)
〈2〉 ∈ ((Ω.T× (T1 × T2)).S→ VRelFA,B)→ T1.S→ (Ω.T× T2).S→ VRelFA,B

Gs1〈2〉(sg, s2) :=
⋃
{G(sg, (s

′
1, s2)) | s′1 v s1 }

(−)⊗ (−) ∈ LWorldTA,B → LWorldTA,B ⇀ LWorldTA,B
(w1 ⊗ w2).T := w1.T× w2.T
(w1 ⊗ w2).C(G)(sg, (s1, s2)) := Ω.C(Gs2〈1〉)(sg, s1)⊗ w.C(Gs1〈2〉)(sg, s2)

(w1 ⊗ w2).N.NS := w1.N.NS] w2.N.NS
(w1 ⊗ w2).N.NR(G)(sg, (s1, s2)) := w1.N.NR(Gs2〈1〉)(sg, s1) ∪ w2.N.NR(Gs1〈2〉)(sg, s2)

(w1 ⊗ w2).O := w1.O× w2.O

Figure 4.14: Lifting and separating conjunction of local worlds.

4.4. CONCRETE GLOBAL WORLDS 125

ΩAB.T := TA × TABref × TB

ΩAB.Q.vqha(sa, sref , sb) := vqhA(sa)

ΩAB.Q.vqhb(sa, sref , sb) := vqhB(sb)

ΩAB.Q.cqha(sa, sref , sb) := cqhA(sa)

ΩAB.Q.cqhb(sa, sref , sb) := cqhB(sb)

ΩAB.Q.rqh(sa, sref , sb) := rqhAB(sref)
ΩAB.C(G)(sa, sref , sb) := (PA(sa)× {B.∅})⊗ CABref (G)(sa, sref , sb)⊗ ({A.∅} × PB(sb))

Figure 4.15: Schematic Definition of Concrete Global Worlds.

4.4 Concrete Global Worlds

As we are going to see in Section 4.5, PILS define at the top-level a generic module
similarity, written -Ω. This basically generalizes PBs open program equivalence
(here we consider modules because they are the objects that we compile and link).
This relation is relative to a global world Ω ∈ GWorldA,B for the language pair A,B,
with A intuitively being the language to which is being translated and B the one
from which is being translated. Eventually we will instantiate this relation with four
global worlds in order to obtain the four models of interest. In this section, we define
these four global worlds:

• ΩT S ∈ GWorldT ,S (typed)

• ΩT I ∈ GWorldT ,I (untyped)

• ΩII ∈ GWorldI,I (untyped)

• ΩIS ∈ GWorldI,S (typed)

Some details in this section may be hard to understand without familiarity with
the actual PILS relations that will be discussed in Section 4.5. It can therefore be
helpful to revisit this section at a later point. (We did consider a different order of
presentation but prefer the current one.)

To avoid duplicate work, we define all four global worlds following the schema
shown in Figure 4.15 . Accordingly, each global world consists of three parts: one
solely regarding the output language A, one solely regarding the input language B,
and one regarding both.

4.4.1 Global References

The last of these deals with global references. It consists of a transition system TABref , a
configuration relation CABref and a reference query handler rqhAB, the implementation
of ΩAB.Q.rqh. These are defined in Figure 4.16 and closely follow the construction
of Wref in PBs: states are partial bijections on locations that can grow over time,

126 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

and the configuration relation CABref ensures that these locations are allocated in the
heaps and store related values. Reference queries are resolved by rqhAB via simple
membership tests on the state.

TABref comes in a typed and an untyped version (recall that the untyped one is ob-
tained by erasing the type-related components and conditions, which are highlighted
in color). For ΩT S and ΩIS , we pick the typed TT Sref and TISref , respectively, since they
involve the typed source language. For ΩT I and ΩII , we pick the untyped TT Iref and
TIIref , respectively. (This is reflected in the concrete definitions of the different Cref

implementations, namely in the quantification over elements of sref). We pick the
versions of rqhAB analogously.

4.4.2 Unary Parts

The unary part of ΩAB concerning language A consists of a transition system TA,
query handlers vqhA and cqhA (implementing ΩAB.vqha and ΩAB.cqha, respectively),
and a configuration predicate PA. We will discuss these in a moment. The unary
part concerning language B is analogous. The overall configuration relation ΩAB.C
then is the separating conjunction of three parts: CABref ; the lifting of PA by pairing
each element with an empty B configuration; and the analogous lifting of PB. It
remains to define TL, vqhL and cqhL, for L ∈ {S, I, T }.

4.4.2.1 Global World Components Regarding S

Figure 4.17 shows these constructions for the source language S. States are the run-
time environments used by the operational semantics (mapping labels to values, see
Section 4.2.3). It makes sense that the global world “owns” the environment because
it is shared by all modules constituting the program. In reflectance of the semantics,
the transition relation for these states is trivial: environments are not allowed to
change in any way, not even to grow.

The value and configuration query handlers are purely syntactic (they do not care
about the state) and mostly straightforward. For instance, value v represents a pair
of v1 and v2 iff it is the pair value 〈v1, v2〉. Note the following points:

• There are no restrictions on inhabitants of type names (we allow the full set of
values).

• Similarly for goodfix and goodgen, which only matter for the intermediate lan-
guage.

• We find it convenient to restrict the configurations accepted by cqhS to cores
(Section 4.2.2). We will do so also for the other languages.

• Our characterization of application (and instantiation) is actually “one step
ahead”: what we characterize is not the beta redex but rather the result of
performing the beta reduction. This is done for consistency with how we set
things up for the machine language in Section 4.4.2.3 below.

4.4. CONCRETE GLOBAL WORLDS 127

TABref .S := { sref ∈ Pfin(CTy × LocA × LocB) | ∀(τ, l1, l2) ∈ sref . ∀(τ ′, l′1, l′2) ∈ sref .
(l1 = l′1 =⇒ τ = τ ′ ∧ l2 = l′2) ∧ (l2 = l′2 =⇒ τ = τ ′ ∧ l1 = l′1) }

TABref .v := ⊆
TABref .vpub := ⊆

rqhAB(sref)(τ) := { (la, lb) | (τ, la, lb) ∈ sref }

CABref (G)(sa, sref , sb) := CABref (sref)(G(sa, sref , sb))

CT Sref (sref)(R) := { ((∅, ∅, ∅, ha), (hb, ∅, ∅)) | ha 6= ⊥ ∧ hb 6= ⊥ ∧
dom(ha) = { la | ∃τ, lb. (τ, la, lb) ∈ sref } ∧
dom(hb) = { lb | ∃τ, la. (τ, la, lb) ∈ sref } ∧
∀(τ, la, lb) ∈ sref . (ha(la), hb(lb)) ∈ R(s)(τ) }

CT Iref (sref)(R) := { ((∅, ∅, ∅, ha), (hb, ∅)) | ha 6= ⊥ ∧ hb 6= ⊥ ∧
dom(ha) = { la | ∃lb. (la, lb) ∈ sref } ∧
dom(hb) = { lb | ∃la. (la, lb) ∈ sref } ∧
∀(la, lb) ∈ sref . (ha(la), hb(lb)) ∈ R(s) }

CIIref (sref)(R) := { ((ha, ∅), (hb, ∅)) | ha 6= ⊥ ∧ hb 6= ⊥ ∧
dom(ha) = { la | ∃lb. (la, lb) ∈ sref } ∧
dom(hb) = { lb | ∃la. (la, lb) ∈ sref } ∧
∀(la, lb) ∈ sref . (ha(la), hb(lb)) ∈ R(s) }

CISref (sref)(R) := { ((ha, ∅), (hb, ∅, ∅)) | ha 6= ⊥ ∧ hb 6= ⊥ ∧
dom(ha) = { la | ∃τ, lb. (τ, la, lb) ∈ sref } ∧
dom(hb) = { lb | ∃τ, la. (τ, la, lb) ∈ sref } ∧
∀(τ, la, lb) ∈ sref . (ha(la), hb(lb)) ∈ R(s)(τ) }

Figure 4.16: Global World Components Related to Global References.

128 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

TS .S := Env
TS .v := (=)
TS .vpub := (=)

vqhS()(unit) := { 〈〉 }
vqhS()(nat v) := {n | n = v }
vqhS()(pair v v′) := { 〈v,v′〉 }
vqhS()(inl v) := { inl v }
vqhS()(inr v) := { inr v }
vqhS()(pack v) := { pack v }
vqhS()(roll v) := { roll v }
vqhS()(fix) := { fix f(x). e }
vqhS()(gen) := {Λ. e }
vqhS()(name) := Val
vqhS()(goodfix) := Val
vqhS()(goodgen) := Val

cqhS()(app v v′ k) := { (∅, ∅,k[e[v/f][v′/x]]) | v = fix f(x). e }
cqhS()(inst v k) := { (∅, ∅,k[e]) | v = Λ. e }
cqhS()(ret v k) := { (∅, ∅,k[v]) }

PS(s) ∈ P(Conf)
PS(s) := { (∅, s, ∅) }

Figure 4.17: Global World Components Concerning Language S.

4.4. CONCRETE GLOBAL WORLDS 129

TI .S := 1
TI .v := 1 × 1
TI .vpub := 1 × 1

vqhI()(unit) := { 〈〉 }
vqhI()(nat v) := {n | n = v }
vqhI()(pair v v′) := { 〈v,v′〉 }
vqhI()(inl v) := { inl v }
vqhI()(inr v) := { inr v }
vqhI()(pack v) := {v }
vqhI()(roll v) := {v }
vqhI()(fix) := { 〈σ; fix f(y, k). e〉 }
vqhI()(gen) := { 〈σ; Λ. e〉 }
vqhI()(name) := { 〈σ;n〉 }
vqhI()(goodfix) := { 〈σ; fix f(y, k). e〉 | ∀n. e 6= haltn }
vqhI()(goodgen) := { 〈σ; Λk. e〉 | ∀n. e 6= haltn }

cqhI()(app v v′ k) := { (∅, (σ[f 7→v, y 7→v′, k 7→k], e)) | v = 〈σ; fix f(y, k). e〉 }
cqhI()(inst v k) := { (∅, (σ[k 7→k], e)) | v = 〈σ; Λk. e〉 }
cqhI()(ret v k) := { (∅, (σ, k x)) | σ(k) = k ∧ σ(x) = v }

PI(s) ∈ P(Conf)
PI(s) := {∅ }

Figure 4.18: Global World Components Concerning Language I.

The associated configuration predicate cpredS simply requires that the configuration
consists solely of the state’s environment.

4.4.2.2 Global World Components Regarding I

Figure 4.18 shows the constructions for the intermediate language I. In constrast
to S, the run-time environment in I is not shared by all modules in a program but
is local to a computation. In fact, each function value, being a closure, comes with
its own environment. Therefore, there is no need to keep track of anything purely
I-specific in the global world and we can pick the trivial transition system (with a
singleton state space).

Like for the source language, the value and configuration query handlers are
purely syntacic and mostly straightforward. Note the following points:

• Being untyped, I does not provide a “pack” or “roll” construct and thus there
are no “packed” or “rolled” values. We decide to represent such S values the

130 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

same as the underlying values. This decision is arbitrary but natural.

• We restrict inhabitants of type names to be numbers.

• We require that the body of “good” functions is not a haltn expression. We
will use such “bad” functions when crafting intermediate values in the proof of
transitivity.

4.4.2.3 Global World Components Regarding T

The constructions for the machine language T , shown in Figure 4.19, are more inter-
esting. Recall that T configurations consist of (possibly) a program counter, (possi-
bly) a register file, a stack and a heap. We set things up such that the global world
always contributes the register file, the free part of the stack, and the part of the
heap used for allocating values. Formally, the state space TT .S ranges over pairs of
register file and value registry. Let us first focus on the register file.

Registers. The predicate PT only allows configurations whose register file is pre-
cisely the one in the current state. The full transition relation allows the contents
of the register file to change arbitrarily, because any code may write to a register.
The public transition relation, however, requires that the callee-saved registers (i.e.,
sp and env) retain their value. This corresponds to what the calling convention
prescribes for the end-to-end behavior of functions.

Stack. Recall that sp is intended to function as the stack pointer. Hence the stack
portion above and including address R(sp) is considered free. Accordingly, PT only
allows configurations whose stack is exactly this infinite, cofinite, and continuous
chunk (its contents do not matter). This formally ties the stack to register sp. More-
over, it rules out that any particular module puts constraints on that part. Note that
this, together with the public transition relation, implies that PILS do not expect
functions to preserve the unused part of the stack.

Value registry. The value registry’s purpose is to keep track of allocated values,
primarily such that the value query handler can do its job. As the figure shows,
it is a mapping from value descriptions to sets of values, and vqhT consults this
mapping to find out which pairs, sums, and functions are currently known. Other
value forms don’t require an entry in the registry (for instance, numbers are unboxed
and simply represent themselves). We collapse fix-points and generalizations as they
are represented the same way in T .

This representation, and that of the other value forms, manifests itself in the
configuration predicate cpredT , which connects the registry to the memory (and thus
to reality). It dictates that in order for a value v to represent a pair of v1 and v2

(v ∈ s.ρ(pairT v1 v2)), v must be a heap pointer to v1, with v2 being stored in the
adjacent cell. Similarly, sum values are represented by a heap pointer to a tag (zero for

4.4. CONCRETE GLOBAL WORLDS 131

d ∈ ValDescr ::= pairT v v′ | inlT v | inrT v | funT v (v ∈ Val)
ρ ∈ Registry := ValDescr→ P(Val)

TT .S := RegFile× Registry
TT .v := { ((R, κ), (R′, κ′)) | κ ⊆ κ′ }
TT .vpub := { ((R, κ), (R′, κ′)) | κ ⊆ κ′ ∧R(sp) = R′(sp) ∧R(env) = R′(env) }

vqhT ()(unit) := Val
vqhT ()(nat v) := {v }
vqhT (s)(pair v v′) := s.ρ(pairT v v′)
vqhT (s)(inl v) := s.ρ(inlT v)
vqhT (s)(inr v) := s.ρ(inrT v)
vqhT ()(roll v) := {v }
vqhT ()(pack v) := {v }
vqhT (s)(fix) := {v | ∃v′. v ∈ s.ρ(funT v′) }
vqhT (s)(gen) := {v | ∃v′. v ∈ s.ρ(funT v′) }
vqhT ()(name) := Val
vqhT ()(goodfix) := Val
vqhT ()(goodgen) := Val

cqhT (s)(app v v′ k) := { (n, ∅, ∅, ∅) | v = s.R(clo) ∧ v′ = s.R(arg) ∧
k = s.R(ret) ∧ v ∈ s.ρ(funT n) }

cqhT (s)(inst v k) := { (n, ∅, ∅, ∅) | v = s.R(clo) ∧
k = s.R(ret) ∧ n ∈ s.ρ(fun v) }

cqhT (s)(ret v k) := { (k, ∅, ∅, ∅) | v = s.R(arg) }

PT ∈ TT .S→ P(Conf)
PT (R, κ) := { (∅, R, q, h) | q 6= ⊥ ∧ dom(q) = {n | n ≥ R(sp)} ∧ ∀v,v′,v′′.

(v ∈ κ(pairT v′ v′′) =⇒ h(v) = v′ ∧ h(v + 1) = v′′) ∧
(v ∈ κ(inlT v′) =⇒ h(v) = 0 ∧ h(v + 1) = v′) ∧
(v ∈ κ(inrT v′) =⇒ ∃n 6= 0. h(v) = n ∧ h(v + 1) = v′) ∧
(v ∈ κ(funT v′) =⇒ h(v) = v′) }

Figure 4.19: Global World Components Concerning Language T .

132 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

“left”, non-zero for “right”), with the data being in the adjacent cell. Function values
are just heap addresses (intuitively: pointers to closures). The contents stored at such
an address is the code pointer, which is part of the value description: s.ρ(funT v′)
is the set of functions with code pointer v′. From the point of view of the global
world, only this heap cell matters. Code and environment, possibly stored in the
consecutive cells, are subject to a local world.

Both public and full transition relation allow the registry to grow over time, but
forbid any other modification. This ensures that any registered value stays valid
forever, and never changes intrinsically6. Of course, the (required) monotonicity of
vqhT relies on this.

Configuration queries. The registry also plays a role in cqhT . How should the
app and inst queries be implemented for T , i.e., what shall count as function calls?
Following Hur and Dreyer [32], we choose to be very liberal in what we accept here.
For instance, we do not want to require that the program counter points to a par-
ticular “call” instruction (in fact, we don’t even assume such an instruction in our
language). To be as flexible as possible, we define an application as the (relevant
part of the) machine state after the function call happened. That is, we require that
the program counter points to the first instruction of the function’s code and that
the appropriate registers are filled with return address and argument value (in the
case of a fix-point application), as dictated by the calling convention. We also require
that the function is registered as such. This is important because otherwise, when
reasoning about a function call, one may not know whether reading the code pointer
(before jumping) succeeds.

The ret v k query is easier to answer: the configuration’s program counter must
be exactly the continuation k and register arg must contain value v.

4.5 Simulations

The definitions of the various PILS simulation relations and auxiliary constructions
are shown in Figures 4.20 to 4.22. (As before, the parts unique to the typed model
are highlighted.) Let us first give a brief overview.

Most notions and concepts from PBs still exist in PILS. For some of the construc-
tions, the main difference in generalizing to the inter-language setting is simply that
they are now abstracted over the details of the particular languages being related,
with the help of language specification and worlds. That said, there are significant
changes as well. Recall that (i) we want PILS to be asymmetric (because so is re-
finement), (ii) we are getting rid of an explicit local knowledge component, (iii) we
want to avoid having two sources of coinduction (as were present in PBs), and (iv)
we both construct a typed and an untyped version.

6Benign changes to the concrete representation are allowed. For instance, the tag of an “inr”
value may change from 1 to 2, because both are non-zero.

4.5. SIMULATIONS 133

ESWA,B := W.O→ A.Cont×B.Cont→ (W.S→ VRelFA,B)→W.S→W.S→
(A.Conf×B.Conf)⊥ → ERelA,B

KSWA,B := W.O→ A.Cont×B.Cont→ (W.S→ VRelFA,B)→W.S→W.S→ KRelA,B

EW ∈ ESWA,B
EW (i)(k0

a,k
0
b)(G)(s0)(s)(φ)(τ) = { (ea, eb) | G ∈ GKW =⇒

∀ca, cb. ∀ηa ∈ frame. ∀ηb ∈ frame.
∀(ma,mb) ∈ cfg(W.C)(G)(s)(φ)(ea, eb)(ca, cb)(ηa, ηb).

(err) ∃m′b. mb
ι
↪→
∗
m′b ∧m′b ∈ error

∨ (ret) ∃m′b, s′,va,vb, e
′
a, e
′
b, c
′
a, c
′
b. mb

ι
↪→
∗
m′b ∧ s′ w s ∧ s′ wpub s0 ∧

(ma,m
′
b) ∈ cfg(W.C)(G)(s′)(⊥)(e′a, e

′
b)(c′a, c

′
b)(ηa, ηb) ∧ (va,vb) ∈ G(s′)(τ) ∧

(e′a, e
′
b) ∈W.cqha(s

′)(ret va k0
a)×W.cqhb(s′)(ret vb k0

b)

∨ (step) ma /∈ halted ∧ ∀t,m′a. ma
t
↪→ m′a =⇒ ∃i′, e′a, e′b, c′a, c′b,m′b,m′′b, s′, φ′.

mb
ι
↪→
∗
m′b ∧ s′ w s ∧ (m′a,m

′′
b) ∈ cfg(W.C)(G)(s′)(φ′)(e′a, e

′
b)(c′a, c

′
b)(ηa, ηb) ∧

(rec) (m′b
t
↪→ m′′b ∨ m′b = m′′b ∧ t = ι ∧ i′ < i) ∧ φ′ 6= ⊥ ∧

(e′a, e
′
b) ∈ EW (i′)(k0

a,k
0
b)(G)(s0)(s′)(φ′)(τ)

∨ (call) m′b
t
↪→ m′′b ∧ φ′ = ⊥ ∧

(e′a, e
′
b) ∈ U(s′)(G(s′))(G(s′))(KW (i′)(k0

a,k
0
b)(G)(s0)(s′))(τ) }

KW ∈ KSWA,B
KW (i)(k0

a,k
0
b)(G)(s0)(s)(τ ′)(τ) = { (ka,kb) | ∀G′ ⊇ G. ∀s′ wpub s. ∀(va, vb) ∈ G′(s′)(τ ′).

W.cqha(s
′)(ret va ka)×W.cqhb(s′)(ret vb kb) ⊆ EW (i)(k0

a,k
0
b)(G′)(s0)(s′)(⊥)(τ) }

FW ∈ (W.S→ VRelFA,B)→W.S→ VRelFA,B
FW (G)(s)(τ) := { (va,vb) ∈ GoodFuns(s)(τ) | ∃i. ∀ka,kb. ∀G′ ⊇ G. ∀s′ w s.

U(s′)(sng(τ)(va,vb))(G′(s′))(sng(ka,kb)) ⊆ EW (i)(ka,kb)(G′)(s′)(s′)(⊥) }

GKW ∈ P(W.S→ VRelFA,B)
GKW := {G | FW (G) ⊆ G ∧ (∀s, s′. s′ w s =⇒ G(s′) ⊇ G(s)) ∧

∀s. ∀n ∈W.NS. G(s)(n) = W.NR(G)(s)(n) }

Γ `Ma -Ω Mb : Γ′ :=

∀N ∈ P(TyNam). N countably infinite =⇒ ∃w ∈ LWorldΩ.T
A,B.

∀γa, γb. dom(γa) = dom(Γ) = dom(γb) =⇒ ∀Ψa,Ψb.
∀(hga, hla) ∈ cload(Ma)(Ψa)(γa). ∀(hgb, h

l
b) ∈ cload(Mb)(Ψb)(γb). ∃s0.

w.NS ⊆ N ∧
w ∈ stable(Ω) ∧
(∀G ∈ GKw↑. (hga, h

g
b) ∈ Ω.C(G(−, snd s0))(fst s0)) ∧

(∀G ∈ GKw↑. (hla, h
l
b) ∈ w.C(G)(s0)) ∧

Ω.rqh(fst s0) = ∅ ∧
∀f ′:τ ′ ∈ Γ′. ∃(va, vb) ∈ vload(Ma)(Ψa)(γa)(f

′)× vload(Mb)(Ψb)(γb)(f ′).

∀s w s0. ∀G ∈ GKw↑. (s ∈ sat(G) ∧ ∀f :τ ∈ Γ. (γaf, γbf) ∈ G(s)(τ)) =⇒
(va, vb) ∈ G(s)(τ ′)

Figure 4.20: Key components of PILS

134 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

At the top-level, PILS define module similarity, written Γ ` Ma -Ω Mb : Γ′.
This basically generalizes PBs open program equivalence (here we consider modules
because they are the objects that we compile and link). This relation is relative to a
global world Ω ∈ GWorldA,B for the language pair A,B, with A intuitively being the
language to which is being translated and B the one from which is being translated.
Γ and Γ′ list the imported and exported labels, respectively (each label is paired
with its type in the typed version). At the end, we instantiate this relation with four
global worlds in order to obtain the four models of interest: we write -T S for the
typed model -ΩT S , we write -T I for the untyped model -ΩT I , and so on.

The E relation. The main ingredient of the top-level relation is E, the generaliza-
tion of PBs’s expression equivalence, which retains the familiar distinction of three
cases.

In our generic setting there is no notion of expressions—only configurations—but
we find it helpful to still refer to the configurations related by E as such. Indeed,
as we will see, for the source language S these configurations will usually just be
expressions (empty heap and no environment). For T , on the other hand, they will
usually just be program counters (empty heap, empty stack, no register file). These
configurations will be completed with the help of configurations provided by the
world, as discussed in a moment.

Let us come to the formal definition of E, shown in Figure 4.20. At a high level, it
relates two “expressions” ea (the “target” of a transformation) and eb (the “source”
of a transformation) iff one of three cases holds:

(err) eb can silently (i.e., without I/O) produce an error.

(ret) ea is finished, and eb can silently finish returning a related value.

(step) ea can take a step and eb can match it (perhaps after some internal com-
putation). “Match” means that both steps produce the same event and that
the remaining computations either (rec) are again related by E, or (call) are
about to call related “external” functions, i.e., functions related by the global
knowledge G. This “external call” case is the characteristic feature of PBs, as
discussed at length in Chapter 3. In the concrete PILS instances we care about,
the event t is in the call case guaranteed to always be ι.

We now go into details.

Asymmetric small-step formulation. In contrast to the symmetric big-step for-
mulation of E in PBs, PILS employ an asymmetric small-step formulation (ASF).
Notice how E’s step case asks us to consider each possible step of the “target” pro-
gram ea in turn (when using rec repeatedly), each time asking us to match it with
steps of the “source” program eb. Besides being seemingly necessary to properly deal
with events (here: I/O), such an ASF is also important in the context of compiler

4.5. SIMULATIONS 135

verification because it gives the compiler the flexibility to remove erroneous behaviors
of the source program and resolve some of its nondeterminism.

In a naive ASF, each step of the target must be matched with one or more steps
of the source, thus forcing the source to take at least as many steps as the target.
Of course, this is overly restrictive and our actual definition allows stuttering, i.e.,
it allows the source to not take any steps at all. In order for this to be sound,
however, some other form of progress must occur; otherwise one could trivially show
any divergent target program related to any source program. We follow the standard
approach to stuttering by indexing the E relation with an element i of a well-founded
partially ordered set (W.O). We postpone a discussion of the details to Section 4.5.1.

Notice that the check that ma /∈ halted, i.e., that ma can take a step, is necessary
to keep the step case from being trivially satisfied whenever the program cannot
continue.

From configurations to machines and back. In order to talk about the ex-
ecution of ea and eb, we first need to “complete” these configurations and convert
them into physical machines. These completions should not be completely arbitrary;
they should adhere to the world’s constraints at the current state s. Hence we first
quantify over ca and cb, representing the portion of the machine state constrained
by the world W (an implicit argument), and require that they are indeed related
by W.C(G)(s). This is done with the help of the auxiliary construct cfg from Fig-
ure 4.21. Its φ argument, which is also an argument to E, plays an important role,
but we postpone its explanation. For now let us assume that it is always ⊥ (even in
E’s rec case), so that we don’t need to worry about the more disjunct in cfg.

Then, given such ca and cb, we attach these to ea and eb, together with arbi-
trary frame configurations ηa and ηb representing the rest of the running program
state. Finally, we only consider machines ma and mb that realize these composed
configurations7.

The two other occurrences of cfg, namely in step and ret, are proof obligations.
For instance, step requires us to show that, after the step(s), each resulting machine
can again be decomposed into a (possibly new) expression e′a, a (possibly new) con-
figuration c′a, and the original frame configuration ηa (similarly for the B-side), since
we should not have touched the frame’s private memory. Moreover, c′a and c′b must
again satisfy W ’s constraints, but we may advance s to a future state s′ in order to
achieve that.

Configuration queries. In the ret case of E, we generalize PB’s “terminating
with a value” to “returning a value to the initial continuation”, where the initial
continuations k0

a,k
0
b are given as additional arguments to E. As expected, we do so

by appeal to the world’s configuration query handlers W.cqha and W.cqhb. Similarly,

7Note that, in our three concrete languages, a machine realizing a configuration is identical to
the configuration (modulo the obvious embedding).

136 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

cfg ∈ CRTA,B → (T.S→ VRelFA,B)→ T.S→ (A.Cont×B.Cont)⊥ →
A.Conf×B.Conf → A.Conf×B.Conf → A.Conf×B.Conf → MRelA,B

cfg(C)(G)(s)(φ)(ea, eb)(ca, cb)(ηa, ηb) = { (ma,mb) |
(core) φ = ⊥ ∧ma ∈ real(ea · ca · ηa) ∧mb ∈ real(eb · cb · ηb) ∧

ea ∈ core ∧ eb ∈ core ∧ (ca, cb) ∈ C(G)(s)
∨ (more) φ = (ηa, ηb) ∧ma ∈ real(ea) ∧mb ∈ real(eb) ∧

ca = ∅ ∧ cb = ∅ }

U ∈W.S→ VRelFA,B → VRelFA,B → KRelA,B → CTy→ CRelA,B
U(s)(Rf)(Rv)(Rk)(τ) := { (ea, eb) |

(app) ∃τv, τr. ∃(ka,kb) ∈ Rk(τr)(τ).
∃(fa, fb) ∈ 〈〈Rf 〉〉s(τv → τr). ∃(va, vb) ∈ 〈〈Rv〉〉s(τv).
(ea, eb) ∈W.cqha(s)(app fa va ka)×W.cqhb(s)(app fb vb kb)

∨ (inst) ∃α, τr, τi. ∃(ka,kb) ∈ Rk(τr[τi/α])(τ).
∃(fa, fb) ∈ 〈〈Rf 〉〉s(∀α. τr).
(ea, eb) ∈W.cqha(s)(inst fa ka)×W.cqhb(s)(inst fb kb) }

sat ∈ (w↑.S→ VRelFA,B)→ P(w↑.S)
sat(G) := { s | ∃(ca, cb) ∈ w.C(G)(s) }

stable(Ω) ∈ P(LWorldΩ
A,B)

stable(Ω) := {w | ∀G, sg, s, s
′
g, ca, cb, ea, eb, ηa, ηb, c

′
a, c
′
b,ma,mb.

G ∈ GKw↑ ∧ (ca, cb) ∈ w.C(G)(sg, s) ∧ s′g w sg ∧
(ma,mb) ∈ cfg(Ω.C)(G(−, s))(sg)(ea, eb)(c′a, c

′
b)(ca · ηa, cb · ηb) =⇒

∃s′ wpub s. (ca, cb) ∈ w.C(G)(s′g, s
′) }

GoodFuns ∈W.S→ VRelFA,B
GoodFuns(s)(τ) = { (va,vb) |

(fix) ∃τv, τr. τ = τv → τr ∧ (va,vb) ∈W.vqha(s)(goodfix)×W.vqhb(s)(goodfix)
∨ (gen) ∃α, τr. τ = ∀α. τr ∧ (va,vb) ∈W.vqha(s)(goodgen)×W.vqhb(s)(goodgen) }

Figure 4.21: Key components of PILS (continued)

4.5. SIMULATIONS 137

in the call case, we use queries to check if the configurations in question represent
function calls (see the definition of U in Figure 4.21).

Notice that E’s argument type τ (in the typed version) is the type of the values
being returned to the initial continuations.

The K relation. Like for PBs, the continuation relation K—referenced in E’s
ret case—is itself defined straightforwardly in terms of E, but is now phrased with
the help two return queries to express the use of the two continuations language-
independently.

The F relation. Recall from Section 4.3 that, in PILS, we want to always work
with what we knew in PBs as the greatest consistent local knowledge, but we do not
want to have it as an explicit component of the world, because that would be point-
less. We achieve this as follows. We define once and for all the function similarity F,
which can be thought of as the greatest consistent local knowledge but is not part
of the world. This relation is easy to define on top of E, as shown in Figure 4.20. It
roughly says that future uses of the functions with arguments related by the global
knowledge and with arbitrary initial continuations must be related by E. The sec-
ond argument to U, sng(τ)(va,vb), is a shortcut for the singleton value relation
λτ ′. { (va,vb) | τ ′ = τ }. The last argument, sng(ka,kb), stands for the continuation
relation λτ, τ ′. { (ka,kb) | τ = τ ′ }, whose untyped version is a singleton and whose
typed version relates the two continuations whenever input type and output type
coincide. Also note how we “remember” the initial continuations by passing them on
to E.

How does F tie in with the other relations? Note that E is defined with the help
of GK, the set of valid global knowledges. In PBs, this set in turn was defined to
contain a global knowledge G iff G included the world’s local knowledge (G ⊇W.L(G)
in the simple version from Section 3.5). In PILS, we are forced to define it in terms
of F instead, as is shown in the figure. Hence, instead of having a local knowledge
component in worlds, in PILS we have an explicit function relation F. Moreover, F,
GK, and E are all mutually recursive. This leads to some significant differences in the
metatheory and the coinductive reasoning in PILS, as we will discover in Section 4.7.

Guardedness. Guardedness ensures the soundness of coinductive reasoning. PBs
enforced guardedness via their consistency condition, by requiring that we beta-
reduce the function applications before showing them related by E (Section 3.5).
In PILS, this might naturally be done in an analogous way via the definition of F.
However, PILS actually work a little differently, for the following reason: for our
machine language, we implement the configuration query such that function calls are
actually configurations whose program counter already points to the first instruction
of the function’s code. For uniformity and to avoid mismatches in proofs, we do the
same for the other languages as well. Now, requiring such function calls to take a

138 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

step before showing them related by E would be somewhat restrictive as it would
rule out functions that don’t actually do anything (e.g., fix f(x). 42 in S).

Therefore, things are slightly different in PILS. We do not require any step-taking
in F, as evident from the formal definition. So, when showing functions like the above
related by F, one can jump right to the return case in E. However, when attempt-
ing to appeal to E’s call case, we are forced to take a step on both sides. This
formulation actually fits very naturally with the asymmetric small-step formulation
of E. Contrast this with PB’s symmetric big-step formulation (Figure 3.15 in Sec-
tion 3.6.5), where in the call case both reduction sequences can be empty.

Module similarity. At the bottom of Figure 4.20 we finally define module simi-
larity. Simply put, this says that there exists a local world such that if the imported
values are related, then so are the exported values. The details are more complicated
because the exports may make sense only in the proper context.

More formally, we are first given a countably infinite set of type names N , just
like in PBs. We then require that there exists a stable local world w (potentially
dependent on the global world Ω), whose type names are covered by N . Next, given
global and local configurations obtained from loading the modules, there must exist
an initial state s0 of the full world such that these configurations are related at
s0 by Ω.C and w.C, respectively. (We also require that the initial state does not
relate any global references; this is a technical condition that simplifies the proof of
modularity.) Finally, for any exported label, the two modules must provide values
that are related at any satisfiable future state and global knowledge at which the
imported values (in γa and γb) are also related. Satisfiable here means that there are
some configurations related by w at this state; it is a technical condition later used
in the proof of transitivity.

4.5.1 Stuttering according to algebraic well-founded orders.

The E relation allows stuttering: in the step case, when we are given a silent step
of the target program ea, we are not forced to take a step in the source program eb.
Instead, following a standard technique [75], we can decrease i, which is an element
of a well-founded set8 and was given to E as an argument. The well-foundedness
guarantees that we can procrastinate only finitely many times, thus avoiding bo-
gus “proofs” where we stutter ad inifinitum and could thereby trivially relate any
divergent target program to any source program.

Let us look at the details. Whenever we need to show two functions related by F,
we get to choose an i for that particular (sub–)proof (cf. Figure 4.20). This i must
be an element of the well-founded set W.O. In E’s step/rec case, we can avoid
taking a step in eb by providing a smaller i′, meaning i′ < i according to the W.O’s
well-founded order. Then we can continue our proof with respect to i′ (notice how
it is passed to the recursive occurrence of E). It thus makes sense to think of this

8A well-founded set X consists of a carrier set X.C and a well-founded order (X.<) ⊂ X ×X.

4.5. SIMULATIONS 139

AWFO := { (C ∈ Set, (<) ∈ P(C× C), 0 ∈ C, 1 ∈ C, (+) ∈ C→ C→ C) |
(<) transitive and well-founded ∧
(∀i ∈ C. i+ 0 = i = 0 + i) ∧
(∀i, j, k ∈ C. i+ (j + k) = (i+ j) + k) ∧
(∀i, i′, j ∈ C. i < i′ =⇒ i+ j < i′ + j) ∧
(∀i, j, j′ ∈ C. j < j′ =⇒ i+ j < i+ j′) ∧
(∀i. 0 ≤ i) ∧
0 6= 1 }

Symmetric product: (×) ∈ AWFO→ AWFO→ AWFO
(X × Y).C := X.C× Y.C
(X × Y).0 := (0, 0)
(X × Y).1 := (1, 1)
(i, j) < (i′, j′) := (i < i′ ∧ j ≤ j′) ∨ (i ≤ i′ ∧ j < j′)
(i, j) + (i′, j′) := (i+ i′, j + j′)

Lexicographic product: (#) ∈ AWFO→ AWFO→ AWFO
(X #Y).C := X.C× Y.C
(X #Y).0 := 〈0, 0〉
(X #Y).1 := 〈1, 1〉
〈i, j〉 < 〈i′, j′〉 := i < i′ ∨ (i = i′ ∧ j < j′)
〈i, j〉+ 〈i′, j′〉 := 〈i+ i′, j + j′〉

Figure 4.22: Algebraically well-founded sets.

argument as a credit or budget. Actually, we get to pick a new i′ even if we don’t
stutter, but then i′ does not need to be smaller than i (in fact, there is no restriction
on i′ at all). Hence as soon as we take a proper step on the source side after stuttering
for a while, we are once again eligible for stuttering a finite number of times.

Since i’s universe is a component of the world, we can choose it as we like when we
construct the world. Proofs of, say, different program transformations can therefore
employ different metrics.

As Figure 4.22 shows, we actually require a little extra monoidal structure of
W.O, in addition to it being well-founded. It must also provide an order-respecting
“addition” with unit 0 and its elements must be non-negative, e.g., such that i ≤ i+j
and j ≤ i+j for any i, j. This is important for composing programs and their proofs—
in particular the PILS version of the external call lemma (see Section 4.7.1). We also
require that the carrier be non-trivial, i.e., contain at least another element (here
written 1) in addition to 0. This allows us to embed the natural numbers, which is
sometimes convenient. We call such monoids algebraically well-founded sets.

The figure also shows two product constructions (of two algebraically well-founded
sets). The symmetric product is used in the definition of the product of two local

140 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

worlds that we have seen earlier in Figure 4.14. The lexicographic product will be
used in the proof of transitivity in Section 4.8.

In order to make life easier for the user, we provide an embedding of any ordi-
nary well-founded order X ∈WFO into a particular algebraically well-founded order,
namely into gwf ∈ AWFO:

Definition 23.
gwf ∈ AWFO
gwf .C := List({(X,x) ∈WFO×X.C})
gwf .0 := ε
gwf .1 := (N<, 42)
i+ j := i, j

i < j

i < (X,x), j

i < j

(X,x), i < (X,x), j
x < x′

(X,x), i < (X,x′), i

The elements of gwf are heterogeneous lists of elements from arbitrary well-
founded orders (formally, each list component is a pair of a well-founded order X
and an element x ∈ X.C thereof). Addition is defined as concatenation and the
empty list is the neutral element. The 1 element is arbitrarily chosen to be a natural
number. The order gwf . < is defined as the least fixed point of the stated rules.

An arbitrary well-founded set X can be embedded in gwf in the sense of the
lemma below. Therefore, instead of worrying about how to make her well-founded
set of choice have the required extra structure, a user may simply pick gwf as her
local world’s w.O.

Lemma 42. Given a well-founded set X ∈WFO and elements x, x′ ∈ X.C, we have:

x < x′ ⇐⇒ (X,x) < (X,x′)

In the Coq formalization, we do not require < to be transitive. Instead, we simply
use its transitive closure in E, as well as in the conclusions (but not premises) of the
three order-specific axioms. This is equivalent but slightly more convenient for the
user who has to define the order and prove these conditions.

4.5.2 The two modes of E and cfg.

Recall the φ argument of E and cfg, which we haven’t explained yet. In the discussion
of cfg above, we assumed for simplicity that φ’s value is always ⊥. Indeed, it is
⊥ initially, i.e., when showing two function calls related (cf. the definition of F).
However, it may actually change from ⊥ to a pair (ηa, ηb) of frame configurations—
and back and forth—depending on how the proof proceeds. Whenever it changes,
the meanings of E and/or cfg change with it, so we speak of two different modes in
which these construct can function, controlled by the mode argument φ.

The purpose of the φ argument is to indicate internal steps of computation . If
it were always ⊥, then essentially E would treat each step as if it might result in

4.5. SIMULATIONS 141

control being passed to the environment. Concretely, after each step of the target
program and matching steps of the source program, we would be obliged to show
that the memory constraints currently imposed by the world are again met. And
then, in reasoning about the next step of the target program, we would be forced to
quantify over completely new configurations yet again.

Although sound, this is of course unnecessarily strict. Intuitively, we don’t need
to show that the world’s conditions are satisfied again until the point where we pass
control to the environment; similarly, we don’t need to quantify over new configura-
tions except at points where control is passed to us, because there is no way that the
memory could have changed in between the internal steps of our local computation.

PILS facilitate this with the help of φ as follows. Initially, we have cores ea, eb
and φ is ⊥ (e.g., as set up by F). We call this the default mode. Inside E, φ is
used to compose machines via cfg. That is, we complete the cores with world-related
configurations ca, cb and arbitrary frame configurations ηa, ηb to machines ma,mb,
as dictated by the core clause in cfg. Now, suppose we use E’s rec case to take a
target step to m′a and possibly some source steps to m′′b. step asks us to find φ′ and
s′ and e′a, e

′
b and c′a, c

′
b such that

(m′a,m
′′
b) ∈ cfg(W.C)(G)(s′)(φ′)(e′a, e

′
b)(c′a, c

′
b)(ηa, ηb)

and rec requires that e′a, e
′
b are related by E for φ′. Moreover, rec insists that

φ′ 6= ⊥, i.e., it initiates a mode change. Note that by definition of cfg (the more
clause), φ′ must thus necessarily be “chosen” to be (ηa, ηb). What implications does
this have?

First, in order to show thatm′a,m
′′
b are related as stated above, we are not required

to show that the world is currently satisfied. Second, cfg now enforces that we
pick e′a, e

′
b such that they actually account for the whole machines m′a,m

′
b, i.e., the

configurations that we need to show related recursively for φ′ are no longer cores but
essentially are the whole machines, including the frame configurations. We thus call
this the fixed mode.

Third, when we continue the reasoning by setting out to show e′a, e
′
b related in

fixed mode (for φ′), the new machines that we are given by cfg’s more do not comprise
any new parts—they simply realize e′a and e′b, respectively.

Assume that we repeat this process for a few times—essentially just taking a
few of steps with the target machine and a few steps with the source machine—and
then wish to appeal to one of the other E cases. In ret, we are forced to switch
back to the default mode (cfg is used with the ⊥ argument) and thus finally have
to get back in synch with the world. That is, we must find a proper future state
and decompositions of the machines that satisfy the world at that state and also
contain the original pristine frame configurations (this makes sense because control
moves on to code that may expect the world’s constraints to be satisfied and its local
memory to be uncompromised). We know what the original frame configurations are
because we stored them in the mode argument (when entering fixed mode earlier)
and repeatedly passed on this argument since then.

142 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

The same happens in the call case. Here, of course, we must continue reasoning
about the continuations in which the calls are made. Like F, K is defined in terms
of E’s default mode. This crucially forces the proof to consider fresh completing
configurations in a future state (in which the functions potentially return).

4.5.3 A Note on the Untyped Model

Since our source programs are typesafe and therefore “don’t go wrong”, neither will
correctly produced I or T programs. One may thus wonder why our model takes
faulty programs into account (the err case in E). This feature is actually crucial
for verifying transformations in the untyped version of the model. (Recall that we
obtain this version by erasing all the type arguments, which are highlighted, from
the definitions in the relevant figures.)

To see this, first consider the following optimization at the source level (where x
is a variable of type nat):

fix f(x). ifnz x then e else e fix f(x). e

In the process of showing that fix f(x). e is similar to the original function, we will be
given arguments related at some unknown relation G and state s, (nat, va, vb) ∈ G(s).
Now, by inverting the definition of the value closure, we learn that va = vb = n, for
some number n.

Let us ignore the remaining proof steps and instead consider this transformation
at the IL level, where we would be working in the untyped version of the model.
There, we will still be given related arguments, (va, vb) ∈ G(s), but this time the
type information is missing. Consequently, when inverting the value closure, we
don’t end up with the single case above (where va = vb = n), but must also consider
all the other cases such as va and vb being pairs. Now, note two important points:
First, the global world ΩII ensures that whenever vb is a number, then so is va. In
that case we can proceed as we would above in the typed model. Second, if vb is not
a number, then the original program produces an error and, thanks to err, there is
nothing more to show.

4.5.4 Convenience Lemmas

Reasoning directly using the definition of E can be tedious. Here we present a few
lemmas that aim at making proofs more convenient and cleaner by providing higher-
level reasoning principles. These lemmas (and variants thereof) are used extensively
throughout our Coq development. In particular when reasoning about T code, they
have become indispensable. To better grasp the meaning of these lemmas, it often
helps to read them bottom-up, a la “in order to show . . . , it suffices to show . . . ”.

The first two express the relationship between E’s default mode and its fixed
mode. Most remaining lemmas are stated in terms of the fixed mode, so we typi-
cally start out our reasoning by applying Lemma 43, which acquires world-related
configurations and frames.

4.5. SIMULATIONS 143

Lemma 43 (Acquire). If

∀(ca, cb) ∈W.C(G)(s). ∀(ηa, ηb) ∈ frame× frame.
(ea · ca · ηa, eb · cb · ηb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ)

then (ea, eb) ∈ EW (i)(ka,kb)(G)(s0)(s)(⊥)(τ).

Lemma 44 (Release). If

• (ea, eb) ∈ EW (i)(ka,kb)(G)(s0)(s)(⊥)(τ)

• (ca, cb) ∈W.C(G)(s)

• ea ∈ core ∧ eb ∈ core

then (ea · ca · ηa, eb · cb · ηb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

Lemma 45 states that in fixed mode it is always safe to assume the configurations
to be realizable.

Lemma 45. If

(∃(ma,mb) ∈ real(ca)× real(cb)) =⇒
(ca, cb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ)

then (ca, cb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

Similarly, Lemma 46 allows us to assume that the global knowledge is valid (this
holds even in default mode).

Lemma 46. If

G ∈ GKW =⇒ (ca, cb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ)

then (ca, cb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

Lemma 47 lets us take several (silent) steps in the source program. If this results
in an error, we are done immediately. Otherwise it suffices to show the original target
program related to the new source program for budget j. Since we take at least one
step, we may choose j arbitrarily (there is no point in allowing zero steps in this
lemma).

Lemma 47 (Stepping Source). If

∀mb ∈ real(cb). ∃m′b. mb
ι
↪→

+
m′b ∧

(m′b ∈ error ∨
∃c′b. m′b ∈ real(c′b) ∧ (ca, c

′
b) ∈ EW (j)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ))

then (ca, cb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

144 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

How about taking steps in the target program? Recall that E asks us to consider
a single target step at a time and that such a formulation is generally necessary
because of possible non-determinism in the target language. However, reasoning in
such a way can be extremely tedious since low-level programs are typically very long.
Moreover, usually a single source step translates into many target steps, so for most
of the target steps one would simply stutter on the source side. Often one actually
knows exactly how the given target program will execute. In these cases, instead
of being given one target step after the other, each time arguing that it must be a
particular step, one would like to just provide a step sequence of the target program
and then continue reasoning with its result.

Fortunately, we can prove a lemma that allows exactly this. Of course, it applies
only when such reasoning is sound, i.e., when the target execution in question is
guaranteed to be deterministic. The lemma thus rests on the idea of lowering deter-
minism from being a property of a language to being a property of a machine and
execution.

Definition 24 (Locally deterministic machines). A machine m is locally determin-
istic, written m ∈ LDet, iff

∀c, t,m′, c′.
m ∈ real(c) ∧m t

↪→ m′ ∧m′ ∈ real(c′) =⇒ ∀m1 ∈ real(c).

m1 /∈ halted ∧ ∀t1,m′1. m1
t1
↪→ m′1 =⇒ m′1 ∈ real(c′) ∧ t = t1

In words: if m realizes a configuration c and takes a step to a machine realizing c′

then any other machine realizing c can also take a step. Moreover, any such step
necessarily produces the same event and also results in a machine realizing c′.

Definition 25 (Deterministic step). A deterministic step is a step of a locally de-
terministic machine:

m
t
� m′ := m ∈ LDet ∧m t

↪→ m′

Obviously, in our T language, any step that doesn’t read input (i.e., t 6= ?n) is locally
deterministic. In S and I, allocations are also excluded.

Lemma 48 makes use of this notion of determinism. It allows us to take multiple
(n) silent steps on the target side if these steps are deterministic. The “difference”
between the original budget i and the new budget j (for which the new target program
must be shown related to the original source program) has to be at least n. This is
because we need to stutter n times in the proof. We also require n to be non-zero
as the property would otherwise not hold generically—but allowing n = 0 would be
pointless anyways.

Lemma 48 (Stepping Target). If

ma ∈ real(ca) ∧ ma
ι
�

n
m′a ∧ m′a ∈ real(c′a) ∧

n > 0 ∧ j <n i ∧
(c′a, cb) ∈ EW (j)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ)

4.5. SIMULATIONS 145

then (ca, cb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

Proof. Since n > 0, we have ma ∈ LDet and ma ↪→ m′′a with m′′a
ι
�

n−1
m′a for some

m′′a .
We prove the goal by induction on n. After unfolding E, we are given (via cfg)

machines m ∈ real(ca) and mb ∈ real(cb). Since m realizes the same configuration
as ma, we can exploit ma’s determinacy: the fact that ma is not halted implies that m

is not halted either. This allows us to appeal to E’s step case. So suppose m
t
↪→ m′′.

Case n = 1: Further exploiting the determinacy of ma tells us that t must be ι and
that m′′ ∈ real(c′a). By using the rec case and stuttering, it suffices to show
that there is i′ < i such that

(c′a, cb) ∈ EW (i′)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ),

which is a premise of the lemma (for i′ := j).

Case n > 1: Since m′a is not an error (it realizes a configuration) and errors cannot
be undone (as required by the language specification), m′′a cannot be an error
either. Hence there is c′′a such that m′′a ∈ real(c′′a). Further exploiting the
determinacy of ma thus tells us that t must be ι and that m′′ ∈ real(c′′a) as
well. By using the rec case and stuttering, it suffices to show that there is
i′ < i such that

(c′′a , cb) ∈ EW (i′)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

From j <n i we have i′ with j <n−1 i′ < i, so we are done by using the inductive

hypothesis on m′′a
ι
�

n−1
m′a.

Of course, if one wants to take steps on both sides, one can simply compose
Lemma 48 with Lemma 47. In that case, Lemma 47 should be applied first, because
it allows one to pick the intermediate budget such that Lemma 48’s condition on it
trivially holds.

Lemma 48 has a minor shortcoming, though. Suppose that after taking some
steps, we want to finish the proof of relatedness by appeal to E’s call case. Because
the premise is stated in terms of E, however, the lemma does not allow us to make the
last step—the one leading to a machine representing a call—part of the deterministic
execution that we provide. Instead, we are forced to provide a deterministic execution
that ends one step earlier, then unfold E and manually take the last step. Since this
can sometimes be a little tedious, we also provide the following specialized variant
of the lemma, where the deterministic execution ends in the actuall call. Since the
source program also must take at least one step in order for the call case to be
applicable, we bake in part of Lemma 47 here.

146 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Lemma 49 (Stepping to Call). If

• ma ∈ real(ca)

• ma
ι
�

n
m′a

• ∃j′ <n−1 i

• n > 0

• ∀mb ∈ real(cb). ∃m′b, ea, eb, c′a, c′b.
mb

ι
↪→

+
m′b ∧

(m′a,m
′
b) ∈ cfg(W.C)(G)(s)(⊥)(ea, eb)(c′a, c

′
b)(ηa, ηb) ∧

(ea, eb) ∈ U(s)(G(s))(G(s))(KW (j)(ka,kb)(G)(s0)(s))(τ)

then (ca, cb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

(The condition ∃j′ <n−1 i is actually only needed for the case where mb
ι
↪→

+
m′b

takes exactly one step. For simplicity, we require it in any case.)
What if we can’t show that the resulting programs constitute calls in state s?

After all, that state may be completely out of synch with the machines by now.
Fortunately, we can first apply Lemma 50, which lets us advance the current state
arbitrarily when in fixed mode.

Lemma 50 (Advancing the State). If

(ea, eb) ∈ EW (i)(ka,kb)(G)(s0)(s′)(ηa, ηb)(τ) ∧ s′ w s

then (ea, eb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

For the sake of completeness, we also state a variant of Lemma 48 for ending the
proof using E’s ret case.

Lemma 51 (Stepping Target to Return). If

• ma ∈ real(ca)

• ma
ι
�

n
m′a

• s wpub s0

• ∃j <n i

• n > 0

• ∀mb ∈ real(cb). ∃ea, eb, c′a, c′b,va,vb.
(m′a,mb) ∈ cfg(W.C)(G)(s)(⊥)(ea, eb)(c′a, c

′
b)(ηa, ηb) ∧

(ea, eb) ∈W.cqha(s)(ret va ka)×W.cqhb(s)(ret vb kb) ∧
(va,vb) ∈ G(s)(τ)

4.6. EXAMPLE 147

then (ca, cb) ∈ EW (i)(ka,kb)(G)(s0)(s)(ηa, ηb)(τ).

In combination, the lemmas shown in this section provide a powerful abstraction
and in most cases keep us from having to work directly with the definition of E.
Moreover, although PILS are defined in an asymmetric small-step style, these lemmas
essentially let us reason most of the time in the symmetric big-step style of PBs
(cf. Section 3.6.5). We present a simple example that employs these lemmas in
Section 4.6.

Remark. In all the stepping lemmas above, we only allow silent steps. In principle,
we could also allow output steps in Lemma 49, such that both the target and the
source execution produces the same sequence of outputs. This would require a slightly
different proof (each target step that produces output must be matched immediately
by the corresponding source step) but should be straightforward. Similarly, we could
also have a straightforward combination of Lemmas 47 and 48 that allows output
steps. For our compiler proofs, these generalizations are not important since there is
basically only two places where we need to reason about an output step, namely the
translation of an S or I output expression.

.

4.6 Example

As an example of using the PILS model, we now sketch the proof of a very simple
example simulation between a source module MS and a target module MT .

4.6.1 Modules

The source module is defined as follows.

Γ := F : unit + nat→ nat
Γ′ := E : nat× nat→ nat
MS := E = λx. F (inr x.2)
Γ `MS : Γ′

It consists of (and therefore exports) a single function E. This function takes as
argument a pair from which it extracts the second component. It then right-injects
this value into a sum, on which it calls the imported function F , returning whatever
F returns (if it does).

148 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

The target module is defined as follows.

MT := g
g := ({(E, 0)}, d)
d := E(ld aux1 [arg + 1]),

E(ld clo 2),
E(alloc arg clo),
E(sto [arg + 0] clo),
E(sto [arg + 1] aux1),
E(lpc aux1),
E(bop (−) aux1 aux1 8),
E(ld clo [aux1 + 0]),
E(jmp [clo + 0])

`MT : E

It consists of a single group, whose code pointer table in turn consists of a single
entry, mapping E to offset 0 in the data block d. The code starting there first
projects the second component of the argument pair and stores it in register aux1.
Next, it allocates two heap cells for the sum value in the argument register. It writes
2 into the tag component, indicating ”in right” (any non-zero value would do), and
writes the contents of aux1 into the value component. It then calculates the address
of F ’s entry in the label environment by getting the current program counter and
subtracting 8 (there are 5 instructions before lpc, as well as the full group header
of size 3, at the beginning of which F ’s value is stored). Finally, the code loads
F ’s function value from there into register clo and performs an indirect jump to it
(following the calling convention). Note that E does not modify registers ret and env
and thus passes them on to F , such that F will return to wherever E was supposed
to return to.

4.6.2 Proof

Our goal now is to show that the target module refines the source module relative to
the given typing:

Γ `MT -T S MS : Γ′

The first part of this concerns the module level and is very tedious, but we spell it
out here for once. The second part concerns the behavior of the actual functions.

4.6.2.1 First Part

Before we construct a suitable local world, let us look at what we know about loaded
configurations

(cgT , c
l
T) ∈ cload(MT)(ΨT)({F 7→vT })

(cgS , c
l
S) ∈ cload(MS)(ΨS)({F 7→vS})

4.6. EXAMPLE 149

as we will be given in a moment (vT and vS are the arbitrary values of the imported
function F). By the respective implementations of cload, we have:

cgT = (∅, R, (λ .0), [vT 7→ w] t [ΨT +2 7→ ΨT +3])

clT = (∅, ∅, ∅, [ΨT 7−→ vT ,ΨT +2] t [ΨT +3 7−→ d])

cgS = (∅, {F 7→vS}]MS] ρ)

clS = ∅

The global part of T ’s heap consists of two cells. The first cell’s address is F ’s
value (vT) and its contents is an arbitrary code pointer w. The second cell’s address
is E’s value, namely ΨT+2, and its code pointer refers to the next cell. This next cell
is contained in the local part of T ’s heap and marks the beginning of the data block
d. This heap also contains the label environment (cells ΨT and ΨT +1), through
which the code accesses F .

For S, things are simpler. The global configuration merely contains a label envi-
ronment. It maps F to vS and E to λx. F (inr x.2)—and possibly further labels to
further values (in ρ) but we do not care about those.

We now construct a local world w ∈ LWorldΩT S .T such that its configuration
relation insists that T ’s heap contains the local heap shown above (in clT). Since
that heap depends on the load address (ΨT) and the value of F (vT), which will only
be given after we have constructed w, we must define w’s state space to range over
all such possible values and then later pick the initial state to match whatever we
were given. We could define states to be pairs of a load address and a value for F ,
but a more general pattern is to define states simply as heaps:

w.S := HeapT
w.w := (=)
w.wpub := (=)
w.O := Nawf

w.C()(, s) := { ((∅, ∅, ∅, s),∅) }
w.NS := ∅
w.NR()() := ∅

As algebraic well-founded set we choose the natural numbers.

The configuration relation w.C does not depend on the global state (or even the
global knowledge) and thus w is trivially stable. Note how w.C contains a single pair,
where T ’s heap is exactly s.

Since the source program is so simple (e.g., does not involve any memory), w’s
states do not need to track any S-related information. Moreover, the target imple-
mentation of E does not involve any other local memory, so the only states we are
interested in are of the form [ΨT 7−→ vT ,ΨT +2] t [ΨT +3 7−→ d] (for some ΨT and
vT). Since the code is not self-modifying, this heap won’t ever change, which is why
we allow no transitions.

150 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Having constructed w, let us now suppose we are given anchors, import values
and corresponding loadings (cgT , c

l
T) and (cgS , c

l
S) as stated and destructed above. We

pick the obvious initial state s0 that matches these configurations:

s0 := ((s◦T , ∅, s◦S), [ΨT 7−→ vT ,ΨT +2] t [ΨT +3 7−→ d])

s◦T := (R, {(funT w, vT), (funT (ΨT +3),ΨT +2)})
s◦S := {F 7→vS}]MS] ρ

The registry in s◦T contains two function entries, one for vT with code pointer w (this
is F) and one for ΨT +2 with code pointer ΨT +3 (this is E). It is easy to check that
the following holds for any G, which concludes the first part.

(cgT , c
g
S) ∈ ΩT S .C(G(−, [ΨT 7−→ vT ,ΨT +2] t [ΨT +3 7−→ d]))(s◦T , ∅, s◦S)

(clT , c
l
S) ∈ w.C(G)(s0)

4.6.2.2 Second Part

It remains to reason about the exported functions. By implementation of vload we
have:

ΨT +2 ∈ vload(MT)(ΨT)({F 7→vT })(E)
λx. F (inr x.2) ∈ vload(MS)(ΨS)({F 7→vS})(E)

Note that we only need to consider future states of s0. This is crucial because
otherwise ΨT +2 may not have the meaning that we expect it to have (it might not
be registered as a function value, or its code pointer might point to arbitrary code
or invalid instructions or even non-existant memory).

So suppose we are given G ∈ GKw↑ and s w s0 for which the imported values
are related:

(vT , vS) ∈ G(s)(unit + nat→ nat)

We must show that the exported values are then related as well:

(ΨT +2, λx. F (inr x.2)) ∈ G(s)(nat× nat→ nat)

Showing that they count as functions in s, i.e., that they match the fix query, is easy
to do by relying on s w s0, because we explicitly registered ΨT +2 as a closure in s◦T ,
which is only allowed to grow.

Showing that the functions are related by G(s) takes more work. Since G is a
valid global knowledge, we have Fw↑(G) ⊆ G. So it suffices to show the functions
similar according to F (the GoodFuns condition holds trivially), for which we consider
their applications in a future state. Given s′ w s, G′ ⊇ G and initial continuations
kT ,kS , it suffices to show that there is an i such that

(eT , eS) ∈ Ew↑(i)(kT ,kS)(G′)(s′)(s′)(⊥)(nat).

4.6. EXAMPLE 151

Here, the configurations eT and eS are applications of (the values for) E to related
values according to U (recall that these “applications” actually describe the machine
after the jump or beta reduction):

eT = (ΨT +3, ∅, ∅, ∅)
eS = (∅, ∅,kS [F (inr v′S .2)])
s′.R(ret) = kT
s′.R(arg) = v′T
(v′T , v

′
S) ∈ G′(s′)(nat× nat)

The choice of i somewhat depends on the lemmas that we want to use, so for now
we will keep i abstract and pick its value at the end of the proof, when all constraints
are known. (Of course we need to be careful that the choice does not depend on
anything that got introduced in the meantime).

We start by applying Lemmas 43 and 45. This leaves us having to show

(eT · cT · ηT , eS · cS · ηS) ∈ Ew↑(i)(kT ,kS)(G′)(s′)(s′)(ηT , ηS)(nat)

for any (cT , cS) ∈ w↑.C(G′)(s′) and any ηT , ηS , but we may assume that there is
mT ∈ real(eT · cT · ηT) (we don’t care about a source machine for now).

Next, we apply Lemmas 50 and 49 such that it suffices to show the existence of
n > 0, j, s′′ and m′T satisfying the following:

1. mT
ι
�

n
m′T

2. ∃j′ <n−1 i

3. s′′ w s′

4. ∀mS ∈ real(eS · cS · ηS). ∃m′S , e′T , e′S , c′T , c′S .
mS

ι
↪→

+
m′S ∧

(m′T ,m
′
S) ∈ cfg(w↑.C)(G′)(s′′)(⊥)(e′T , e

′
S)(c′T , c

′
S)(ηT , ηS) ∧

(e′T , e
′
S) ∈ U(s′′)(G′(s′′))(G′(s′′))(Kw↑(j)(kT ,kS)(G′)(s′)(s′′))(nat)

(1) First, due to s′ w s0 we know that the heap contains [ΨT + 3 7−→ d]. This
means that mT ’s proram counter (which equals that of eT) currently points to the
first instruction of E’s code. From (v′T , v

′
S) ∈ G′(s′)(nat×nat) we know by definition

of the value closure and ΩT S that v′T is registered in the global state’s database of
T values, i.e., we have v′T ∈ s′.ρ(pairT v

1
T v

2
T) for some machine values v1

T , v
2
T . This,

and the connection between s′ and mT , tells us that the target heap contains v2
T

at address v′T + 1. Hence, after one (deterministic) step of mT , which performs the
first ld instruction, register aux1 holds v2

T (and of course the program counter has
advanced to the second ld instruction)—otherwise nothing changes.

Two further steps write the constant 2 into register clo and the address of a
newly allocated heap block of size 2 into register arg. The next two steps write to

152 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

this block of memory. The subsequent lpc instruction has the effect of writing ΨT+8
into register aux1, so that the bop instruction updates aux1 to ΨT .

In order to reason about the remaining two instructions, note that due to s′ w s0

we know that the machine heap contains both [ΨT 7→ vT] and [vT 7→ w]. Accordingly,
the next two steps write vT , the value of F , into register clo and set the program
counter to its first instruction at address w.

All in all, we have the end-to-end deterministic execution mT
ι
�

9
m′T , where

m′T ∈ real(e′T · c′T · ηT)
e′T = (w, ∅, ∅, ∅)

and c′T is obtained from cT by extending its heap with the freshly allocated (and
thus disjoint) chunk [w′ 7−→ 2, v2

T] and changing its register file s′.R to

s′.R[arg 7→w′][aux1 7→ΨT][clo 7→vT].

(2) With n = 9, it is easy to satisfy ∃j′ <n−1 i by choosing i = 8 and j′ = 0 (recall
that we kept i abstract until now).

(3) We pick s′′ basically such that it matches the resulting machine m′T above.
Concretely, we derive s′′ from s′ by making two changes. First, we set itsR component
to s′.R[arg 7→w′][aux1 7→ΨT][clo 7→vT]. Second, we extend the value registry s′.ρ with
an entry saying that w′ now represents inrT v

2
T . It is trivial to check that s′′ w s′.

(4) Let us focus on the source program. From (v′T , v
′
S) ∈ G′(s′)(nat × nat) we

know by definition of the value closure and ΩT S that v′S equals 〈v1
S , v

2
S〉 for some

source values v1
S , v

2
S that are related to v1

T , v
2
S from above. In particular, we have

(v2
T , v

2
S) ∈ G′(s′)(nat).

Moreover, from s′ w s w s0 we know that cS consists of the environment s◦S ,
which maps F to vS . Since vS is related by G′(s′) at function type, it must have the
form fix f(x). e.

All in all, we thus easily derive mS ↪→+ m′S , where:

m′S ∈ real(e′S · cS · ηS)
e′S = kS [e[vS/f][inr v2

S/x]]

Note that this represents a function call in s′′ (in fact, in any state):

e′S ∈ w↑.cqhb(s′′)(app vS (inr v2
S) kS)

It is easy to see that e′T from (1) also represents a function call in s′′:

e′T ∈ w↑.cqha(s
′′)(app vT w

′ kT)

Moreover, using monotonicity, the functions are obviously related by G′(s′′). The
arguments w′ and inr v2

S are as well, because they represent right-injections of v2
T

and v2
S , respectively, which are related by G′(s′).

4.7. METATHEORY 153

Consequently, the U condition in (4) is satisfied if we can show that the continu-
ations kT and kS are related by Kw↑(j)(kT ,kS)(G′)(s′)(s′′) for an arbitrary j of our
choosing. Indeed, this is an easy general lemma: the initial continuations are always
related (at any public extension of the initial state).

Lemma 52.

∀s wpub s0. (ka,kb) ∈ KW (i)(ka,kb)(s0)(s)(τ)(τ)

Proof. By unfolding the definitions and immediately using E’s ret case.

To conlude the proof of (4)—and thus the proof of the example—it remains to
establish the cfg condition, in particular that c′T and c′S satisfy the world. This is
very easy to check.

4.7 Metatheory

4.7.1 Basics

Definition 26 (Least global knowledge). For W ∈ WorldA,B and a function g ∈
W.S → VRelFA,B, we define [W]g ∈ W.S → VRelFA,B as the least global knowledge
containing g. Formally it is constructed as a greatest fixed point of a monotone
function such that the following holds (using a pointwise union over functions):

[W]g = g ∪ FW ([W]g) ∪W.NR([W]g)

We write [W] short for [W]∅.

Lemma 53 (Least global knowledge). For any W and g, we have [W]g ∈ GKW if
the following hold:

1. g is monotone: ∀s′, s. s′ w s =⇒ g(s′) ⊇ g(s)

2. ∀n ∈W.NS. ∀s. g(s)(n) = ∅

. In particular, we always have [W] ∈ GKW .

Moreover, [W]g ⊆ G for any G ∈ GKW with g ⊆ G.

Lemma 54 (Composition of E and K). If

1. (ea, eb) ∈ EW (i)(ka,kb)(G)(s)(s)(φ)(τ) and

2. (ka,kb) ∈ KW (j)(k0
a,k

0
b)(G)(s0)(s)(τ)(τ0),

then (ea, eb) ∈ EW (i+ j)(k0
a,k

0
b)(G)(s0)(s)(φ)(τ0).

Proof. By a fairly straightforward coinduction, at the same time proving a similar
property for K.

154 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Analogously to Section 3.7.1, we define a version of E (in terms of the original
E) that parameterizes over the value relation by which functions are related in the
call case.

Definition 27.

EG
W ∈ ESWA,B

EG
W (i)(k0

a,k
0
b)(G)(s0)(s)(φ)(τ) = { (ea, eb) | G ∈ GKW =⇒

∀ca, cb, ηa, ηb. ∀(ma,mb) ∈ cfg(W.C)(G)(s)(φ)(ea, eb)(ca, cb)(ηa, ηb).

(err) ∃m′b. mb
ι
↪→
∗
m′b ∧m′b ∈ error

∨ (ret) ∃m′b, s′,va,vb, e
′
a, e
′
b, c
′
a, c
′
b. mb

ι
↪→
∗
m′b ∧ s′ w s ∧ s′ wpub s0 ∧

(ma,m
′
b) ∈ cfg(W.C)(G)(s′)(⊥)(e′a, e

′
b)(c′a, c

′
b)(ηa, ηb) ∧ (va,vb) ∈ G(s′)(τ) ∧

(e′a, e
′
b) ∈W.cqha(s

′)(ret va k0
a)×W.cqhb(s′)(ret vb k0

b)

∨ (step) ma /∈ halted ∧ ∀t,m′a. ma
t
↪→ m′a =⇒ ∃i′, e′a, e′b, c′a, c′b,m′b,m′′b, s′, φ′.

mb
ι
↪→
∗
m′b ∧ s′ w s ∧ (m′a,m

′′
b) ∈ cfg(W.C)(G)(s′)(φ′)(e′a, e

′
b)(c′a, c

′
b)(ηa, ηb) ∧

(rec) (m′b
t
↪→ m′′b ∧ ∨m′b = m′′b ∧ t = ι ∧ i′ < i) ∧ φ′ 6= ⊥ ∧

(e′a, e
′
b) ∈ EW (i′)(k0

a,k
0
b)(G)(s0)(s′)(φ′)(τ)

∨ (call) m′b
t
↪→ m′′b ∧ φ′ = ⊥ ∧

(e′a, e
′
b) ∈ U(s′)(G(s′))(G(s′))(KW (i′)(k0

a,k
0
b)(G)(s0)(s′))(τ) }

Lemma 55 (External call). If G = FW (G) ∪W.NR(G) ∪ G, then

EW (i)(ka,kb)(G) = EG
W (i)(ka,kb)(G).

Proof. The proof is fairly similar to the PB version (Lemma 12 in Section 3.7.1). The
interesting direction is “⊆”. Due to the single-step style of PILS, we don’t need to
do any induction on steps here, in contrast to the PB proof. As before, the crucial
part is the composition of E and K in the call case (here via Lemma 54).

Note that although the difference between E and EG is apparently “lost” if the
programs are related via the rec case, it can of course be restored by immediately
re-applying the lemma. Indeed, we will do so in the proof of Lemma 56.

4.7.2 Adequacy

With the external call lemma at hand, we can now approach adequacy. We are
only interested in adequacy of -T S , the target-source module refinement. As a
lemma, we nevertheless prove adequacy of E generically for any instance of the typed
model (because we can). It states that if ea and eb are related by E at a consistent
global knowledge and relative to terminal continuations, then any completions of
ea and eb to proper machines ma and mb satisfy the standard refinement property.
Consistent here means that, modulo type names, the “external part” of G is empty—
see condition 2 below. Terminal here means that as soon as the continuations obtain
control, the programs are halted—see conditions 3 and 4 below. Otherwise, the
relatedness of ea and eb would only account for their behavior until they reach their

4.7. METATHEORY 155

continuations, while behav(ma) and behav(mb) of course include the behavior of
these continuations.

Lemma 56 (Generic adequacy of typed E). In the context of W ∈WorldA,B, if

1. (ea, eb) ∈ EW (i)(ka,kb)(G)(s0)(s)(φ)(τ)

2. G ∈ GKW ∧G = F(G) ∪W.NR(G)

3. ∀s w s0. ∀va. ∀e′a ∈W.cqha(s)(ret va ka). ∀c′a. real(e′a · c′a) ⊆ halted

4. ∀s w s0. ∀vb. ∀e′b ∈W.cqhb(s)(ret vb kb). ∀c′b. real(e′b · c′b) ⊆ halted

5. ηa ∈ frame ∧ ηb ∈ frame

6. (ma,mb) ∈ cfg(G)(s)(φ)(ea, eb)(ca, cb)(ηa, ηb)

then behav(ma) ⊆ behav(mb).

Proof. By coinduction on mb’s behavior, with a nested well-founded induction on i.
We critically rely on the external call Lemma 55 to rule out any use of the call
disjunct in (1).

Theorem 13 (Adequacy of -T S). If

1. ε `Ma -T S Mb : Γ

2. Γ(Fmain) = unit→ τ

3. ma = load(Ma)

4. mb = load(Mb)

then behav(ma) ⊆ behav(mb).

Proof. We define the following configurations:

c1
a := (∅, R,ma.q, h1)
c2
a := (∅, ∅, ∅, h2)

c1
b := (∅,mb.σ, ∅)
c2
b := ∅

Here, R is ma.R and h1, h2 are the global and local heap (respectively) returned by
load ′ in the definition of load(Ma).

With the help of (3) and (4), it is easy to show that these configurations are
proper loadings of the given modules (using load address 0 in the case of Ma):

5. (c1
a, c

2
a) ∈ cload(Ma)(0)(∅)

6. (c1
b, c

2
b) ∈ cload(Mb)(1)(∅)

156 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Using these, we instantiate (1). This yields a local world w ∈ LWorld(ΩT S) and,
for G := [w↑], a state s0 and values va, vb such that:

7. (c1
a, c

1
b) ∈ ΩT S .C(G(−, snd s0))

8. (c2
a, c

2
b) ∈ w.C(G)(s0)

9. va ∈ vload(Ma)(0)(∅)(Fmain) ∧ vb ∈ vload(Mb)(1)(∅)(Fmain)

10. (va, vb) ∈ G(s0)(unit→ τ)

Note that (10) implies (va, vb) ∈ Fw↑(G)(s0)(unit→ τ) due to Definition 26, and also
that vb = fix f(x). e (for some f, x, e).

We know that ma and mb look as follows (for a particular n):

ma = (n, ∅, ∅, ∅) · c1
a · c2

a

mb = (∅, ∅, vb 〈〉) · c1
b · c2

b

Now, let ea = (n, ∅, ∅, ∅) and eb = (∅, ∅, e[vb/f][〈〉/x]). Then it is easy to see that ea
and eb represent the following “applications” of va and vb:

ea ∈ w↑.cqha(s0)(app va R(arg) R(ret))
eb ∈ w↑.cqhb(s0)(app vb 〈〉 •)

Since the arguments are related by G(s0)(unit) trivially and since (7) and (8) com-
pose to (c1

a ·c2
a, c

1
b ·c2

b) ∈ w↑.C(G)(s0), we can instantiate (va, vb) ∈ Fw↑(G)(s0)(unit→
τ) such that we obtain the following:

(ea, eb) ∈ Ew↑(i)(R(ret), •)(G)(s0)(s0)(⊥)(τ)

It suffices to apply Lemma 56 to this, using empty frames. Note that R(ret) = 0
and thus the target continuation is terminal as required (a target machine cannot
step if the program counter is 0). The source continuation • is terminal as well, as a
source machine cannot step if its expression is a value.

4.7.3 Modularity

We now sketch the proof of modularity, starting with some lemmas about the product
of local worlds. Recall its definition, as well as that of Gs2〈1〉 and Gs1〈2〉 from Figure 4.14.

4.7.3.1 Generic modularity of E

Lemma 57 (PILS version of Lemma 9). If w1, w2 ∈ stable(Ω) and w = w1 ⊗ w2,
then:

1. s2 wpub s
0
2 =⇒

Ew1↑(i)(ka,kb)(Gs2〈1〉)(s
0, s0

1)(s, s1)(⊥) ⊆
Ew↑(i, 0)(ka,kb)(G)(s0, (s0

1, s
0
2))(s, (s1, s2))(⊥)

4.7. METATHEORY 157

2. s1 wpub s
0
1 =⇒

Ew2↑(i)(ka,kb)(Gs1〈2〉)(s
0, s0

2)(s, s2)(⊥) ⊆
Ew↑(0, i)(ka,kb)(G)(s0, (s0

1, s
0
2))(s, (s1, s2))(⊥)

3. s2 wpub s
0
2 ∧ s′ w s ∧ (ca, cb) ∈ w2.C(G

s′1
〈2〉)(s, s2) =⇒

Ew1↑(i)(ka,kb)(Gs2〈1〉)(s
0, s0

1)(s′, s′1)(ca · ηa, cb · ηb) ⊆
Ew↑(i, 0)(ka,kb)(G)(s0, (s0

1, s
0
2))(s′, (s′1, s2))(ηa, ηb)

4. s1 wpub s
0
1 ∧ s′ w s ∧ (ca, cb) ∈ w1.C(G

s′2
〈1〉)(s, s1) =⇒

Ew2↑(i)(ka,kb)(Gs1〈2〉)(s
0, s0

2)(s′, s′2)(ca · ηa, cb · ηb) ⊆
Ew↑(0, i)(ka,kb)(G)(s0, (s0

1, s
0
2))(s′, (s1, s

′
2))(ηa, ηb)

We actually only care about first two, but need to prove the last two at the same time.
Moreover, in contrast to PBs, here we cannot prove (1) and (2) separately, in each
relying only on the stability of the respective local world. Why is this? In PBs, due
to GK being defined in terms of the world’s local knowledge, we could prove Lemma 8
a priori, and then prove Lemma 9 on top of that. In PILS, GK is mutually recursive
with E. Proving the analogue of Lemma 8 hence already requires the analogue of
Lemma 9. More precisely, the proof of “Ew1↑ ⊆ Ew↑” relies on stability of w2. In
order to make use of this stability, we also need to know part (2) of the lemma below.
However, proving that part in turn requires “Ew2↑ ⊆ Ew↑”. So we actually require
stability of both w1 and w2 and have to prove everything simultaneously (also for F
and K.

Lemma 58 (PILS version of Lemma 8). If w1, w2 ∈ stable(Ω) and w = w1⊗w2 and
G ∈ GKw↑, then:

1. ∀s2 ∈ w2.S. G
s2
〈1〉 ∈ GKw1↑

2. ∀s1 ∈ w1.S. G
s1
〈2〉 ∈ GKw2↑

Lemma 59 (PILS version of part of Lemma 10). If w1, w2 ∈ stable(Ω) and w =
w1 ⊗ w2, then w ∈ stable(Ω).

4.7.3.2 Modularity of -T S

Based on these generic results, we now sketch the proof of the key modularity property
that we are interested in, namely that -T S is preserved under linking:

Γ `M1
a -T S M

1
b : Γ1 Γ,Γ1 `M2

a -T S M
2
b : Γ2

Γ ` link(M1
a ,M

2
a) -T S link(M1

b ,M
2
b) : Γ1,Γ2

(Here we drop a few well-formedness side conditions. The fulll theorem is stated
at the end of the section as Theorem 14.) This proof necessarily involves several
language details, as otherwise we could have proven a generic version.

158 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Let Ma := link(M1
a ,M

2
a) and Mb := link(M1

b ,M
2
b). We are first given a countably

infinite set N of type names, which we split into two disjoint infinite parts N1 and
N2. Using these to instantiate the two premises gives us stable local worlds w1 and
w2, respectively, with disjoint type name sets. As our local world, we choose their
product w := w1 ⊗ w2, which is stable as well by Lemma 59.

Next we are given anchors, import lists, and pairs of configurations corresponding
to appropriate loadings of the modules:

(cga, c
l
a) ∈ cload(Ma)(Ψa)(γa)

(cgb, c
l
b) ∈ cload(Mb)(Ψb)(γb)

Because we know the T and S implementations of cload, we know what these con-
figurations look like:

cga = (∅, R, q, h t hg) cgb = (∅, γb]Mb] ρ, ∅)
cla = (∅, ∅, ∅, hl) clb = ∅

where (hg, hl, x) = load ′(Ma)(Ψa)(map snd γa)

We can now take these loadings of Ma and Mb, and cut away some data in order
to obtain loadings of M1

a and M1
b , and similarly of M2

a and M2
b . Formally, we define

Ψ1
a := Ψa Ψ1

b := 1 (= Ψb)
γ1
a := γa γ1

b := γb
cg,1a := (∅, R, q, h t hg1) cg,1b := (∅, γb]M1

b] (M2
b] ρ), ∅)

cl,1a := (∅, ∅, ∅, hl1) cl,1b := ∅

Ψ2
a := Ψa + size(hg1 t hl1) Ψ2

b := 1
γ2
a := γa, x1 γ2

b := γb,M
1
b

cg,2a := (∅, R, q, (h t hg1) t hg2) cg,2b := (∅, γ2
b]M2

b] ρ, ∅)
cl,2a := (∅, ∅, ∅, hl2) cl,2b := ∅

where (hg1, h
l
1, x1) = load ′(M1

a)(Ψ1
a)(map snd γ1

a)
(hg2, h

l
2, x2) = load ′(M2

a)(Ψ2
a)(map snd γ2

a)

and are then able to show the following:

(cg,1a , cl,1a) ∈ cload(M1
a)(Ψ1

a)(γ
1
a)

(cg,1b , cl,1b) ∈ cload(M1
b)(Ψ1

b)(γ1
b)

(cg,2a , cl,2a) ∈ cload(M2
a)(Ψ2

a)(γ
2
a)

(cg,2b , cl,2b) ∈ cload(M2
b)(Ψ2

b)(γ2
b)

This may look complicated but is actually quite simple. There aren’t any real choices
involved here—everything fits together in a canonical way. For instance, Ψ2

a is exactly

4.7. METATHEORY 159

the address in the heap where load ′(link(M1
a ,M

2
a)) places the environment for and

code of M2
a .

Note that, assuming well-typedness, (the functions exported by) Mod1
b and M2

b

are disjoint. Hence cgb, cg,1b , and cg,2b are actually all the same, just written in a
different way. Also note that hg1 t h

g
2 = hg and hl1 t hl2 = hl and x1, x2 = x by

definition of load ′.

We now further instantiate the premises with these constructed loadings. The
first premise yields an initial state (s◦1, s1) ∈ w1↑.S such that:

1. ∀G ∈ GKw1↑. (cg,1a , cg,1b) ∈ ΩT S .C(G(−, s1))(s◦1)

2. ∀G ∈ GKw1↑. (cl,1a , c
l,1
b) ∈ w1.C(G)(s◦1, s1)

3. ΩT S .rqh(s◦1) = ∅

4. ∀f ′:τ ′ ∈ Γ1. ∃(va, vb) ∈ vload(M1
a)(Ψ1

a)(γ
1
a)(f ′)× vload(M1

b)(Ψ1
b)(γ1

b)(f ′).

∀s′ w (s◦1, s1). ∀G ∈ GKw1↑. (s1 ∈ sat(G) ∧ ∀f :τ ∈ Γ. (γ1
af, γ

1
bf) ∈ G(s′)(τ)) =⇒

(va, vb) ∈ G(s′)(τ ′)

Similarly, the second premise yields a state (s◦2, s2) ∈ w2↑.S such that:

5. ∀G ∈ GKw2↑. (cg,2a , cg,2b) ∈ ΩT S .C(G(−, s2))(s◦2)

6. ∀G ∈ GKw2↑. (cl,2a , c
l,2
b) ∈ w2.C(G)(s◦2, s2)

7. ΩT S .rqh(s◦2) = ∅

8. ∀f ′:τ ′ ∈ Γ2. ∃(va, vb) ∈ vload(M2
a)(Ψ2

a)(γ
2
a)(f ′)× vload(M2

b)(Ψ2
b)(γ2

b)(f ′).

∀s′ w (s◦2, s2). ∀G ∈ GKw2↑. (s2 ∈ sat(G) ∧ ∀f :τ ∈ Γ,Γ1. (γ2
af, γ

2
bf) ∈ G(s′)(τ)) =⇒

(va, vb) ∈ G(s′)(τ ′)

Note that (4) only cares about values provided for Γ, while (8) cares about values
provided for Γ,Γ1 (recall that linking is asymmetric—the right module may depend
on the left but not vice versa).

We now need to come up with a state (s◦, s) ∈ w↑.S such that:

9. ∀G ∈ GKw↑. (cga, c
g
b) ∈ ΩT S .C(G(−, s))(s◦)

10. ∀G ∈ GKw↑. (cla, c
l
b) ∈ w.C(G)(s◦, s)

11. ΩT S .rqh(s◦) = ∅

12. ∀f ′:τ ′ ∈ Γ1,Γ2. ∃(va, vb) ∈ vload(Ma)(Ψa)(γa)(f
′)× vload(Mb)(Ψb)(γb)(f ′).

∀s′ w (s◦, s). ∀G ∈ GKw↑. (s ∈ sat(G) ∧ ∀f :τ ∈ Γ. (γaf, γbf) ∈ G(s′)(τ)) =⇒
(va, vb) ∈ G(s′)(τ ′)

160 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Before we define s◦ and s, we observe that s◦1 ∈ ΩT S .S and s◦2 ∈ ΩT S .S necessarily
look as follows (for some registries κ1, κ2):

s◦1 = ((R, κ1), ∅, γb]Mb] ρ) s◦2 = ((R, κ2), ∅, γb]Mb] ρ)

The fact that in both states the TT Sref component is empty (∅) follows from condition
(3) and (7), respectively. The knowledge about the unary components comes from
(1) and (5), which we can instantiate using the least global knowledges [w1↑] and
[w2↑], respectively.

We define s◦ ∈ ΩT S .S as follows:

s◦ := ((R, κ1 ∪ κ2), ∅, γb]Mb] ρ)

Observe that we have s◦ wpub s
◦
1 and s◦ wpub s

◦
2. With the help of mainly (1), (5),

and Lemma 58, it is not hard to show condition (9) for any s satisfying s w (s1, s2).
For instance, since hg1 conforms to κ1 and hg2 conforms to κ2, hg conforms to κ1 ∪κ2.

So what about s? The obvious choice of s := (s1, s2) does not let us prove (10).

To see this, suppose G ∈ GKw↑. Since cla = cl,1a · cl,2a (and similarly for clb), the goal
(cla, c

l
b) ∈ w.C(G)(s◦, s) would follow directly from

(cl,1a , c
l,1
b) ∈ w1.C(Gs2〈1〉)(s

◦, s1) and (cl,2a , c
l,2
b) ∈ w2.C(Gs1〈2〉)(s

◦, s2)

by construction of w as the product of w1 and w2. However, (2) and (6) only tell us

(cl,1a , c
l,1
b) ∈ w1.C(Gs2〈1〉)(s

◦
1, s1) and (cl,2a , c

l,2
b) ∈ w2.C(Gs1〈2〉)(s

◦
2, s2).

While s◦ w s◦i holds, these configuration relations may of course not be monotone in
their state argument.

Fortunately, the solution is easy: we apply stability of w1 and w2 to the previous
statements. Doing so yields s′1 wpub s1 and s′2 wpub s2 such that

(cl,1a , c
l,1
b) ∈ w1.C(Gs2〈1〉)(s

◦, s′1) and (cl,2a , c
l,2
b) ∈ w2.C(Gs1〈2〉)(s

◦, s′2).

Now we can pick s := (s′1, s
′
2) and (10) follows by monotonicity in the global knowl-

edge.
Condition (11) obviously holds because we chose the reference bijection in s◦ to

be empty. It thus remains to show (12). In order to do so, the following will be very
helpful:

13. ∀f ′:τ ′ ∈ Γ1. vload(M1
a)(Ψ1

a)(γ
1
a)(f ′) ⊆ vload(link(M1

a ,M
2
a))(Ψa)(γa)(f

′)

14. ∀f ′:τ ′ ∈ Γ2. vload(M2
a)(Ψ2

a)(γ
2
a)(f ′) ⊆ vload(link(M1

a ,M
2
a))(Ψa)(γa)(f

′)

15. ∀f ′:τ ′ ∈ Γ1. vload(M1
b)(Ψ1

b)(γ1
b)(f ′) ⊆ vload(link(M1

b ,M
2
b))(Ψb)(γb)(f ′)

16. ∀f ′:τ ′ ∈ Γ2. vload(M2
b)(Ψ2

b)(γ2
b)(f ′) ⊆ vload(link(M1

b ,M
2
b))(Ψb)(γb)(f ′)

4.7. METATHEORY 161

They roughly say that retrieving the value of exported function f ′ from the composed
module is the same as retrieving it from the component module in which it is defined
(recall that Γi describes the exports of M i

a and M i
b). Their proofs are straightforward,

relying on the exports of the linked modules being disjoint.

So consider f ′:τ ′ ∈ Γ1,Γ2. This means either f ′:τ ′ ∈ Γ1 or f ′:τ ′ ∈ Γ2. In the first
case, we use (4) with (13) and (15) to obtain values va, vb for which we know

∀s′ w (s◦1, s1). ∀G ∈ GKw1↑.

(s1 ∈ sat(G) ∧ ∀f :τ ∈ Γ. (γ1
af, γ

1
bf) ∈ G(s′)(τ)) =⇒ (va, vb) ∈ G(s′)(τ ′)

and must show:

∀s′ w (s◦, s). ∀G ∈ GKw↑.

(s ∈ sat(G) ∧ ∀f :τ ∈ Γ. (γaf, γbf) ∈ G(s′)(τ)) =⇒ (va, vb) ∈ G(s′)(τ ′)

We know that the given future state s′ must have the form (s◦′, (s′′1, s
′′
2)) with s◦′ w

s◦ w s◦1 and s′′1 w s′1 w s1. Therefore we can instantiate the premise above with
(s◦′, s′′1) w (s◦1, s1). It is then easy to check the rest. In particular, if γa, γb is pointwise
related for labels in Γ, then so is γ1

a , γ
1
b since it is the same pair by construction.

In the second case, where f ′:τ ′ ∈ Γ2, we use (8) with (14) and (16) to obtain
va, vb for which we know

∀s′ w (s◦2, s2). ∀G ∈ GKw2↑.

(s2 ∈ sat(G) ∧ ∀f :τ ∈ Γ,Γ1. (γ2
af, γ

2
bf) ∈ G(s′)(τ)) =⇒ (va, vb) ∈ G(s′)(τ ′)

and must show:

∀s′ w (s◦, s). ∀G ∈ GKw↑.

(s ∈ sat(G) ∧ ∀f :τ ∈ Γ. (γaf, γbf) ∈ G(s′)(τ)) =⇒ (va, vb) ∈ G(s′)(τ ′)

The interesting part here is: how do we know that if γa, γb is pointwise related for
labels in Γ, then so is γ2

a , γ
2
b for Γ,Γ1? Recall that γ2

a and γ2
b extend γa and γb with

the values exported by (the concrete loadings of) M1
a and M2

b , respectively. We have
just shown, in the first case above, that these exported values are indeed related!

We conclude this section by stating the full modularity theorem.

Theorem 14 (Modularity of -T S).

Γ `M1
b : Γ1 Γ,Γ1 `M2

b : Γ2

`M1
a : |Γ1| `M2

a : |Γ2|
Γ `M1

a -T S M
1
b : Γ1 Γ,Γ1 `M2

a -T S M
2
b : Γ2

Γ ` link(M1
a ,M

2
a) -T S link(M1

b ,M
2
b) : Γ1,Γ2

.

162 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

4.8 Proof of Transitivity

4.8.1 Overview

Let us begin with the end, the theorem we wish to prove.

Theorem 15 (Transitivity).

|Γ| `MT -T I MI : |Γ′| |Γ| `MI -∗II M ′I : |Γ′| Γ `M ′I -IS MS : Γ′

Γ `MT -T S MS : Γ′

We derive this as a corollary of two lemmas, one about composing -T I with -IS
and one about composing -II with -IS :

Lemma 60 (Transitivity, Part 1).

|Γ| `MT -T I MI : |Γ′| Γ `MI -IS MS : Γ′

Γ `MT -T S MS : Γ′

Lemma 61 (Transitivity, Part 2).

|Γ| `MI -II M ′I : |Γ′| Γ `M ′I -IS MS : Γ′

Γ `MI -IS MS : Γ′

Note that we do not need to show transitivity of -II itself because, in order to obtain
Theorem 15, we can simply iterate Lemma 61.

Thanks to our uniform setup, the proofs of Lemma 60 and Lemma 61 mirror each
other. In fact, they are so similar that large parts of their formalization are identical.
They also rouhgly follow the original transitivity proof of PBs (Section 3.9, but of
course many details are necessarily different. One key simplification in PILS is that
since our intermediate language is untyped, the complexity having to do with abstract
types can be avoided. On the other hand, one key complication in PILS is due to
E’s asymmetric small-step formulation of E.

Note that, as an alternative to Lemma 61, we could try to instead show the
following:

|Γ| `MT -T I M ′I : |Γ′| |Γ| `M ′I -II MI : |Γ′|
|Γ| `MT -T I MI : |Γ′|

Together with Lemma 60, this would also yield Theorem 15. However, we choose to
prove Lemma 61 because its statement is closer to that of Lemma 60: in each the
second premise refers to an instance of the typed model. In the rest of this section we
go into details of the proof of Lemma 60 only, since that of Lemma 61 is so similar.

Recall that the proof of transitivity for PBs consists of two parts. In the first,
we construct a world W that relates the programs in question but has the wrong
shape. In the second, we construct a world of the right shape and prove—with the
help of a notion of isomorphism—that it relates the same programs as W . Here, for
simplicity, we directly construct a world of the correct shape that relates the programs
in question, i.e., we skip the indirection through a theory of world morphisms.

We do not spell out all the details here but mainly present our definitions and
lemma statements and sketch the proofs of some of the key lemmas.

4.8. PROOF OF TRANSITIVITY 163

4.8.2 Constructing the Local World

At the very outset, we are given a set of type names. We use this set, unchanged,
to instantiate the second premise (Γ ` MI -IS MS : Γ′). The first premise doesn’t
require any such set since it is phrased in terms of the untyped model -T I . Hence
the two premises give us local worlds w1 ∈ LWorldΩT I .T and w2 ∈ LWorldΩIS .T,
respectively. Based on these, we construct a local world w ∈ LWorldΩT S .T. The
difficulty, of course, is to do so such that w satisfies all the required properties (e.g.,
stability).

Like for PBs (cf. Lemma 33 in Section 3.9), one of these key properties concerns
the decomposition of states and global knowledges: given G ∈ GKw↑ and a state
s ∈ w↑.S, we must be able to decompose G into a global knowledge for w1↑ (say G1)
and one for w2↑ (say G2) as well as decompose s into s1 and s2 such that

G1(s1) ◦G2(s2)(τ) = G(s)(τ).

We start by defining w’s transition system (the remaining components will be
defined later on). Basically, we follow the same approach as in the proof for PBs,
which was to define w.S as the product of w1↑.S and w2↑.S. In PILS, however, the
global part of a state contains some information that does not need to end up in
w’s state. More concretely, recall that any states s1 ∈ w1↑.S and s2 ∈ w2↑.S look as
follows:

s1 = (s◦1, s
1
lc) = ((sT1 , s

1
ref , s

I
1), s1

lc) s2 = (s◦2, s
2
lc) = ((sI2 , s

2
ref , s

S
2), s2

lc),

Here,

• sT1 is the unary component concerning T (register file and registry);

• sI1 and sI2 are the unary components concerning I (i.e., carry no information)

• sS2 is the unary component concerning S (label environment);

• s1
ref ∈ TT Iref is the (untyped) partial bijection on global references between T

and I;

• s2
ref ∈ TISref is the (typed) partial bijection on global references between I and
S;

• s1
lc is the local state from the unknown w1.S;

• s2
lc is the local state from the unknown w2.S.

We define w’s states to be products of these states without the unary parts, because
ΩT S .S already provides those9:

w.T := (TT Iref × w1.T)× (TISref × w2.T)

9It does, of course, not provide the unary part specific to the intermediate program, but that
carries no information anyway. If it would be non-trivial, we would have to include it in w.S.

164 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Like for PBs, it it crucial that we embed w1↑ and w2↑’s global reference information
in w.S.

Given s1 ∈ w1↑ and s2 ∈ w2↑, we compose them to a w↑ state, written s1 � s2, in
the following way:

Definition 28.

(−) � (−) ∈ w1↑.S→ w2↑.S→ w↑.S
((sT1 , s

1
ref , s

I
1), s1

lc) � ((sI2 , s
2
ref , s

S
2), s2

lc) := ((sT1 , sref , s
S
2), ((s1

ref , s
1
lc), (s

2
ref , s

2
lc)))

where sref := { (τ, x1, x3) | ∃x2. (x1, x2) ∈ s1
ref ∧ (τ, x2, x3) ∈ s2

ref }

To decompose a w↑ state, we ignore ΩT S ’s information on global references:

Definition 29.

(−)(1) ∈ w↑.S→ w1↑.S
((s◦1, sref , s

◦
2), ((s1

ref , s1), (s2
ref , s2)))(1) := ((s◦1, s

1
ref , 1), s1)

(−)(2) ∈ w↑.S→ w2↑.S
((s◦1, sref , s

◦
2), ((s1

ref , s1), (s2
ref , s2)))(2) := ((1, s2

ref , s
◦
2), s2)

It is easy to see that (s1 � s2)(1) = s1 and (s1 � s2)(2) = s2 for any s1 ∈ w1↑ and
s2 ∈ w2↑.

These definitions immediately yield the following nice properties, independent of
how exactly the other components of w will be defined.

Lemma 62.

• w↑.vqha(s1 � s2) = w1↑.vqha(s1)

• w↑.vqhb(s1 � s2) = w2↑.vqhb(s2)

• w↑.cqha(s1 � s2) = w1↑.cqha(s1)

• w↑.cqhb(s1 � s2) = w2↑.cqhb(s2)

• w↑.rqh(s1 � s2)(τ) = w1↑.rqh(s1) ◦ w2↑.rqh(s2)(τ)

With the help of these operations, we now define the decomposition of a global
knowledge for the yet-to-be-defined w. The idea is the same as in the PB transitivity
proof: for each tuple τ, v1, v3 in the global knowledge, we craft a value B(τ, v1, v3)
“in the middle” (here: an I value) that serves three purposes:

1. It uniquely encodes the tuple (i.e., B is injective).

2. It violates the GoodFuns condition (if τ is a function type), so it cannot possibly
be related by F.

4.8. PROOF OF TRANSITIVITY 165

3. It rules out certain cases in the proof of a transitivity property for E (Lemma 66).
For instance, an I machine representing a call to such a function must not be
able to produce an error.

B is defined using an arbitrary (but fixed) injective function I ∈ CTyF × T .Val ×
S.Val → I.Val that always returns a natural number value. We wrap I’s result
depending on the type τ such that B(τ, v1, v3) has the right shape according to the
value query handler for I from Figure 4.18. For instance, if τ = τ1 → τ2, then it is
important that B(τ, v1, v3) is a proper function value, i.e., a closure with a fix term
inside.

Definition 30.

B ∈ CTyF× T .Val× S.Val→ I.Val
B(τ → τ ′, v1, v3) := 〈ε; fix f(y, k). haltn〉 where n := I(τ → τ ′, v1, v3)
B(∀α. τ, v1, v3) := 〈ε; Λk. haltn〉 where n := I(∀α. τ, v1, v3)
B(n, v1, v3) := 〈ε;n〉 where n := I(n, v1, v3)

Using this, we first construct Gs2{1} and Gs1{2}, and then close them over F and

w1.NR (respectively w2.NR) to ensure that they can be shown to be proper global
knowledges later.

Definition 31. For G ∈ w↑.S→ VRelFT ,S and s2 ∈ w2↑.S, we define Gs2(1) ∈ w1↑.S→
VRelFT ,I (untyped):

Gs2{1}(s1) := { (v1,B(τ, v1, v3)) | τ /∈ w2.NS ∧
∃s′1 v s1. ∃s′2 v s2. (v1, v3) ∈ G(s′1 � s′2)(τ) }

Gs2(1) := [w1↑]Gs2
{1}

Definition 32. For G ∈ w↑.S→ VRelFT ,S and s1 ∈ w1↑.S, we define Gs1(2) ∈ w2↑.S→
VRelFI,S (typed).

Gs1{2}(s2)(τ) := { (B(τ, v1, v3), v3) | τ /∈ w2.NS ∧
∃s′1 v s1. ∃s′2 v s2. (v1, v3) ∈ G(s′1 � s′2)(τ) }

Gs1(2) := [w2↑]Gs1
{2}

We can now fully define w. As its order we choose the lexicographic product of
w1 and w2’s order. (This will be justified in the proof of Lemma 66.)

Definition 33.

s1
ref \[1] sref := { (v1, v2) ∈ s1

ref | @τ, v3. (τ, v1, v3) ∈ sref }
s2
ref \[2] sref := { (τ, v2, v3) ∈ s2

ref | @v1. (τ, v1, v3) ∈ sref }

166 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Definition 34.

w.T := (TT Iref × w1.T)× (TISref × w2.T)

w.O := w2.O #w1.O

w.C(G)(s) := { (cTref · cT , dSref · dS) |
∃s1, s2, sref . s = s1 � s2 ∧ s = ((, sref ,),) ∧
∃sT1 , s1

ref , s
I
1 , s

1
lc. s1 = ((sT1 , s

1
ref , s

I
1), s1

lc) ∧
∃sI2 , s2

ref , s
S
2 , s

2
lc. s2 = ((sI2 , s

2
ref , s

S
2), s2

lc) ∧
∃(cTref , cIref) ∈ CT Iref (s1

ref \[1] sref)(G
s2
(1)(s1)).

∃(dIref , dSref) ∈ CISref (s2
ref \[2] sref)(G

s1
(2)(s2)).

∃(cT , cI) ∈ w1.C(Gs2(1))(s1).

∃(dI , dS) ∈ w2.C(Gs1(2))(s2).

cIref · cI = dIref · dI ∧
∀h 6= ⊥. dom(h) ⊆ {l2 | ∃l1. (l1, l2) ∈ s1

ref} =⇒
∀c ∈ core. ∃m ∈ real(c · (h, ∅) · cI) }

w.NS := w2.NS

w.NR(G)(s)(n) := { (v1, v3) ∈ Gs(2)(1) (s(1)) ◦G
s(1)
(2) (s(2))(n) | n ∈ w.NS }

The construction of its configuration relation w.C closely follows that of the heap
relation in the PB proof. The last condition basically asserts that cI is disjoint from
the intermediate locations in s1

ref and from any core.

Lemma 63. If G ∈ GKw↑, then

• ∀s2. G
s2
(1) ∈ GKw1↑, and

• ∀s1. G
s1
(2) ∈ GKw2↑.

Lemma 64. If G ∈ GKw↑, then

Gs2(1)(s1) ◦Gs1(2)(s2)(τ) = G(s1 � s2)(τ).

Proof. The ⊇ direction is fairly straightforward by induction on the value closure
(which is a least fixed point). One interesting point has to do with type names n
that lie outside the control of w, i.e., n /∈ w.NS. If values v1, v3 are related at such a
type, then we establish

(v1, v3) ∈ Gs2(1)(s1) ◦Gs1(2)(s2)(τ)

by showing

(v1,B(n, v1, v3)) ∈ Gs2{1}(s1) ∧ (B(n, v1, v3), v3) ∈ Gs1{2}(s2)(n).

4.8. PROOF OF TRANSITIVITY 167

In order for this to work, it is crucial that the untyped value closure operator also
includes a “type name” case (cf. Figure 4.13 in Section 4.3), and that this case does
not restrict the value on the target side (here v1) as we know nothing about it.

The ⊆ direction, like for PBs, is proven by induction on the left value closure.
Formally, the statement that we show by induction is

Gs2(1) ⊆ X,

where X(s1) := { (v1, v2) | ∀τ, v3. (v2, v3) ∈ Gs1(2)(s2)(τ) =⇒ G(s1 � s2)(τ) }.
There is an interesting PILS twist here, too. Consider the case where inverting

the value closure’s generating function yields the “unit” case. Then we know v1 ∈
ΩT I .vqha()(unit) and v2 ∈ ΩT I .vqhb()(unit), i.e., v1 is an arbitrary machine word
and v2 is 〈〉. However, since the T I model is untyped, we know nothing about τ
yet. So when we invert Gs1(2)(s2)(τ), there are many possible cases to deal with—

and several of them cannot be ruled out. For instance, (v2, v3) ∈ Gs1(2)(s2)(τ) may

hold due to the “roll” case where v2 ∈ ΩT I .vqhb()(roll v′2). Note that this is not in
contradiction to v2 = 〈〉 because I does not have an explicit roll construct. Hence
all we know is v2 = v′2 and (v′2, v

′
3) ∈ Gs1(2)(s2)(τ), so we are going in circles. For this

reason, unlike in the PB proof, we actually have to do a second induction, this time
on Gs1(2).

Unrelatedly, and similar to PBs, the proof of this lemma is the only place where
we exploit the GoodFuns restriction on F to infer that

Fw1↑(G
s2
(1))(s1) ◦Gs1{2}(s2)(τ)

and
Gs2{1}(s1) ◦ Fw2↑(G

s1
(2))(s2)(τ)

are empty (for function types).

The next lemma talks about the configuration relations. We did not have such
a lemma explicitly in the PB proof, but it was hidden in establishing the world
isomorphism. Here we have an additional condition, though, which states that the
I configuration c2 can be realized whenever composed with a core. This should be
thought of as a sanity check.

Lemma 65. If G ∈ GKw↑, then:

(c1, c3) ∈ w↑.C(G)(s1 � s2) ⇐⇒ ∃c2.
(∀e ∈ core. ∃m ∈ real(e · c2)) ∧
(c1, c2) ∈ w1↑.C(Gs2(1))(s1) ∧ (c2, c3) ∈ w2↑.C(Gs1(2))(s2)

Of course, this property does not hold for arbitrary w↑ states but only for those of
the form s1 � s2.

One of the most important and also most involved parts is the proof of transitivity
of E. We first prove the following lemma, concerning the case where the φ argument
is non-trivial. The other case, Lemma 67, follows from that.

168 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Figure 4.23: Overview of the proof of transitivity of E (Lemma 66)

Definition 35.
Bk := 〈ε; cont y. halt 0〉

Lemma 66. If

• (e1, e2) ∈ Ew1↑(i)(k1,Bk)(G
s′2
(1))(s1)(s′1)(φ)

• (e2, e3) ∈ Ew2↑(j)(Bk,k3)(G
s′1
(2))(s2)(s′2)(φ)(τ)

• real(e2) 6= ∅

• s′1 w s1

• s′2 w s2

• φ 6= ⊥

then (e1, e3) ∈ Ew↑(〈j, i〉)(k1,k3)(G)(s1 � s2)(s′1 � s′2)(φ)(τ).

The lemma is stated in terms of a very particular continuation for the intermediate
program, namely Bk. It is defined above as a continuation that is immediately halted
(after one step). This is critical in ruling out certain cases in the proof.

Note that the Lemma’s third condition is harmless, because, due to φ 6= ⊥, we
are only interested in fully configured e2’s, which clearly are realizable. Without
this condition, however, the first two assumptions might hold trivially, while the goal
might not hold trivially (e2 might not be realizable, while e1 and e3 might).

4.8. PROOF OF TRANSITIVITY 169

Proof. By coinduction. Suppose G ∈ GKw↑ and

(m1,m3) ∈ cfg(w↑.C)(G)(s′1 � s′2)(φ)(e1, e3)(∅,∅)(η1, η3).

We can decompose this using Lemma 65 (with an empty frame in the middle) such
that for any m2 and e2 with m2 ∈ real(e2) we have:

(m1,m2) ∈ cfg(w1↑.C)(G
s′2
(1))(s

′
1)(φ)(e1, e2)(∅,∅)(η1,∅) (4.1)

(m2,m3) ∈ cfg(w2↑.C)(G
s′1
(2))(s

′
2)(φ)(e2, e3)(∅,∅)(∅, η3) (4.2)

Note that by construction we have G
s′2
(1) = Fw1↑(G

s′2
(1))∪w2↑.NR(G

s′2
(1))∪G

s′2
{1} (and

similarly for G
s′1
(2). Hence we can apply the external call lemma (Lemma 55 to the

two main premises to obtain the following:

(e1, e2) ∈ E
G

s′2
{1}

w1↑ (i)(k1,Bk)(G
s′2
(1))(s1)(s′1)(φ) (4.3)

(e2, e3) ∈ E
G

s′1
{2}

w2↑ (j)(Bk,k3)(G
s′1
(2))(s2)(s′2)(φ)(τ) (4.4)

We now instantiate 4.3 with 4.1 and do a case analysis on the result. The possible
cases make up the vertical axis of Figure 4.23. There are three main cases, but in
each we make further distinctions. Moreover, we also (instantiate and) analyze 4.4
each time, which yields the additional cases shown on the horizontal axis.

In each of the three main cases of 4.3 (err, ret, step on the vertical axis), we
are given a silent reduction sequence m2 ↪→∗ m′2 and do an induction on it. “0” in
the figure refers to the base case, where the sequence is empty and thus m2 = m′2.
“+” refers to the case where the sequence is non-empty and where the inductive
hypothesis plays a role (“ind”). Stars (e.g., ret∗) indicate that the argument in
the respective case makes use of the coinductive hypothesis. indicates impossible
situations, where we derive a contradiction.

Here we sketch mainly the (vertical) err and ret cases. We use the step case
to explain the choice of the well-founded order w.O.

Case err. The intermediate program is erroneous: m2 ↪→∗ m′2 with m′2 ∈ error.
We show the goal by also using the err clause, i.e., we show m3 ↪→∗ m′3 for
some m′3 ∈ error.

We do so by induction on the reduction sequence m2 ↪→∗ m′2. Note that
m2 = m′2 is ruled out by 4.2, because an erroneous machine is not realizable
(1). So there is at least one step: m2 ↪→ m′′2 ↪→∗ m′2.

Let us now instantiate 4.4 with 4.2 and do another case analysis on the result.

Subcase err. The source machine m3 is also erroneous, so we are done by
appeal to err.

170 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

Subcase ret. The intermediate machine m2 represents a return to “bad”
continuation Bk. Therefore, after one step, it reaches a machine that is
halted, and moreover, not an error. This contradicts that m2 eventually
produces an error (2).

Subcase step. We apply m2 ↪→ m′′2 and must deal with two further cases.

In rec, m3 steps to or equals a machine that, by the inductive hypothesis,
eventually produces an error. The goal follows immediately.

In call, m′′2 realizes a function call and thus m′′2 /∈ error. Moreover, by

construction of G
s′1
{2}, we know that the called function is “bad”, so m′′2 is

actually halted and thus m′′2 = m′2. This contradicts m′2 ∈ error (3).

Case ret. The programs return to their continuations, with related values. In par-
ticular, m2 ↪→∗ m′2 where m′2 returns some value v2 to the “bad” continuation
Bk. We show the goal by induction on this reduction sequence, eventually
using either the err or ret clause.

Suppose m2 = m′2. Unfortunately, this does not contradict anything. So we
instantiate 4.4 with 4.2 and do another case analysis on the result.

Subcase err. As before.

Subcase ret. Using Lemmas 64 and 65, it is easy to compose all the infor-
mation we have at this point and establish the goal using ret.

Subcase step. Since m2 is a return to Bk, it takes one step to a particular
halted machine, say m2 ↪→ m◦2. For this step, the subcase yields two
further cases.

In rec, m◦2 is again related to some source program by E
G

s′1
{2}

w2↑ . It is easy to
show that this can only hold due to the err case: m◦2 ∈ halted directly
contradicts the step case; it also contradicts the ret case, because an I
machine realizing a return is never halted.

In call, m◦2 realizes a function call. It is easy to see that this contradicts
m◦2 being halted due to Bk (4).

This was the base case of the induction. Now suppose there is at least one step:
m2 ↪→ m′′2 ↪→∗ m′2. Here too, we instantiate 4.4 with 4.2 and do another case
analysis on the result.

Subcase err. As before.

Subcase ret. Then m2 is a return to Bk. Its immediate successor m′′2 is
therefore halted by construction of Bk. Hence m′′2 must be m′2, which
is also a return. This is a contradiction: an I machine cannot realize a
return and be halted at the same time (5).

Subcase step. We apply m2 ↪→ m′′2 and must deal with two further cases.

In rec, we can easily conclude with the help of the inductive hypothesis.

4.8. PROOF OF TRANSITIVITY 171

In call, m′′2 realizes a call to a “bad” function and thus is halted. This is
in contradiction to m′2 realizing a return, as in I a return is never halted
(6).

Case step. Along the same lines as the previous two, but more tedious. As can be
seen in Figure 4.23, we also need to further distinguish between stuttering and
non-stuttering. Instead of going into the details, let us use this case to illustrate
our choice of w.O as the lexicographic product of w2.O and w1.O. While it is
natural that we choose a product of the two, the two obvious questions are:
why lexicographic, and why w2.O before w1.O?

To answer this, let us consider the rec case and assume that there is no stut-
tering, i.e., the recursive occurrence of E uses an unknown i′ ∈ w1.O. Further
assume that 4.4 yields the rec case as well, but that there stuttering happens.
Hence the recursive occurence of E necessarily uses a j′ ∈ w2.O that is smaller
than the initial j (from the lemma statement). Obviously we want to show the
goal by appealing to the rec ourselves. And due to the stuttering in 4.4, we
are forced to stutter as well. Fortunately, we can do so just fine by picking the
budget 〈j′, i′〉 since j′ < j implies 〈j′, i′〉 < 〈j, i〉. Note that no other product
would work because i′ may be greater than i.

If the intermediate program does stutter, witnessed by some i′ < i, there is
no reason to look into 4.4 at all. We can simply show the goal by stuttering
immediately, leaving the source program untouched. This means choosing the
new budget to be 〈j, i′〉, which is of course smaller than 〈j, i〉 due to i′ < i in
that case.

Lemma 67. If

• (e1, e2) ∈ Ew1↑(i)(k1,Bk)(G
s′2
(1))(s1)(s′1)(⊥)

• (e2, e3) ∈ Ew2↑(j)(Bk,k3)(G
s′1
(2))(s2)(s′2)(⊥)(τ)

• e2 ∈ core

• s′1 w s1

• s′2 w s2

then (e1, e3) ∈ Ew↑(〈j, i〉)(k1,k3)(G)(s1 � s2)(s′1 � s′2)(⊥)(τ).

Note that the third condition (e2 ∈ core) is harmless, as we are only interested
in such e2’s. Without this condition, however, the first two assumptions might hold
trivially, while the goal might not hold trivially (e2 might not be a core while e1 and
e3 might).

Proof. Straightforward, using Lemmas 65 and 66.

172 CHAPTER 4. PARAMETRIC INTER-LANGUAGE SIMULATIONS

The key thing left to do, is proving stability of w. This is indeed very tedious
but closely follows its PB counterpart (there are no new ideas needed). With that,
we can easily establish the final property.

Theorem 16.
|Γ| `M1 -T I M2 : |Γ′| Γ `M2 -IS M3 : Γ′

Γ `M1 -T I M3 : Γ′

4.8.3 Discussion

As for PBs, one of the main complexities in the PILS transitivity proof lies in dealing
with an ambiguity regarding reference allocation: while in one of the two given proofs,
an allocation of the middle program may be treated as public (extending the global
state), the same allocation may be treated as private (extending the local state) in the
other proof. This is a result of transitivity being proven for completely arbitrary local
worlds! One might wonder if we could not simplify matters significantly by resorting
to an instrumentation of the IL that makes the choice of public vs. private allocation
explicit in the program code. It seems to us that this approach only makes sense if
one is willing to a priori decide on all subsequent optimizations. The issue is that a
later added optimization might, for instance, figure out that some reference is never
used and therefore can be removed. Such can only be proven correct if the reference
was allocated as private, which it may not have been. For the sake of modularity,
we therefore believe it is better to bite the bullet and deal with the ambiguity issue
semantically, e.g., in the way we did.

Chapter 5

The Pilsner Compiler and Its
Verification

5.1 Overview

Using PILS, we have proven in Coq the correctness of two compilers from S to
T : Pilsner and Zwickel. Pilsner’s structure is depicted in Figure 5.1. It uses I
as its CPS-based intermediate language and performs several code transformations.
Zwickel, on the other hand, is more simplistic: it directly translates S code into T
code in a straightforward way, similar to Hur and Dreyer’s one-pass compiler [33].
In particular, Zwickel neither uses an intermediate language nor performs any CPS
transformation. In this chapter, we focus mostly on Pilsner, because it is by far the
more interesting compiler.

Given a source module, Pilsner first translates it to I via a CPS transformation.
It also takes care to alpha-rename all bound variables such that in the resulting I
module, every variable is bound at most once. This uniqueness condition simplifies
the implementation of most of the subsequent transformation passes, as one does not
have to worry about accidental variable capturing when rearranging code. Another

S I I I

I

IIIT

cps inline contify dce

hoistcommutededupcodegen

Figure 5.1: Structure of the Pilsner compiler

173

174 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

nice characteristic of the produced intermediate code (not of I per se) is that contin-
uations are used in an affine fashion [39], i.e., called at most once. This property is
preserved by all other transformations at the intermediate level and enables a more
efficient treatment of continuation variables compared to ordinary variables in the
code generation pass.

At the intermediate level, Pilsner performs six “optimizations”. It first inlines
selected top-level functions. For instance, if a module defines F = fix f(y, k). e, then
a call to F inside a subsequently defined function will be rewritten as follows:

F x k′ e[F/f][x/y][k′/k]

(If the function is recursive, i.e., if f is used in e, this is essentially just an unrolling.)
Since inlining destroys the uniqueness property of bound variables, we immediately
follow it with a “freshening” pass that re-establishes uniqueness.

Next comes contification, which converts certain functions to continuations. Sub-
sequently, Pilsner performs a simple dead code (and variable) elimination, rewriting
let x = a in e to e whenever x does not occur in e. This is justified because, in our
IL, evaluation of a pure expression a does not have any observable side effects. In
the same manner, it also eliminates unused read operations and unused allocations
(but not write operations because that would be unsound). Following DCE, it hoists
let-bindings out of function and continuation definitions, subject to some syntactic
constraints. For example:

let f = (fix f(y, k). let z = x.1 in e) in e′

 let z = x.1 in let f = (fix f(y, k). e) in e′

if x is none of f, y, k. This avoids recomputation of the projection each time f is
called.

Next comes a pass that commutes let-bindings (where possible) in order to group
together bindings that assign names to the same expression. For instance:

let x = a in let y = b in let z = a in e
 let x = a in let z = a in let y = b in e

The last IL transformation, deduplication, gets rid of such consecutive duplicate
bindings by rewriting the above expression as follows:

 let x = a in let y = b in e[x/z]

This can be seen as a common subexpression elimination.
Code generation, the final pass in the chain, translates to the machine language T .

Recall that there are three kinds of “variables” in I: term variables x, continuation
variables k, and labels F . Labels are translated to absolute addresses according to the
import table. Term variable accesses are translated to lookups (based on position) in
a linked list on the heap, pointed to by the env register. Functions are converted to
closures, i.e., pairs of environment and code pointer (module-level functions simply

5.2. FROM S TO I: CPS TRANSFORMATION 175

have an empty environment), which live on the heap. A closure’s environment is
loaded into the env register when the function is called. Finally, continuations are
allocated on the stack. Accordingly, continuation variable accesses are translated to
lookups (based on position) on the stack, with the side effect that the continuation in
question, as well as all more-recently defined ones (above it on the stack), are popped.
This is safe because the affinity property mentioned earlier ensures that they won’t
be needed anymore.

5.2 From S to I: CPS Transformation

5.2.1 Definition

The CPS transformation translates from S to I. Figure 5.2 show its definition. The
module-level translation cps is shown right at the top. It is defined in terms of an
auxiliary function mcps, which recursively uses fcps to translate top-level functions.
fcps itself relies on ecps to translate expressions, whose definition is continued in
Figures 5.3 and 5.4.

Besides performing a fairly standard CPS conversion, our transformation also
makes sure that in the resulting expresssion no variable is bound twice by always
choosing a fresh one. To do so, it uses injections tvar and kvar that map numbers
to variables. The various translation functions take as input a number n and assume
that any variable corresponding to a number greater or equal n is unused. Whenever
they introduce a bound variable, they will pick one of these unused variables. To
maintain the set of unused ones, the translations return an updated number along
with the converted program.

When the expression translation ecps introduces a bound variable y in correspon-
dence to a bound variable x in the source program, this correspondence is remem-
bered in the φ argument such that, in the recursion on subexpressions, the translation
knows what to do when it hits upon a free occurrence of x.

The last argument of ecps is a meta-level continuation κ. It takes a number
(the next free variable) and a term variable or label (the input to the continuation)
and returns an I expression and an updated variable number. We use meta-level
functions rather than object-level continuations in order to avoid creating too many
redexes (this could be optimized further, tough) [39].

Let us look at a few cases.

• The translation of a label F simply passes the label to the meta-level continu-
ation κ.

• The translation of a source variable x does the same—except that it first re-
names the variable according to φ.

• The translation of a number m essentially just passes the number to κ. To
do so, it introduces a let-binding, for which it uses the fresh term variable

176 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

cps ∈ S.Mod ⇀ I.Mod
cps(M) = mcps(0)(M)

mcps ∈ N→ S.Mod ⇀ I.Mod
mcps(n)(ε) = ε
mcps(n)((F,v),M) = let (n′, v′) := fcps(n)(v) in (F, v′),mcps(n′)(M)

fcps ∈ N→ S.Val ⇀ ExpI
fcps(n)(fix f(y). e) = let f ′ := tvar(n) in

let y′ := tvar(n+ 1) in
let k := kvar(n+ 2) in
let φ′ := id [f ′/f][y′/y] in
let (n1, e

′) := ecps(e)(n+ 3)(φ′)(λn2, x. (n2, k x)) in
(n1, fix f ′(y′, k). e′)

fcps(n)(Λ. e) = let k := kvar(n) in
let (n1, e

′) := ecps(e)(n+ 1)(φ)(λn2, x. (n2, k x)) in
(n1,Λk. e

′)

ret (f) (n, e) = (n, f(e))

ecps ∈ ExpS → N→ (Var→ TVar ∪ Lbl)→ (N→ TVar ∪ Lbl→ N× ExpI)→ N× ExpI
ecps(F)(n)(φ)(κ) = κ(n)(F)
ecps(x)(n)(φ)(κ) = κ(n)(φ(x))
ecps(〈〉)(n)(φ)(κ) = ret (λe. let tvar(n) = 〈〉 in e) (κ(n+ 1)(tvar(n)))
ecps(m)(n)(φ)(κ) = ret (λe. let tvar(n) = m in e) (κ(n+ 1)(tvar(n)))
ecps(input)(n)(φ)(κ) = ret (λe. tvar(n)← input; e) (κ(n+ 1)(tvar(n)))
ecps(roll e)(n)(φ)(κ) = ecps(e)(n)(φ)(κ)
ecps(unroll e)(n)(φ)(κ) = ecps(e)(n)(φ)(κ)
ecps(pack e)(n)(φ)(κ) = ecps(e)(n)(φ)(κ)

Figure 5.2: CPS transformation (part 1 of 3).

5.2. FROM S TO I: CPS TRANSFORMATION 177

ecps(unpack y as e1 in e2)(n)(φ)(κ) =
ecps(e1)(n)(φ)(λ(n′, x1).

ecps(e2)(n′)(φ[x1/y])(κ))

ecps(e.1)(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

ret (λe′. let tvar(n′) = x.1 in e′) (κ(n′ + 1)(tvar(n′))))

ecps(e.2)(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

ret (λe′. let tvar(n′) = x.2 in e′) (κ(n′ + 1)(tvar(n′))))

ecps(inl e)(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

ret (λe′. let tvar(n′) = inl x in e′) (κ(n′ + 1)(tvar(n′))))

ecps(inr e)(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

ret (λe′. let tvar(n′) = inr x in e′) (κ(n′ + 1)(tvar(n′))))

ecps(ref e)(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

ret (λe′. tvar(n′)← ref x; e′) (κ(n′ + 1)(tvar(n′))))

ecps(!e)(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

ret (λe′. tvar(n′)← !x; e′) (κ(n′ + 1)(tvar(n′))))

ecps(output e)(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

ret (λe′. let tvar(n′) = 〈〉 in output x; e′) (κ(n′ + 1)(tvar(n′))))

ecps(〈e1, e2〉)(n)(φ)(κ) =
ecps(e1)(n)(φ)(λ(n′, x1).

ecps(e2)(n′)(φ)(λ(n′′, x2).
ret (λe. let tvar(n′′) = 〈x1, x2〉 in e) (κ(n′′ + 1)(tvar(n′′)))))

ecps(e1 � e2)(n)(φ)(κ) =
ecps(e1)(n)(φ)(λ(n′, x1).

ecps(e2)(n′)(φ)(λ(n′′, x2).
ret (λe. let tvar(n′′) = x1 � x2 in e) (κ(n′′ + 1)(tvar(y′′)))))

ecps(e1 := e2)(n)(φ)(κ) =
ecps(e1)(n)(φ)(λ(n′, x1).

ecps(e2)(n′)(φ)(λ(n′′, x2).
ret (λe. let tvar(n′′) = 〈〉 in x1 := x2; e) (κ(n′′ + 1)(tvar(n′′)))))

Figure 5.3: CPS transformation (part 2 of 3).

178 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

ecps(e1 == e2)(n)(φ)(κ) =
ecps(e1)(n)(φ)(λ(n′, x1).

ecps(e2)(n′)(φ)(λ(n′′, x2).
ret (λe. let tvar(n′′) = x1 == x2 in e) (κ(n′′ + 1)(tvar(n′′)))))

ecps(ifnz e then e1 else e2)(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

let (n′′, e′1) := ecps(e1)(n′)(φ)(κ) in
ret (λe′2. ifnz x then e′1 else e′2) (ecps(e2)(n′′)(φ)(κ)))

ecps(e1 e2)(n)(φ)(κ) =
ecps(e1)(n)(φ)(λ(n′, x1).

ecps(e2)(n′)(φ)(λ(n′′, x2).
ret (λe′. let kvar(n′′) = cont tvar(n′′ + 1). e′ in x1 x2 kvar(n′′))

(κ(n′′ + 2)(tvar(n′′ + 1)))))

ecps(e [])(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

ret (λe′. let kvar(n′) = cont tvar(n′ + 1). e′ in x [] kvar(n′))
(κ(n′ + 2)(tvar(n′ + 1))))

ecps(case e (y. e1) (y. e2))(n)(φ)(κ) =
ecps(e)(n)(φ)(λ(n′, x).

let φ′ := φ[tvar(n′)/y] in
let (n′′, e′1) := ecps(e1)(n′ + 1)(φ′)(κ) in
ret (λe′2. case x (tvar(n′). e′1) (tvar(n′). e′2)) (ecps(e2)(n′′)(φ′)(κ)))

ecps(fix f(y). e)(n)(φ)(κ) =
let f ′ := tvar(n+ 1) in
let y′ := tvar(n+ 2) in
let k := kvar(n+ 3) in
let φ′ := φ[f ′/f][y′/y] in
let (n1, e

′) := ecps(e)(n+ 4)(φ′)(λn2, x. (n2, k x)) in
ret (λe′′. let tvar(n) = fix f ′(y′, k). e′ in e′′) (κ(n1)(tvar(n)))

ecps(Λ. e)(n)(φ)(κ) =
let k := kvar(n+ 1) in
let (n1, e

′) := ecps(e)(n+ 2)(φ′)(λn2, x. (n2, k x)) in
ret (λe′′. let tvar(n) = Λk. e′ in e′′) (κ(n1)(tvar(n)))

Figure 5.4: CPS transformation (part 3 of 3).

5.2. FROM S TO I: CPS TRANSFORMATION 179

tvar(n). It passes this variable on as input to the continuation, together with
the updated variable counter n+ 1 in order to ensure that tvar(n) will not be
chosen again.

• The translation of pack e simply translates e and forgets about the packing
since there is no such concept in I.

• The translation of inl e translates e with a special continuation. This contin-
uation introduces a let-binding for inlx , where x is the variable (either term
variable or label) holding the value of e’s translation. The body of the let-
binding is determined by the meta-level continuation κ.

• The translation of fix f(y). e creates a new let-binding for the function definition.
The body of the let-binding is determined by κ. The body of the function is
the translation of e relative to the meta-level continuation λn2, x. (n2, k x),
which is a reified version of the function’s formal continuation argument k. All
bound variables are chosen to be fresh, and the renaming φ′ used in translation
of the function body knows which fresh variables correspond to occurrences of
f and y in e. Note that fcps necessarily translates top-level functions slightly
differently.

• The translation of e1 e2 translates e1 with a continuation that translates e2,
in turn with a continuation that issues the actual function call. The original
continuation κ is reified into an object-level continuation by introducing a con-
tinuation let-binding. The continuation variable kvar(n′′) is then passed to the
function x1 in the call.

5.2.1.1 Example

Consider a source module MS consisting of a single function labelled G:

G = fix f(x). 〈F 42, !x〉

It returns a pair whose first component is the result of calling the imported function
F on 42. Its second component is the value stored in the argument reference x.

The I module cps(MS), i.e., the result of transforming MS , consists of the fol-
lowing single function (up to the exact choice of fresh variables):

G = fix f ′(y, k).
let y1 = 42 in
let k1 = (cont y2. y3 ← !y;

let y4 = 〈y2, y3〉 in
k1 y4) in

F y1 k1

180 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

5.2.2 Verification

It is easy to show that the CPS transformation of a well-typed S module is a well-
formed I module with the same imports and exports. Recall that I well-formedness
includes the affinity of continuation variables (Section 4.2.4.2). It does not include the
uniqueness of bound variables, but that does hold as well. These facts are important
for the correctness of the subsequent transformations performed by Pilsner.

Theorem 17.

Γ `M : Γ′

|Γ| ` cps(M) : |Γ′| uniqmod(cps(M))

The main correctness statement is the following.

Theorem 18.

Γ `M : Γ′

Γ ` cps(M) -IS M : Γ′

For the proof of this, we pick the empty local world w∅ ∈WorldΩIS .T because the
effects of the CPS transformation on memory are trivial. We define the empty world
generically, such that it can be reused. Note the use of gwf for flexibility.

Definition 36 (Empty local world).

w∅ ∈ LWorldTA,B
w∅.T.S := 1

w∅.T.w := 1 × 1

w∅.T.wpub := 1 × 1

w∅.C(G)(s) := { (∅,∅) }
w∅.N.NS := ∅
w∅.N.NR(G)(s)(n) := ∅
w∅.O := gwf

The proof of Theorem 18 boils down to finding a relation -cps
IS on expressions and

their translations that satisfies

Γ ` e : τ
Γ ` ecps(e) -cps

IS e : τ

and at the same time is strong enough to let us derive the module-level correctness.
We now present and justify our choice of -cps

IS .

5.2. FROM S TO I: CPS TRANSFORMATION 181

Definition 37.

Γ ` f -IS e : τ :=
∃i. ∀δ, n, φ,G, s0, s, σ, γ, j,ka,kb, τ

′, κ,K, e′.
(, e′) = f(n)(φ)(κ) ∧
G ∈ GKw∅↑ ∧ s0 wpub s ∧
(∀F :τ ′′ ∈ Γ. ∃va,vb. σ(F) = va ∧ s.ρ(F) = vb ∧ (va,vb) ∈ G(s)(δτ ′′)) ∧
(∀x:τ ′′ ∈ Γ. ∃va,vb. σ(φ(x)) = va ∧ γ(x) = vb ∧ (va,vb) ∈ G(s)(δτ ′′)) ∧
uniqvars(e′) ∧ bv(e′) ∩ dom(σ) = ∅ ∧
((σ, κ),K) ∈ K(j)(ka,kb)(G)(s0)(s)(δτ)(τ ′)

=⇒ ((∅, (σ, e′), (∅, ∅,K[γ(e)])) ∈ Ew∅↑(i+ j)(ka,kb)(G)(s0)(s)(⊥)(τ ′)

Here, f is a meta-level function of type N → (Var → TVar ∪ Lbl) → (N →
TVar ∪ Lbl → N × ExpI) → N × ExpI and e an S expression. Roughly, we want to
say that f (think: ecps(e)) is related to e by the well-known E relation. Of course,
for this to make sense, we must first turn them into suitable configurations.

First we need to quantify over the arguments to f , namely n, φ, and κ. Fol-
lowing the shown definition, let us call the resulting expression e′. Now we have
two open expressions, e′ and e. To close these with respect to labels—as listed in
Γ—we quantify over an environment σ for e′ and a state s containing a (label-only)
environment s.ρ for e. These should of course not be arbitrary, but related by (the
value closure of) the global knowledge, over which we quantify as well, at the type
indicated by Γ. Since that type might contain free variables as well, we first close it
with a substitution δ mapping type variables to arbitrary closed types (which may
contain type names).

Besides labels, Γ and thus e can also contain variables (recall that Γ ` e : τ).
To close e with respect to those, we quantify over a value substitution γ. These S
variables correspond to I term variables and labels, as given by the renaming φ used
in the CPS transformation. We require that the values in γ are related to the values
in σ accordingly, i.e., , if x:τ ′′ ∈ Γ then the value in σ for the renaming of x is related
to γ(x). In addition to closing e using γ, we also put it in an evaluation context K,
since the expression may occurr anywhere in the source program.

The key remaining condition enforces a connection between this evaluation con-
text K and the meta-level continuation κ used to generate e′. But what is K? Cer-
tainly we don’t want to describe their relationship syntactically. Can we not just
say that these continuations (or some conversions thereof) are related by PILS’s K
relation? The issue is that the way in which e′ and e “return” to these continuations
is very different from how functions return to their continuations and thus is not com-
patible with K. This is not specific to the CPS transformation but rather is a general
observation: the “continuations” inherent in the translation of inductively-defined ex-
pressions may be very different (in shape and/or behavior) from the continuations
associated with function calls that are exposed in our language specification and
configuration queries. This will become even more apparent when we get to code
generation in Section 5.10.

182 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

So let us look at K, defined as follows.

Definition 38.

K(i)(ka,kb)(G)(s0)(s)(τ)(τ ′) := { ((σ, κ),K) |
∀G′, s′,va,vb, x, σ

′, n, e′′.
(, e′′) = κ(n)(x) ∧
G′ ⊇ G ∧ s′ wpub s0 ∧ s′ w s ∧
(va,vb) ∈ G′(s′)(τ) ∧
σ ⊆ σ′ ∧ σ′(x) = va ∧
uniqvars(e′′) ∧ dom(σ′) ∩ bv(e′) = ∅

=⇒ ((∅, (σ′, e′′)), (∅, ∅,K[vb])) ∈ Ew∅↑(i)(ka,kb)(G′)(s0)(s′)(⊥)(τ) }

First, it gives arguments n and x to κ in order to generate the actual expression
e′′. Then it roughly says that e′′ in an environment σ′ that maps the term variable
or label x to a value va is related to K[vb] by the usual E relation if va and vb are
related (by the value closure of the global knowledge, as usual). Without any further
restrictions on σ′, however, we would have little hope of showing continuations related
by K. We must insist that σ′ be an extension of the earlier σ in which we started
executing e′. Note that x may or may not have already existed in σ. Also note that
we quantify over a larger global knowledge G′ because e′ and e (from -IS) may make
external calls before the continuations are reached.

A word on the use of budgets: -cps
IS requires that there exists a budget i (intu-

itively: for f) such that the constructed configurations are related by E at budget
i+ j, where j is the continuation budget. This is very natural, as the configuration
consists of both the continuation and the expression. The assumption that all con-
tinuations are related at the same budget j does not impose a restriction because one
can always choose j to be large enough for all continuations in question1.

As intended, we can prove the following key lemma about -cps
IS .

Lemma 68.
Γ ` e : τ

Γ ` ecps(e) -cps
IS e : τ

Proof. By induction on e, with a nested coinduction on E when e is a recursive
function fix f(y, k). e′.

This lemma is then used in the proof of Theorem 18, where it is applied to the
body of top-level functions.

5.3 Infrastructure for Optimizations

After CPS conversion and thus translation into I, Pilsner performs several transfor-
mations at the intermediate level, i.e., transformations from I to I. In preparation
of verifying these, we develop some common infrastructure.

1The E relation, and thus K, is closed under budget increase.

5.3. INFRASTRUCTURE FOR OPTIMIZATIONS 183

5.3.1 Relating Open Expressions

Somewhat similar to -cps
IS , we define a relation between open I expressions. This is

a fairly straightforward lifting of E:

Definition 39.

Γ ` ea -φw eb :=
∃i. ∀G, s0, s, σa, σb, j,ka,kb.

G ∈ GKw↑ ∧ s wpub s0 ∧
(∀x ∈ Γ. ∃va,vb. σa(φ(x)) = va ∧ σb(x) = vb ∧ (va,vb) ∈ G(s)) ∧
(∀k ∈ Γ. ∃k′a,k′b. σa(φ(k)) = k′a ∧ σb(k) = k′b ∧

(k′a,k
′
b) ∈ Kw↑(j)(ka,kb)(G)(s0)(s))

=⇒ ((∅, (σa, ea)), (∅, (σb, eb))) ∈ Ew↑(i+ j)(ka,kb)(G)(s0)(s)(⊥)

While -cps
IS was defined in terms of the empty local world, here we parameterize

the relation by an arbitrary local world w ∈ LWorldΩII .T for flexibility (we will need
to use a non-trivial world in some proofs). The relation roughly says that the I
expressions ea and eb must be related by E when paired with related environments
σa and σb. Related environments must map term variables and labels x to values
related by (the value closure) of the global knowledge. They must also map con-
tinuation variables k to continuations related by K. In contrast to -cps

IS , here we
do not need to define a custom continuation relation because the notion of internal
continuation coincides with the “official” notion of continuation, and so does their
calling convention.

Note how we allow any variable in the source eb to have been renamed in the
target ea by applying a renaming φ before the lookup in σa. This renaming is an
index of the relation.

Besides control expressions e, there are pure expressions a in I. For these we
define a similar relation (in fact, we overload the notation). This relation roughly
says that, given related environments, if the target expression ab succesfully evaluates
to a value, then so does the source expression aa, and the resulting values are related.
Regarding the environments, the relation only cares about term variables and labels
in Γ, not about continuation variables—recall that a well-formed pure expression
does not refer to any continuation variables (Section 4.2.4.2).

Definition 40.

Γ ` aa -φw ab :=
∀G, s, σa, σb,vb.

G ∈ GKw↑ ∧
(∀x ∈ Γ. ∃v′a,v′b. σa(φ(x)) = v′a ∧ σb(x) = v′b ∧ (v′a,v

′
b) ∈ G(s)) ∧

JabKσb = vb

=⇒ ∃va. JaaKσa = va ∧ (va,vb) ∈ G(s)

184 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

For these relations, we prove typical compatibility lemmas, which state that each
relation is preserved by the respective forms of I expressions. These lemmas are
very helpful in verifying transformations where subexpressions stay unchanged (as
we will see in the coming sections). They are shown in Figures 5.5 and 5.6. For each
well-formedness rule from Figure 4.5, we have a corresponding lemma here.

In contrast to the compatibility lemmas that we have seen for PBs in Section 3.7.3,
here we allow variables of the source expression to be renamed in the target expres-
sion. As a consequence of this, lemmas for constructs that introduce bound variables
require a side condition of the form ya /

φ
Z yb, where ya is the variable bound by the

left-side term and yb is the variable bound by the right-side term. This relation is
defined as follows.

Definition 41.

ya /
φ
Z yb := ∀y′b ∈ Z. φ(y′b) = ya =⇒ y′b = yb

ka /
φ
Z kb := ∀k′b ∈ Z. φ(k′b) = ka =⇒ k′b = kb

This side condition enforces that a variable yb can be renamed to ya only if no
other variable has been renamed to ya. A special case of these lemmas is obtained
when not renaming anything, i.e., when φ = id . In that case, all these side conditions
hold trivially.

The lemmas are straightforward but tedious to show. Only the one about recur-
sive functions requires a proof by coinduction, as one would expect.

Note that the lemma about allocation (y ← ref x; e) requires stability of w: in the
proof of the lemma, when we extend the global state by adding a new pair of references
to the partial bijection, we need to know that the local world’s configuration relation
can still be satisfied. None of the other lemmas requires stability.

Combining these lemmas with a straightforward induction yields the following
lemma.

Lemma 69.

Γ ` a w ∈ stable(ΩII) ∀z ∈ Γ. φ(z) ∈ bv(e) =⇒ φ(z) = z

Γ ` φ(a) -φw a

Γ ` e w ∈ stable(ΩII) ∀z ∈ Γ. φ(z) ∈ bv(e) =⇒ φ(z) = z

Γ ` φ(e) -φw e

In the conclusions, φ(a) and φ(e) denote the application of the renaming φ to each
free variable in a and e, respectively. The side condition on φ rules out that any of
these is renamed to a variable captured by a binder in the expression. Naturally, if
the renaming is the identity function, this holds again trivially and thus the lemma
becomes a (conditional) reflexivity property:

5.3. INFRASTRUCTURE FOR OPTIMIZATIONS 185

Z ` 〈〉 -φw 〈〉 Z ` n -φw n
xb ∈ Z xa = φ(xb)

Z ` xa.1 -φw xb.1
xb ∈ Z xa = φ(xb)

Z ` xa.2 -φw xb.2

xb ∈ Z xa = φ(xb)

Z ` inl xa -
φ
w inl xb

xb ∈ Z xa = φ(xb)

Z ` inr xa -
φ
w inr xb

x1
b, x

2
b ∈ Z x1

a = φ(x1
b) x2

a = φ(x2
b)

Z ` 〈x1
a, x

2
a〉 -

φ
w 〈x1

b, x
2
b〉

x1
b, x

2
b ∈ Z x1

a = φ(x1
b) x2

a = φ(x2
b)

Z ` x1
a � x2

a -
φ
w x1

b � x2
b

x1
b, x

2
b ∈ Z x1

a = φ(x1
b) x2

a = φ(x2
b)

Z ` x1
a == x2

a -
φ
w x1

b == x2
b

Z†, fb, yb, kb ` ea -φ
′
w eb

φ′ = φ[fa/fb][ya/yb][ka/kb] fa = ya =⇒ fb = yb fa /
φ
Z fb ya /

φ
Z yb

Z ` fix fa(ya, ka). ea -
φ
w fix fb(yb, kb). eb

Z†, kb ` ea -φ
′
w eb φ′ = φ[ka/kb]

Z ` Λka. ea -
φ
w Λkb. eb

. .

Γ ` aa -φw ab Γ, yb ` ea -φ
′
w eb φ′ = φ[ya/yb] ya /

φ
Z yb

Γ ` let ya = aa in ea -
φ
w let yb = ab in eb

Γ, yb ` ea -φ
′
w eb φ′ = φ[ya/yb] ya /

φ
Z yb

Γ, kb ` e′a -
φ′′
w e′b φ′′ = φ[ka/kb] ka /

φ
Z kb

Γ ` let ka = cont ya. ea in e′a -
φ
w let kb = cont yb. eb in e′b

Γ, yb ` ea -φ
′
w eb φ′ = φ[ya/yb] ya /

φ
Z yb

Γ ` ya ← input; ea -
φ
w yb ← input; eb

Figure 5.5: Compatibility lemmas for -φw

186 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

xb ∈ Z xa = φ(xb) Γ ` ea -φw eb
Γ ` output xa; ea -

φ
w output xb; eb

xb ∈ Z xa = φ(xb) Γ ` e1
a -

φ
w e1

b Γ ` e2
a -

φ
w e2

b

Γ ` ifnz xa then e1
a else e2

a -
φ
w ifnz xb then e1

b else e2
b

xb ∈ Z xa = φ(xb) Γ, yb ` e1
a -

φ′
w e1

b Γ, yb ` e2
a -

φ′
w e2

b φ′ = φ[ya/yb] ya /
φ
Z yb

Γ ` case xa (ya. e
1
a) (ya. e

2
a) -

φ
w case xb (yb. e

1
b) (yb. e

2
b)

x1
b, x

2
b, kb ∈ Z x1

a = φ(x1
b) x2

a = φ(x2
b) ka = φ(kb)

Z ` x1
a x

2
a ka -

φ
w x1

b x
2
b kb

xb, kb ∈ Z xa = φ(xb) ka = φ(kb)

Z ` xa [] ka -
φ
w xb [] kb

kb, xb ∈ Z ka = φ(kb) xa = φ(xb)

Z ` ka xa -φw kb xb

xb ∈ Z xa = φ(xb) Γ, yb ` ea -φ
′
w eb φ′ = φ[ya/yb] ya /

φ
Z yb w ∈ stable(ΩII)

Γ ` ya ← ref xa; ea -
φ
w yb ← ref xb; eb

xb ∈ Z xa = φ(xb) Γ, yb ` ea -φ
′
w eb φ′ = φ[ya/yb] ya /

φ
Z yb

Γ ` ya ← !xa; ea -
φ
w yb ← !xb; eb

x1
b, x

2
b ∈ Z x1

a = φ(x1
b) x2

a = φ(x2
b) Γ ` ea -φw eb

Γ ` x1
a := x2

a; ea -
φ
w x1

b := x2
b; eb

Figure 5.6: Compatibility lemmas for -φw (cntd.)

5.3. INFRASTRUCTURE FOR OPTIMIZATIONS 187

Lemma 70.

Γ ` a w ∈ stable(ΩII)

Γ ` a -w a
Γ ` e w ∈ stable(ΩII)

Γ ` e -w e

Here we write -w short for -id
w .

With this and a little extra work, we can also lift the identity-renaming versions
of the compatibility lemmas in Figures 5.5 and 5.6 from -w to its reflexive-transitive
closure-∗w. These will be used to establish the correctness of the framework presented
in the next section. Let us just show and prove one of these rules.

Lemma 71.

Γ ` aa -∗w ab Γ ` ab Γ, y ` ea -∗w eb Γ, y ` eb w ∈ stable(ΩII)

Γ ` let y = aa in ea -∗w let y = ab in eb

Proof. We do an induction on the first reflexive-transitive closure in the premise.

Case aa = ab. We do another induction, this time on the second reflexive-transitive
closure in the premise.

Case ea = eb. Using the extra conditions on well-formedness and stability, we
are done by Lemma 70.

Case Γ†, kb ` ea -w e and Γ†, kb ` e -∗w eb. By the inner inductive hypothe-
sis we have

Γ ` let y = aa in e -∗w let y = ab in eb,

so it suffices to show

Γ ` let y = aa in ea -w let y = aa in e.

Since Γ ` aa -w aa by Lemma 70, this follows by the compatibility lemma
for let-bindings.

Case Γ ` aa -w a and Γ ` a -∗w ab. We do a case analysis (not an induction) on
Γ, y ` ea -∗w eb.

Case ea = eb. By the outer inductive hypothesis we have

Γ ` let y = a in ea -
∗
w let y = ab in eb,

so it suffices to show

Γ ` let y = aa in ea -w let y = a in ea.

Since ea = eb, we know Γ, y ` ea and can use Lemma 70 to get Γ, y `
ea -w ea. The goal follows by the compatibility lemma for let-bindings.

188 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

Case Γ, y ` ea -w e and Γ, y ` e -∗w eb. Applying the inductive hypothesis to
Γ, y ` e -∗w eb (not to Γ, y ` ea -∗w eb) yields

Γ ` let y = a in e -∗w let y = ab in eb,

so it suffices to show

Γ ` let y = aa in ea -w let y = a in e.

This follows immediately by the compatibility lemma for let-bindings.

5.3.2 Annotating Expressions With Transformations

In order to simplify the definition and verification of Pilsner’s intermediate transfor-
mations (transformations from I to I), we developed a simple framework of transfor-
mations as expression annotations. The idea is to split module-level transformations
into two parts: (1) an analysis that is applied to each top-level function and anno-
tates selected subexpressions with to-be-performed micro-transformations (but does
not actually rewrite the code); and (2) the micro-transformations themselves, to-
gether with their correctness proofs. Given these, we automatically produce a verified
module transformation that analyzes the input module and performs transformations
according to the produced annotations in a bottom-up manner.

A micro-transformation is a partial function on expressions—it must fail if the
preconditions for its correctness do not hold. It is typically non-recursive. For in-
stance, here is the (only) micro-transformation used in the commute-pass of Pilsner
(Section 5.4):

commute ∈ Exp ⇀ Exp
commute(e) := let y2 = a2 in let y1 = a1 in e0

if e is (let y1 = a1 in let y2 = a2 in e0) and x /∈ fv(a2)

In the case that a micro-transformation fails (for which the analysis is to blame),
the subexpression that was being transformed simply stays unchanged, or, alterna-
tively, the whole module transformation—and thus the compiler—fails. In either
case, if the module transformation succeeds, the output module is guaranteed to cor-
rectly implement the input module. This means that the analysis does not need to
be verified—in the worst case, the transformation doesn’t optimize the code.

We now turn to the details.

5.3.2.1 Annotations and Transformers

Definition 42 (Annotated expressions and their erasure). We write ExpA for the
set of I expressions that are annotated with elements l from A, defined recursively

5.3. INFRASTRUCTURE FOR OPTIMIZATIONS 189

in the obvious way (here we show only two forms but the others are analogous).

a ∈ BExpA ::= . . . | [l] fix f(y, k). e | . . .
e ∈ ExpA ::= . . . | [l] let y = a in e | . . .

(A can be arbitrary. If it is a singleton set, then ExpA is isomorphic to Exp.)

We write |e| for the I expression obtained by erasing all annotations from e.

Definition 43. A micro-transformation is any function in Exp ⇀ Exp. Given a set
A of annotations, a transformer for A is a function β ∈ A→ Exp ⇀ Exp, i.e., it maps
each annotation l to a micro-transformation β(l). An analysis for A is a function
α ∈ Exp → ExpA satisfying |α(e)| = e for any e, i.e., it annotates expressions with
elements from A but does not otherwise modify the program.

Given a transformer β and an analysis α for the same set of annotations A,
we can generate a module-level transformation tf βα as follows. For each top-level
function definition a, we run the analysis and thereby annotate the function. Then
we recursively transform it according to these annotations with the help of atf β and
etf β.

Definition 44.

tf βα ∈Mod→Mod

tf βα := map (λ(F, a). (F, atf βα(α(a))))

atf β ∈ BExpA → BExp

atf β([l] fix f(y, k). e) :=

let e′ := fix f(y, k). etf β(e) in{
e′ if β(l)(e′) = ⊥
e′′ if β(l)(e′) = e′′

. . .

etf β ∈ ExpA → Exp

etf β([l] let y = a in e) :=

let e′ := (let y = atf β(a) in etf β(e)) in{
e′ if β(l)(e′) = ⊥
e′′ if β(l)(e′) = e′′

. . .

(We are showing only one case each for atf and etf . The others are analogous.)

Let us illustrate how this works by looking at the case of (annotated) let-bindings:

etf β([l] let y = a in e)

190 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

First, it recursively transforms the bound term a and the body e and puts them back
together in the form of an ordinary (non-annotated) let-binding e′. Now it looks up
the micro-transformation for the given annotation l and transforms e′ accordingly. If
this fails, it simply returns e′, in effect not changing the program at all. Otherwise
it returns the resulting expression (which may no longer be a let-binding).

Before moving on to the correctness of tf , let us define two convenient lifting
operation on transformers.

Definition 45 (Optional Annotations). Given a transformer β for some A, we define
a transformer β⊥ for A⊥ that behaves in the obvious way: where the annotation is
⊥, it does nothing; elsewhere it does the same as β.

β⊥ ∈ A⊥ → Exp ⇀ Exp

β⊥(⊥)(e) := e

β⊥(l)(e) :=

{
e if β(l)(e) = ⊥
e′ if β(l)(e) = e′

Definition 46 (List Annotations). Given a transformer β for some A, we define a
transformer β̄ for List(A). It performs transformations according to the annotations
in the given list from right to left until one fails, in which case the input to that
failing transformation is returned. This means that β̄ itself never fails.

β̄ ∈ List(A)→ Exp ⇀ Exp

β̄(ε)(e) := e

β̄(L, l)(e) :=

{
e if β(l)(e) = ⊥
β̄(L)(e′) if β(l)(e) = e′

Note that one can imagine similar list transformers with slightly different seman-
tics, e.g., one that fails itself if one of the sub-transformations fails.

5.3.2.2 Correctness

Theorem 19 states the correctness of tf : if a well-formed module M with unique
variables is transformed according to a correct transformer β, then the resulting
module is equally well-formed, also has unique variables, and, crucially, refines M
according to the reflexive-transitive closure of -II .

Theorem 19.

Γ `M : Γ′ uniqmod(M) correct(β) ∀e. |α(e)| = e

Γ ` tf βα(M) : Γ′ uniqmod(tf βα(M)) Γ ` tf βα(M) -∗II M : Γ′

Recall that uniqueness is initially provided by the CPS transformation.
Of course, this theorem relies on the transformer β being correct. We define this

to be the conjunction of two properties:

5.3. INFRASTRUCTURE FOR OPTIMIZATIONS 191

1. Syntactic correctness: each transformation preserves well-formedness, which
includes affinity of continuation variables, and variable uniqueness (see the
comment below).

∀l,Γ, e, e′. Γ ` e ∧ uniq(bv(e),Γ) ∧ β(l)(e) = e′ =⇒
Γ ` e′ ∧ bv(e′) ⊆ bv(e)

2. Semantic correctness: each transformation preserves the behavior.

∀l,Γ, e, e′, w. Γ ` e ∧ uniq(bv(e),Γ) ∧ β(l)(e) = e′ ∧ w ∈ stable(ΩII) =⇒
Γ ` e′ -∗w e

The relation in the conclusion is the one from the previous section.

(It makes sense to separate these conditions because it is typically convenient to
prove them separately.)

Because our variable uniqueness property is not compositional, the syntactic cor-
rectness criterion above cannot simply require the preservation of uniqueness. In-
stead, it requires something much stronger (and compositional), namely that the list
of variables bound in e′ is a sublist of that of e. This is simple and effective but also
quite restrictive, and we will have to relax it later on for one of Pilsner’s optimizations
(Section 5.9).

The semantic part of correct(β) is also fairly strict in that it requires preservation
with respect to any (stable) local world. This is sufficient for intermediate transfor-
mations that do not touch the memory, which are the majority in Pilsner. It is not
sufficient, e.g., for dead code elimination (Section 5.7). We leave a suitable general-
ization of the correctness requirement for future work. Roughly, one would like to
turn the universal quantification over w into an existential one, but one must impose
some additional constraints in order to be able to find an initial state in the proof of
Theorem 19.

For transformers that are correct in the above sense, we can prove the correctness
of etf .

Lemma 72.
Γ ` e |e| = e uniq(bv(e),Γ) correct(β)

Γ ` etf β(e) -∗
w∅
e

Proof. By induction on e.

This lemma is strong enough to let us derive the correctness of the module-level
transformation tf (Theorem 19).

Finally, recall the transformer liftings defined at the end of the previous section.
It should come as no surprise that they preserve correctness:

Theorem 20 (Correctness of transformer liftings).

• correct(β) =⇒ correct(β⊥)

192 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

• correct(β) =⇒ correct(β̄)

We now move on to discuss Pilsner’s individual IL transformations (for pedagog-
ical reasons not in the order in which they are performed).

5.4 The Commute Pass

5.4.1 Transformation

Let us start with the pass that commutes let-expressions in order to enable dedupli-
cation. Recall that the goal of the commute pass is to shuffle let-bindings around
such that bindings of the same expression end up being “adjacent” (if possible). For
instance, in

let x = a in let y = b in let z = a in e

we would like to group the two bindings of a together, because then deduplication
(Section 5.5) can get rid of one of them.

We achieve this very naively by partially sorting chains of let-bindings according
to the expression to which they assign a name. This is implemented with the help of
the annotation framework from Section 5.3 as follows.

First, we have a single and very simple micro-transformation:

ecommute ∈ Exp ⇀ Exp
ecommute(e) := let y = b in let x = a in e0

if e = (let x = a in let y = b in e0) and x /∈ fv(b)
ecommute(e) := let k2 = cont y2. e2 in let k2 = cont y2. e2 in e0

if e = (let k1 = cont y1. e1 in let k2 = cont y2. e2 in e0) and k1 /∈ fv(e2)

Note that the side condition on x (respectively k1) is crucial for correctness (we will
sketch the proof of correctness in a moment).

Second, we have an analysis α that marks any let-binding that needs to be
swapped with its succeeding one. More formally, it places annotations that are
elements of 1⊥ and the transformer that consumes them is the lifting β⊥ of the
following:

β ∈ 1 → Exp ⇀ Exp
β(1)(e) := ecommute(e)

Accordingly, the annotation ⊥ means “do nothing here”, whereas the annotation 1
means “apply ecommute here”.

The details of the analysis are not very interesting (and importantly, as far as
semantics preservation is concerned, they are irrelevant). The analysis recursively
descends into the given function expression, for which the interesting case is, of
course, a let-binding. Let us consider a regular let-binding:

let y1 = a1 in e1

5.4. THE COMMUTE PASS 193

We recursively analyze a1 and e1, yielding a1 and e1. Now we want to know whether
etf β⊥(e1) (i.e., the result of transforming e1), is another let-binding let y2 = a2 in e2

and if so, produce a ⊥ or 1 annotation depending on whether a2 is “less”2 than a1.

The full commute pass commute ∈Mod→Mod is then defined as commute :=
tf β⊥α .

5.4.2 Verification

In order to establish the correctness of tf β⊥α , it suffices by Theorems 19 and 20 to
show the correctness of β. The syntactic aspect of this is straightforward. We sketch
the semantic aspect, i.e., the proof of the following:

∀l,Γ, e, e′, w. Γ ` e ∧ uniq(bv(e),Γ) ∧ commute(e) = e′ ∧ w ∈ stable(ΩII) =⇒
Γ ` e′ -∗w e

Here we consider the case of let-bindings for term variables (the argument for con-
tinuations is analogous). So suppose e = (let x = a in let y = b in e0) with x /∈ fv(b)
and e′ = (let y = b in let x = a in e0). It suffices to show3 ((∅, (σ′, e′)), (∅, (σ, e))) ∈ E,
where the environments σ′ and σ contain related values for variables in Γ.

If the evaluation of a or that of b in the source fails, then the source produces an
error and there is nothing more to show. So let us assume that a evaluates in σ to va
and that b evaluates in σ, x 7→va to vb. By the well-formedness of e we know Γ, x ` b.
But since x /∈ fv(b), we can strengthen this to Γ ` b, for which we get Γ ` b -w b by
Lemma 70. Note that since x /∈ Γ (by the uniqueness condition), the environments
σ′ and σ, x 7→va are still related for Γ. Thus we learn that the target’s evaluation of
b in σ′ evaluates to some v′b that is related to vb, extending σ′ to σ′, y 7→v′b.

Now we use Γ ` a to get Γ ` a -w a. Much as before, note that since y /∈ Γ, we
know that σ′, y 7→v′b and σ are related for Γ as well. Hence the target program’s eval-
uation of a in σ′, y 7→v′b evaluates to some v′a that is related to va. Using Lemmas 43,
47, 48, 44, it remains to show the resulting programs related:

((∅, ((σ′, y 7→v′b, x7→v′a), e0)), (∅, ((σ, x7→va, y 7→vb), e0))) ∈ E

It is easy to see that the two environments above are related for Γ, x, y, because
σ′ and σ are related, v′a and va are related, v′b and vb are related, and moreover x 6= y
by uniqueness. Therefore we are done by instantiating Γ, x, y ` e0 -w e0, which we
get from Γ, x, y ` e0.

2In the Coq development, we do not fix an order on expressions but parameterize over a compar-
ison operator. In the extracted Ocaml code, we implement the comparison with the help of a hash
table, thus creating the order on the fly.

3Here and in subsequent proof sketches, we often gloss over states, worlds, etc. for the sake of
readability.

194 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

5.4.3 Alternative Implementation.

There is a somewhat simpler way to implement the commute pass than what we
described in Section 5.4.1. The idea is to move the expression comparison into the
micro-transformation:

ecommute ′ ∈ exp ⇀ exp
ecommute ′(e) := let x2 = a2 in let x1 = a1 in e2

if e = (let x1 = a1 in let x2 = a2 in e2) and x /∈ fv(b) and a2 < a1

This is of course still correct, but now the analysis can be trivial: mark every expres-
sion (so we can use 1 instead of 1⊥).

We prefer the first version because it is more general and might be useful in other
contexts.

5.5 The Dedup Pass

5.5.1 Transformation

Deduplication is also implemented using the annotation framework. We use the
following micro-transformation:

ededup ∈ Exp ⇀ Exp
ededup(e) := let x = a in e0[x/y]

if e = (let x = a in let y = a in e0)
ededup(e) := let k1 = cont y. e1 in e0[k1/k2]

if e = (let k1 = cont y. e1 in let k2 = cont y. e1 in e0)

As annotations we choose the trivial set (1) and, accordingly, the trivial trans-
former β and the trivial analysis α. The complete deduplication pass then is defined
as dedup := tf βα, i.e., we apply the micro-transformation wherever possible.

5.5.2 Verification

In order to establish the correctness of tf βα, it suffices by Theorem 19 to show the
correctness of β. The syntactic aspect of this is straightforward. We sketch the
semantic aspect, i.e., the proof of the following:

∀l,Γ, e, e′, w. Γ ` e ∧ uniq(bv(e),Γ) ∧ ededup(e) = e′ ∧ w ∈ stable(ΩII) =⇒
Γ ` e′ -∗w e

Here we consider the case of let-bindings for term variables (the argument for
continuations is analogous). So suppose e = (let x = a in let y = a in e0) and
e′ = (let x = a in e0[x/y]). It suffices to show ((∅, (σ′, e′)), (∅, (σ, e))) ∈ E, where the
environments σ′ and σ contain related values for variables in Γ.

5.6. THE HOIST PASS 195

If the first or second evaluation of a in the source fails, then the source produces
an error and there is nothing more to show. So let us assume that a first evaluates
in σ to v1 and then in σ, x7→v1 to v2.

From Γ ` a we get Γ ` a -w a by Lemma 70. Since σ′ and σ are related for Γ,
we thus know that the target evaluation of a in σ′ results in a value v′ related to v1.
But note that σ′ and σ, x7→v1 are also related for Γ because x /∈ Γ by uniqueness,
hence v′ is also related to v2 (evaluation is deterministic). Using Lemmas 43, 47, 48,
44, it remains to show the resulting programs related:

((∅, ((σ′, x7→v′), e0[x/y])), (∅, ((σ, x7→v1, y 7→v2), e0))) ∈ E

Now we apply Lemma 69 to Γ, x, y ` e0 (not Lemma 70), which yields Γ, x, y `
e0[x/y] -[x/y]

w e0. To show the goal, it thus suffices to show the environments above
related for Γ, x, y relative to the renaming [x/y]. This holds essentially because v′ is
related to both v1 and v2.

5.6 The Hoist Pass

5.6.1 Transformation

Hoisting is also implemented using the annotation framework. We define the complete
pass as tf βα, where—like for deduplication—α is the trivial analysis for 1 and β
the trivial transformer λl. hoist. The underlying micro-transformation is defined as
follows:

ehoist ∈ Exp ⇀ Exp
ehoist(e) := let y2 = a in let y1 = (fix f(y3, k). e1) in e2

if e = (let y1 = (fix f(y3, k). let y2 = a in e1) in e2) and f, y3, k /∈ fv(a)
and a /∈ {x1 � x2, x1 == x2, x.1, x.2}

ehoist(e) := let y2 = a in let y1 = (Λk. e1) in e2

if e = (let y1 = (Λk. let y2 = a in e1) in e2) and k /∈ fv(a)
and a /∈ {x1 � x2, x1 == x2, x.1, x.2}

The restriction of a to certain forms is a syntactic criterion ensuring that the
evaluation of a will succeed (yield a value). It is easy to see that ehoist would not
be correct in general if the evaluation of a could fail.

Here we do not bother to hoist out of continuations because continuations are
only executed at most once anyways.

Note that we cannot not hoist continuation definitions (only regular let-bindings)
out of functions. This is because the resulting program would generally be ill-formed
due to functions not being able to access continuations from a surrounding scope
(Section 4.2.4.2).

196 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

5.6.2 Verification

In order to establish the correctness of tf βα, it suffices by Theorem 19 to show the
correctness of β. The syntactic aspect of this is straightforward. We sketch the
semantic aspect, i.e., the proof of the following:

∀l,Γ, e, e′, w. Γ ` e ∧ uniq(bv(e),Γ) ∧ ehoist(e) = e′ ∧ w ∈ stable(ΩII) =⇒
Γ ` e′ -∗w e

Here we consider the second case in the definition of ehoist , i.e., we hoist out of
a generalization (the first case is analogous). So suppose that:

e = (let y1 = (Λk. let y2 = a in e1) in e2)
e′ = (let y2 = a in let y1 = (Λk. e1) in e2)

It suffices to show ((∅, (σ′, e′)), (∅, (σ, e))) ∈ E for environments σ′ and σ related
relative to Γ.

Regarding the source program e, we know that Λk. let y2 = a in e1 evaluates in σ
to vg := 〈σ; Λk. let y2 = a in e1〉. Regarding the target program e′, we know that a
evaluates in σ′ to some v′ thanks to the syntactic restriction of a. Afterwards, Λk. e1

evaluates to v′g := 〈σ′, y2 7→v′; Λk. e1〉. Using Lemmas 43, 47, 48, 44, it remains to
show the resulting programs related:

((∅, ((σ′, y2 7→v′, y1 7→v′g), e2)), (∅, ((σ, y1 7→vg), e2))) ∈ E

From Γ, y1 ` e2 we get Γ, y1 ` e2 -w e2 by Lemma 70. To show the goal, it thus
suffices to show the environments above related for Γ, y1. This boils down to showing
the closures v′g and vg related.

Considering applications of those to continuations v′k and vk, respectively, we
must show:

((∅, ((σ′, y2 7→v′, k 7→v′k), e1)), (∅, ((σ, k 7→vk), let y2 = a in e1))) ∈ E(v′k, vk)

By Lemmas 43, 47, 44 this reduces to

((∅, ((σ′, y2 7→v′, k 7→v′k), e1)), (∅, ((σ, k 7→vk, y2 7→v), e1))) ∈ E(v′k, vk)

where v is the result of evaluating a in σ, k 7→vk.
From Γ†, k, y2 ` e1 we get Γ†, k, y2 ` e1 -w e1 by Lemma 70. To show the

goal, it thus suffices to show the above environments related for Γ†, k, y2 and initial
continuations v′k and vk. Relying on uniqueness, this means showing the following:

1. σ′ and σ are related environments for Γ† with initial continuations v′k, vk.

2. v′ and v are related values.

3. v′k and vk are related continuations relative to themselves.

5.7. THE DEAD CODE ELIMINATION PASS 197

Goal (1) follows from their relatedness for Γ because Γ† does not contain any contin-
uations. Goal (3) holds by Lemma 52. It remains to show (2).

From Γ, k ` a and k /∈ fv(a) we know Γ ` a and thus get Γ ` a -w a by Lemma 70.
Since σ′ is related to σ, k 7→vk for Γ (k /∈ Γ by uniqueness), we know that v′, the result
of evaluating a in σ′, is related to v.

5.7 The Dead Code Elimination Pass

Pilsner’s dead code elimination applies to let-bindings, read operations, and alloca-
tions. It removes these operations if the variable that they introduce does not occur
in the rest of the program. This is safe because these operations have no observable
side effects (even though some of them concern memory).

5.7.1 Transformation

Dead code elimination (DCE) is implemented directly, not using the annotation
framework. This is because the framework was developed only after dead code elim-
ination was already finished. In its current form, the framework cannot be used
to implement DCE because proving correct the elimination of allocations requires a
custom local world (cf. the comment in Section 5.3.2.2).

Figure 5.7 shows the definition of the module-level transformation dce in terms
of a recursive helper function mdce that applies adce to each top-level function. adce
in turn is defined in Figure 5.8 over the structure of pure expressions, in mutual
recursion with edce for control expressions. The interesting cases are the first four of
edce (those in Figure 5.7), all others are merely structural.

edce determines whether to perform an elimination by checking if the introduced
variable occurs freely in the rest of the program. In order for the transformation to
be idempotent, it is crucial, however, that we first transform the rest of the program,
i.e., that we do the occurrence check on the free variables of the transformed rest of
the program (which may be fewer). For efficiency, adce and edce additionally return
(an over-approximation of) this set, so that it doesn’t need to be recomputed all the
time: if (e′, Z) = edce(e), then fv(e′) ⊆ Z (and similarly for adce).

5.7.2 Verification

We use the following local world, whose states are heaps on the source side.

w.T.S := Heap
w.T.w := Heap× Heap
w.T.wpub := Heap× Heap
w.C(G)(sg, h) := { (∅, (h, ∅)) }
w.O := gwf

The states are only relevant for the elimination of allocations. The idea is very sim-
ple: we need to consider any allocation in the source program that got eliminated

198 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

dce ∈Mod→Mod
dce(ε) = ε
dce((F, a),M) = let (a′,) := adce(a) in (F, a′), dce(M)

edce ∈ Exp→ Exp× Var

edce(let y = a in e) =
let (e′, Z1) := edce(e) in
if y ∈ Z1 then

let (a′, Z2) := adce(a) in
(let y = a′ in e′, Z1 ∪ Z2)

else (e′, Z1)

edce(let k = cont y. e1 in e2) =
let (e′2, Z1) := edce(e2) in
if k ∈ Z1 then

let (e′1, Z2) := edce(e1) in
(let k = cont y. e′1 in e′2, Z1 ∪ Z2)

else (e′2, Z1)

edce(y ← ref x; e) =
let (e′, Z) := edce(e) in
if y ∈ Z then

(y ← ref x; e′, {x} ∪ Z)
else (e′, Z)

edce(y ← !x; e) =
let (e′, Z) := edce(e) in
if y ∈ Z then

(y ← !x; e′, {x} ∪ Z)
else (e′, Z)

Figure 5.7: DCE transformation (part 1 of 2).

5.7. THE DEAD CODE ELIMINATION PASS 199

edce(y ← input; e) =
let (e′, Z) := edce(e) in
(y ← input; e′, Z)

edce(output x; e) =
let (e′, Z) := edce(e) in
(output x; e′, {x} ∪ Z)

edce(ifnz x then e1 else e2) =
let (e′1, Z1) := edce(e1) in
let (e′2, Z2) := edce(e2) in
(ifnz x then e′1 else e′2, {x} ∪ Z1 ∪ Z2)

edce(case x (y. e1) (y. e2)) =
let (e′1, Z1) := edce(e1) in
let (e′2, Z2) := edce(e2) in
(case x (y. e′1) (y. e′2), {x} ∪ Z1 ∪ Z2)

edce(x1 x2 k) =
(x1 x2 k, {x1, x2, k})

edce(x [] k) =
(x [] k, {x, k})

edce(k x) =
(k x, {k, x})

edce(x1 := x2; e) =
let (e′, Z) := edce(e) in
(x1 := x2; e′, {x1, x2} ∪ Z)

adce ∈ BExp→ BExp× Var
adce(〈〉) = (〈〉, ∅)
adce(n) = (n, ∅)
adce(x.1) = (x.1, {x})
adce(x.2) = (x.2, {x})
adce(inl x) = (inl x, {x})
adce(inr x) = (inr x, {x})
adce(〈x1, x2〉) = (〈x1, x2〉, {x1, x2})
adce(x1 � x2) = (x1 � x2, {x1, x2})
adce(x1 == x2) = (x1 == x2, {x1, x2})
adce(fix f(y, k). e) = let (e′, Z) := edce(e) in (fix f(y, k). e′, Z)
adce(Λk. e) = let (e′, Z) := edce(e) in (Λk. e′, Z)

Figure 5.8: DCE transformation (part 2 of 2).

200 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

in the target program as being local, because otherwise we would be forced to pro-
vide a target location corresponding to the freshly allocated source location. For
convenience we allow arbitrary transitions between the states—this is okay precisely
because the heap locations in these states won’t ever be used by the programs.

The correctness proof for dce boils down to showing

Γ ` e′ ∧ uniq(bv(e),Γ) ∧ (e′,) = edce(e) =⇒ Γ ` e′ -w e

(and similarly for adce). We do this by induction on the structure of the input
program. Note that we assume the well-formedness of e′ in Γ, not that of e in Γ.
This is somewhat unusual but important for the induction to go through, as we will
see in a moment.

Let us sketch the allocation case here. The other interesting cases are analogous
but a little simpler because they do not involve any important state transitions. The
purely structural cases are trivial to handle using the compatibility lemmas.

Suppose e = (y ← ref x; e0). We must show Γ ` e′ -w e. Let (e′0, Z0) := edce(e0).
If the allocation is not eliminated (y ∈ Z0), the goal equals

Γ ` (y ← ref x; e′0) -w (y ← ref x; e0)

and we are done using the inductive hypothesis and the compatibility lemma for
allocation.

Now suppose y /∈ Z0 such that the elimination is performed. Then the goal equals
Γ ` e′0 -w (y ← ref x; e0). After unfolding the definitions and using Lemma 43, we
must show

(
(
h′, (σ′, e′0)

)
,
(
h, (σ, (y ← ref x; e0))

)
) ∈ E(sg, s)

where the environments σ′ and σ are related for Γ and the heaps consist of a related
global part, a related local part, and a frame part. By construction of w, the local
part of h′ is empty and that of h equals the local state s.

We now use Lemma 47 to take a step on the source side so that it remains to
show

(
(
h′, (σ′, e′0)

)
,
(
h t [l 7→ σ(x)], ((σ, y 7→l), e0)

)
) ∈ E(sg, s)

(for some fresh location l).
Now we use Lemma 50 to advance the world’s state (sg, s) to (sg, s t [l 7→ σ(x)])

so that it matches the new heap. That is, we interpret the change to h as a change
to its local part (which happens to be s) and pick a new local state accordingly. This
enables us to use Lemma 44 such that the goal becomes

(
(
∅, (σ′, e′0)

)
,
(
∅, ((σ, y 7→l), e0)

)
) ∈ E(sg, s t [l 7→ σ(x)]).

Since Γ, y ` e′0 and y /∈ Z0 ⊇ fv(e′0), we know Γ ` e′0. The inductive hypothesis
then yields Γ ` e′0 -w e0. To instantiate this and establish the goal, we must show
that σ′ is related to σ, y 7→l for Γ, which follows from relatedness of σ′ to σ and
uniqueness (y /∈ Γ). We are done.

5.8. THE INLINE PASS 201

What if we had started out with Γ ` e instead of Γ ` e′? Then we know Γ, y ` e0

but we cannot not derive Γ ` e0 because we only know that y is not free in e′0—it may
very well be free in e0 (inside dead code). So instead of Γ ` e′0 -w e0, we would only
get the weaker Γ, y ` e′0 -w e0, which we would not be able to instantiate because y
does not exist in the target program.

5.8 The Inline Pass

5.8.1 Transformation

Pilsner’s inlining pass is defined in Figure 5.9. The auxiliary functions einline and
ainline operate on control expressions and basic expressions, respectively. They take
a mapping ψ containing the functions that are to be inlined (mapping their identifiers
to their code). The more interesting one is einline: when it sees a call to one of the
functions in ψ, it performs the actual inlining by replacing the call with the function’s
body and substituting the respective variables (note that this works even for recursive
functions). Note that inlining is intentionally not an idempotent transformation.

minline lifts these operations to modules in a straightforward way. In the final
transformation, inline, we decide for simplicity to just inline all top-level functions
of a module by picking ψ := M . This is of course somewhat unrealistic but does
not reflect a real limitation: the ”analysis” that computes ψ can be made arbitrarily
complex without affecting the correctness of the transformation—similar to the anal-
yses in the previous transformations. Also, an extension of the transformation and
its verification to local functions (functions not defined at the top-level) is expected
to be straightforward.

5.8.2 Verification

Unfortunately, the tools from the previous sections do not suffice for verifying the
inlining pass. Consider the correctness proof of einline. Along the lines of the
previous verifications, we would have to show something like

∀e, ψ. Γ ` e =⇒ Γ ` einline(ψ)(e) -∗w e

But this is clearly not possible. Suppose e gets executed in an environment σ and
einline(ψ)(e) gets executed in a related environment σ′. If einline inlines a function
in e, it does so by replacing functions calls according to ψ. However, there is no
connection between this inlining information ψ and the environment σ in which the
original program will lookup the function.

To address this problem, we slightly generalize the - relations by considering only
environments that match given descriptions ψa and ψb, respectively (of the same type
as ψ above).

202 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

inline ∈Mod→Mod
inline(M) = freshen(minline(M)(M))

minline ∈ (Var ⇀ BExp)→Mod→Mod
minline(ψ)(ε) = ε
minline(ψ)((F, a),M) = (F, ainline(ψ)(a)),minline(ψ)(M)

einline ∈ (Var ⇀ BExp)→ Exp→ Exp

einline(ψ)(x1 x2 k) :=

{
e[x1/f][x2/y][k/k′] if ψ(x1) = fix f(y, k′). e

x1 x2 k otherwise

einline(ψ)(x [] k) :=

{
e[k/k′] if ψ(x) = Λk′. e

x [] k otherwise

einline(ψ)(let y = a in e) := let y = ainline(ψ)(a) in einline(ψ)(e)
. . .

ainline ∈ (Var ⇀ BExp)→ BExp→ BExp
ainline(ψ)(fix f(y, k). e) := fix f(y, k). einline(ψ)(e)
. . .

Figure 5.9: Inlining of top-level functions.

Definition 47.

Γ;ψa;ψb ` ea -φw eb :=
∃i. ∀G, s0, s, σa, σb, j,ka,kb.

G ∈ GKw↑ ∧ s wpub s0 ∧ respects(σa, ψa,Γ) ∧ respects(σb, ψb,Γ) ∧
(∀x ∈ Γ. ∃va,vb. σa(φ(x)) = va ∧ σb(x) = vb ∧ (va,vb) ∈ G(s)) ∧
(∀k ∈ Γ. ∃k′a,k′b. σa(φ(k)) = k′a ∧ σb(k) = k′b ∧

(k′a,k
′
b) ∈ Kw↑(j)(ka,kb)(G)(s0)(s))

=⇒ ((∅, (σa, ea)), (∅, (σb, eb))) ∈ Ew↑(i+ j)(ka,kb)(G)(s0)(s)(⊥)

Definition 48.

Γ;ψa;ψb ` aa -φw ab :=
∀G, s, σa, σb,vb.

G ∈ GKw↑ ∧ respects(σa, ψa,Γ) ∧ respects(σb, ψb,Γ) ∧
(∀x ∈ Γ. ∃v′a,v′b. σa(φ(x)) = v′a ∧ σb(x) = v′b ∧ (v′a,v

′
b) ∈ G(s)) ∧

JabKσb = vb

=⇒ ∃va. JaaKσa = va ∧ (va,vb) ∈ G(s)

The differences to the earlier definitions are highlighted. The ψa and ψb compo-
nents can be thought of as static descriptions of (parts of) the runtime environments.
Naturally, we obtain the original relations when plugging in empty ψa and ψb. For

5.8. THE INLINE PASS 203

the concrete purpose of verifying inlining, ψa will be empty but ψb will be the func-
tion mapping used by einline and ainline. We will see a use case for a non-empty ψa

in Section 5.9.
A runtime environment σ respects such a description, written respects(σ, ψ,Γ), if

it contains matching closures:

Definition 49.

respects(σ, ψ,Γ) := ∀z, e. ψ(z) = e =⇒ ∃σ′.
z ∈ Γ ∧ σ(z) = 〈σ′; e〉 ∧
∀z′ ∈ defBefore(z,Γ). σ′(z′) = σ(z′)

This says that whenever ψ maps a variable z to an expression e, the actual runtime
environment σ maps z to a closure value whose code component is e. Moreover, the
environment σ′ stored in that closure must agree with σ on all variables defined before
z, i.e., those variables that syntactically occur to the left of z in Γ. (In our concrete
case of inlining, σ will always be an extension of any such σ′.)

It is easy to see that the new relation generalizes the old one:

Lemma 73.
Γ ` ea -φw eb

Γ;ψa;ψb ` ea -φw eb

Γ; ∅; ∅ ` ea -φw eb
Γ ` ea -φw eb

With its help we can establish the following correctness statement about the
function call case of einline (and similarly for x [] k).

Lemma 74.
x1, x2, k ∈ Γ

ψ(x1) = fix f(y, k′). e
{x1, x2, k} ∩ bv(e) = ∅

defBefore(x1,Γ) ` fix f(y, k′). e
stable(w)

Γ; ε;ψ ` einline(ψ)(x1 x2 k) -∗w x1 x2 k

Observe that the inlining information ψ used to transform the call is now con-
nected to whatever runtime environment will be given for the execution of x1 x2 k.
Also note that we require the well-formedness of the function not just in Γ but in the
restriction defBefore(x1,Γ). Intuitively, this is the environment in which the function
was defined, and using it here ensures compatibility with whatever runtime environ-
ment the closure of f will contain (in the source program execution). The proof
sketch goes as follows.

Proof. After unfolding the definitions, the goal is to show (σa, e[x1/f][x2/y][k/k′])
related to (σb, x1 x2 k) by E (ignoring some uninteresting details here). Since
respects(σb, ψ,Γ), we know that σb(x1) = 〈σ′b; fix f(y, k′). e〉 for some closure envi-
ronment σ′b that agrees with σb on defBefore(x1,Γ).

204 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

Using Lemmas 43, 47, 44, we can take a step on the source side and thus change
(σb, x1 x2 k) to (σ′b[f, y, k′ 7→σb(x1), σb(x2), σb(k)], e) in the goal.

Now we make use of the original (stronger) - relation: we apply Lemma 69 to
defBefore(x1,Γ)†, f, y, k′ ` e, yielding

defBefore(x1,Γ)†, f, y, k′ ` φ(e) -φw e

for any renaming φ.

Note that this immediately leads to the goal if we pick φ := [x1/f][x2/y][k/k′]
and then show the environments related modulo φ. That is, it remains to show
the relatedness of σa(φ(z)) and (σ′b[f, y, k′ 7→σb(x1), σb(x2), σb(k)])(z) for any z ∈
defBefore(x1,Γ)†, f, y, k′.

For z = k′, this reduces to the relatedness of σa(k) and σb(k), which holds due
to the assumed relatedness of σa and σb for Γ. Similarly for z = y and z = f . For z
in defBefore(x1,Γ)†, we must show σa(z) related to σ′b(z). Fortunately we know from
respects(σb, ψ,Γ) that σ′b(z) = σb(z) for such z, hence we can use the same argument
here as well and are done.

The correctness statements for the purely structural cases (including ainline) are
simpler, and easy to obtain with the help of compatibility lemmas for the generalized
- relations. Unfortunately, these lemmas are currently not generalizations of those
for the original - relations (it wasn’t obvious how to achieve this due to technical
difficulties related to variables). Nevertheless, they look fairly similar and are omitted
here. Suffice it to say that for simplicity none of them modifies the ψa and ψb

components. For the purpose of verifying inlining of local functions, though, it will
most likely be useful to state the lemma for let-bindings of functions such that in the
premise the mappings are extended with the newly defined function.

Combining these correctness lemmas with a simple induction leads to the following
familiar-looking lemma (omitting some technical side conditions concerning variable
freshness and uniqueness of e and the functions inside ψ).

Lemma 75.
Γ ` e stable(w) . . .

Γ; ε;ψ ` einline(ψ)(e) -∗w e

Based on this, we can now verify the module-level transformation inline. Natu-
rally this is the point where we must demonstrate that the runtime environments that
arise from loading a module actually respect the module, so that we can discharge
the respective assumptions hidden inside the conclusion of Lemma 75. All this is not
very hard but tedious. In the end, we arrive at the following correctness property.

Lemma 76 (Correctness of Inlining).

Γ `M : Γ′ uniqmod(M)

Γ ` inline(M) : Γ′ Γ ` inline(M) -∗II M : Γ′

5.9. THE CONTIFY PASS 205

Note that we cannot prove uniqmod(M ′) because it usually doesn’t hold—inlining
can obviously destroy the uniquess property. For this reason, the inlining pass is
immediately followed by a very simple freshening pass whose sole purpose is to restore
this property.

5.8.3 Freshening

The freshening pass renames all bound variables of a module in order to (re-)establish
the variable uniqueness property. It is run after inlining and, as we will see in the
next section, after contification as well. As shown in Figure 5.10, freshening is a very
simple transformation and easy to verify thanks to -’s support of renaming, hence
we keep its presentation very short.

The functions efreshen and afreshen take a renaming (mapping from variables
to variables) and an index indicating the next unused variable. The result is the
transformed expression and an updated index. freshen lifts these functions to the
module level, passing through the current index, which is initially 0.

Regarding semantic correctness, the key lemma is the following (and similarly
for afreshen. This follows easily with the help of the compatibility lemmas from
Section 5.3.

Γ ` e (e′, n′) = efreshen(φ)(n)(e) (∀z ∈ Γ. φ(z) < n) stable(w)

Γ ` e′ -w e

On top of that, we can derive freshen’s semantics preservation. The overall cor-
rectness statement includes preservation of well-formedness and—the reason for defin-
ing freshening in the first place—enforcement of the uniqueness property that other
passes rely on.

Γ `M : Γ′ M ′ = freshen(M)

Γ `M ′ : Γ′ uniqmod(M ′) Γ `M ′ -∗II M : Γ′

5.9 The Contify Pass

Pilsner includes a (very simplistic) contification pass. Contification [24] is an opti-
mization that turns a function into a continuation when the function is only ever
called with the same continuation argument. This makes control flow more explicit,
thus potentially enabling subsequent optimizations. In Pilsner, it has the additional
benefit that continuations don’t need to be heap-allocated.

5.9.1 Transformation

Contification in Pilsner uses a slightly generalized version of the expression transfor-
mation framework from Section 5.3.2, i.e., it first runs an untrusted analysis that

206 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

freshen ∈Mod→Mod
freshen(M) = mfreshen(0)(M)

mfreshen ∈ N→Mod→Mod
mfreshen(n)(ε) = ε
mfreshen(n)((F, a),M) =

let (a′, n′) := afreshen(id)(n) in
(F, a′),mfreshen(n′)(M)

afreshen ∈ (Var→ Var)→ N→ BExp→ BExp× N
afreshen(φ)(n)(Λk. e) =

let (e′, n′) := efreshen(φ[kvar(n)/k])(n+ 1)(e) in
(Λ kvar(n). e′, n′)

. . .

efreshen ∈ (Var→ Var)→ N→ Exp→ Exp× N
efreshen(φ)(n)(y ← !x; e) =

let (e′, n′) := efreshen(φ[tvar(n)/y])(n+ 1)(e) in
(tvar(n)← !φ(x); e′, n′)

. . .

Figure 5.10: Freshening.

annotates places in the module where the expression-level contification should hap-
pen. This saves a lot of work because only the expression-level contification needs to
be verified.

Expression-level contification consists of two steps. Consider a non-recursive func-
tion binding

let y = (fix (y1, k). e′) in e

that is contifiable, i.e., where all invocations of y in e are done using the same
continuation k′. We first extend the binding with the definition of a new continuation,
namely the contification of y (w.r.t. to k′):

let y = (fix (y1, k). e′) in
let ky = cont y2. e

′[y2/y1][k′/k]e in

In the second step, all invocations of y in e are turned into calls of the newly
added continuation ky (e.g., y x k′ ky x). Note that contification does not purge
the definition of y, but leaves this to the dead code elimination pass. We exclude
recursive functions from contification because our language does not support recursive
continuations.

Our analysis is fairly simple. Whenever it finds a function binding that is con-
tifiable (according to the conservative syntactic criterion above), it annotates the

5.9. THE CONTIFY PASS 207

binding as follows:

α(let y = (fix f(y′, k). e′) in e) := [Substk′ ,Addk′]let y = ([ε]fix f(y′, k). α(e′)) in α(e)
(f /∈ fv(e′) ∧ contifiable(y, e) = k′)

Here, the annotation Addk′ corresponds to the operation of adding a new contification
of the function with fixed continuation argument k′ (step 1), and Substk′ corresponds
to the operation of replacing all calls of y that use k′ with corresponding continuation
calls (step 2). By having k′ be part of both annotations, the implementations of the
respective operations do not need to re-inspect the code in order to find out k′.
The analysis uses the list lifting of annotations from Section 5.3.2, which performs
transformations from right to left.

Non-contifiable functions as well as other expression forms receive an empty list
annotation (if annotatable):

α(let y = (fix f(y′, k). e′) in e) :=
[ε]let y = ([ε]fix f(y′, k). α(e′)) in α(e) (f ∈ fv(e′) ∨ contifiable(y, e) = ⊥)

α(y ← !x; e) :=
y ← !x; α(e)

. . .

If our analysis (or a different one) is incorrect, then either the expression-level
contification will fail, or it will succeed but the later dead code elimination won’t
be able to remove the original function binding. For instance, the first situation
would arise if the analysis were to mark as contifiable anything other than function
bindings, and the secound situation would arise if the analysis were to mark as
contifiable a function that is actually called with different continuation arguments.
Neither situation can would result in a violation of semantics preservation.

A note on variable uniqueness. Contification, as presented above, basically
duplicates existing code (the function body). Clearly this does not preserve the
uniqueness property of variables, which was painfully established by CPS and which
later compiler passes rely on. The obvious solution to this issue lies in freshening the
new copy of the function body with the help of efreshen from Section 5.8.3, in the
implementation of the Addk transformer. This immediately raises two further issues,
though: (i) We can’t tell which variables efreshen is allowed to use (i.e., which n to
pass), and (ii) the transformation framework’s concrete syntactic correctness criterion
actually forbids the introduction of new bound variables (Section 5.3.2.2).

For this reason, Pilsner’s contification is based on a slight generalization of the
transformation framework from Section 5.3.2. In this version, an expression trans-
formation additionally takes the index n of the next unused variable as an argument
(which, for instance, it can pass on to efreshen). Moreover, the restriction on bound
variables is relaxed: a transformation may introduce new bound variables, as long
as their numeric values lie between the given n and some n′ that the transformation

208 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

must output (of course each of them must be bound only once). In this way, the
framework can provide an appropriate n for each transformation and ensure that the
newly introduced variables are disjoint from any existing ones and from any that get
introduced by other transformations.

5.9.2 Verification

The first transformation, the transformer for Addk is very easy to prove correct since
all it does is introduce an unused binding (the reverse of dead code elimination).
Recall the expressions from the beginning of this section. All we have to do is
basically apply the compatibility lemmas for let and fix, take a step on the target side
(binding the continuation ky), stutter on the source side, and finally apply reflexivity
of e (Lemma 70).

The proof of the second transformation, the transformer for Substk, mainly boils
down to a lemma relating the new continuation calls to the old function calls, which
looks roughly as follows:

ψa(ky) = cont y2. e[y2/y1][k′/k] ψb(y) = fix f(y1, k). e

Γ;ψa;ψb ` ky x -∗w y x k′

Here we make crucial use of the ”context-sensitive” version of - that we introduced
in Section 5.8.2. It lets us express the connection between the two programs’s envi-
ronments via the static descriptions ψa and ψb: the code of ky in the transformed
program must be precisely the contification of the code of y in the original program
(glossing over the aforementioned freshening). Without such an assumption, the
connection would be lost and there would be no hope of proving the calls related.

5.10 The Codegen Pass

Code generation, Pilsner’s final pass, translates I code to the machine language T .

5.10.1 Transformation

5.10.1.1 Compiling Variable Lookups

We first explain how variables are looked up at run-time. Recall that there are three
kinds of “variables” in I: labels F , term variables y, and continuation variables k.
For each we define a helper function that generates the code for lookups, as shown in
Figure 5.11. In either case, the lookup is based on the variable’s position in the well-
formedness context Γ of the expression being compiled (we do not store any variable
names in memory). Hence these functions (and thus code generation itself) all take
Γ as an input. Let us look at the details. (In an attempt to improve readability, we
will often omit parentheses around arguments to meta-level functions here.)

5.10. THE CODEGEN PASS 209

lookupLbl ∈ Lbl→Word→ [Var]→ Reg→ [Instr]
lookupLbl F nΓ r :=

let i := index F (Γ|Lbl) in
lpc r,
bop (−) r r n,
ld r [r + i]

lookupTVar ∈ TVar→ [Var]→ Reg→ [Instr]
lookupTVar y Γ r :=

let i := index y (Γ|TVar) in
ld r env,
repeat i (ld r [r + 1]),
ld r [r + 0]

lookupKVar ∈ KVar→ [Var]→ [Instr]
lookupKVar k Γ :=

let i := 2 ∗ index k (Γ|KVar) + 2 in
bop (−) sp r i,
ld ret 〈sp + 0〉,
ld env 〈sp + 1〉

Figure 5.11: Code generated for variable lookups.

210 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

Labels are looked up in the static label environment that the loader places as part
of the group header right before the data block in the heap (recall the memory
layout from Figure 4.10 and the goal of position-independent code). In order
for this to work, the various code generating functions keep track of the label
environment’s distance n relative to the code being produced.

lookupLbl emits the code for label lookups. Each lookup consists of three in-
structions. It first gets its own code address (in the heap) and—using the
distance n—calculates the absolute address of the label environment. Then it
indexes the environment according to F ’s position4 in Γ (restricted to labels)
and loads the correct value into the given register r.

Term variables are looked up in a singly-linked list in the heap, which is immutable
except that it can grow. Code emitted for expressions expects the env register
to point to this list.

The lookup code, generated by lookupTVar, is straightforward: it skips the first
i elements in the list and then loads the next one into r, where i is the position
of y in Γ.

Continuation variables are looked up on the stack. Each continuation takes up two
slots: the first points to the continuation’s code and the second to its term
variable environment (both in the heap). Code emitted for expressions expects
that the topmost stack cells correspond to the continuation variables in Γ.
(Pilsner code does not use the stack for anything else, but imported functions
that were not compiled by Pilsner may of course store arbitrary data there. For
instance, Zwickel compiled code uses it to store intermediate values.)

lookupKVar calculates k’s position in the stack and then loads its code address
into register ret and its environment address into register env (we will see later
why it makes sense to always use these registers). Subsequently, it pops the
continuation and all above it (more recently defined ones) from the stack by
decrementing the stack pointer sp. This makes the lookup a destructive opera-
tion; it is safe because I’s affinity property (cf. Section 4.2.4) ensures that using
k now means that k won’t be needed later and neither do any continuations
that got defined after k (in the same lexical scope).

5.10.1.2 Compiling Expressions

Figures 5.12 and 5.13 show acodegen and ecodegen, which are responsible for trans-
lating basic expressions a ∈ BExp and control expressions e ∈ Exp, respectively. Like
above, the argument n is the size of the code emitted so far.

In the case of basic expressions only, the generated code writes the result value
into the heap, at the address indicated by the arg register. This is always the last
thing it does, so the execution will run into whatever instructions follow. On the

4The index function counts from 0.

5.10. THE CODEGEN PASS 211

other hand, code for control expressions will always jump to another function or
continuation. Let us take a closer look at some representative examples.

Sums. The code generated for inl x first uses lookup to load the value of x into
register ret (which is used as a temporary register here). It then allocates two heap
cells, one for the tag of the sum (0 indicates ”in left”), and one for the value of x.
The code ends after writing the sum value itself, represented by the address of the
first cell, into the result location (see above). Note that x may be either a label or a
term variable. Here, and below, we write lookupLbl∪TVar for the obvious combination
of lookupLbl and lookupTVar.

Let bindings. The code emitted for let y = a in e (by ecodegen) is equally straight-
forward. It allocates a new list node (two heap cells) and sets its ”next” pointer (the
second cell) to the current environment. Then it executes c1, the code for a. Since
it does so when arg points to the new node, a’s result will automatically end up in
the right place, namely in the node’s first cell. At this point the node represents
the extension of the environment list with the value of a. The code sets env to this
extended list and executes the code for e.

Note that we must be careful to provide the correct offsets when using acodegen
and ecodegen to generate code for the subexpressions. For instance, we pass 3 +n to
acodegen because c1 will be preceded by three instructions.

Function calls. When compiling a function call, we want to produce the same code
no matter what kind of function we are dealing with (imported from an unknown
module vs. exported by the current module vs. defined locally in the current module).
Hence when we compile a function, we always make it follow the regular calling
convention (introduced in Section 4.2.5). This makes it very simple to define ecodegen
for function calls. The code generated for x2 x1 k first looks up the value of the
argument x1 and stores it into register arg. Next, it looks up the value of the function
x2 and stores it into register clo. Finally, it looks up the continuation variable k and
performs the prescribed indirect jump to the function.

Recall that looking up a continuation has the effect of writing the continuation’s
code address into ret and its environment into env. This fits very well, because
a function expects its return address in ret. Moreoever, since env is a callee-save
register, the continuation can be sure to find its environment intact when it eventually
gets control.

Continuation calls. The code emitted by ecodegen for continuation calls k x loads
the argument value into register arg, loads the continuation and performs a direct
jump to its code.

Functions. As far as the calling convention is concerned, a function value is just
an address on which to perform an indirect jump, i.e., the address of a heap cell that

212 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

acodegen ∈ BExp→Word→ [Var]→ [Instr]

acodegen (inl x)nΓ :=
lookupLbl∪TVar xnΓ ret,
ld aux1 2,
alloc clo aux1,
ld aux1 0,
sto [clo + 0] aux1,
sto [clo + 1] ret,
sto [arg + 0] clo

acodegen (fix f(y, k). e)nΓ :=
let c := ecodegen e (22 + n) (Γ, f, y, k) in
ld aux1 2,
alloc clo aux1,
lpc aux1,
bop (+) aux1 aux1 7,
sto [clo + 0] aux1,
sto [clo + 1] env,
sto [arg + 0] clo,
bop (+) clo aux1 (13 + length c),
jmp clo,

active part

sto 〈sp + 0〉 ret,
sto 〈sp + 1〉 env,
bop (+) sp sp 2,
ld aux1 2,
alloc env aux1,
sto [env + 0] clo,
ld aux1 [clo + 1],
sto [env + 1] aux1,
ld aux1 2,
alloc clo aux1,
sto [clo + 0] arg,
sto [clo + 1] env,
ld env clo,
c

inactive part

Figure 5.12: Code generation for basic expressions.

5.10. THE CODEGEN PASS 213

ecodegen ∈ Exp→Word→ [Var]→ [Instr]

ecodegen (let y = a in e)nΓ :=
let c1 := acodegen a (3 + n) Γ) in
let c2 := ecodegen e (4 + length c1 + n) (Γ, y) in
ld aux1 2,
alloc arg aux1,
sto [arg + 1] env,
c1,
ld env arg,
c2

ecodegen (let k = cont y. e2 in e1)nΓ :=
let c1 := ecodegen e1 (5 + n) (Γ, k) in
let c2 := ecodegen e2 (10 + length c1 + n) (Γ, y) in
lpc aux1,
bop (+) aux1 aux1 (5 + length c1),
sto 〈sp + 0〉 aux1,
sto 〈sp + 1〉 env,
bop (+) sp sp 2,
c1,
ld clo env,
ld aux1 2,
alloc env aux1,
sto [env + 0] arg,
sto [env + 1] clo,
c2

ecodegen (x2 x1 k)nΓ :=
let c1 := lookupLbl∪TVar x1 nΓ arg in
let c2 := lookupLbl∪TVar x2 (length c1 + n) Γ clo in
let c3 := lookupKVar k Γ in
c1, c2, c3,
jmp [clo + 0]

ecodegen (k x)nΓ :=
let c1 := lookupLbl∪TVar xnΓ arg in
let c2 := lookupKVar k Γ in
c1, c2,
jmp ret

Figure 5.13: Code generation for control expressions.

214 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

contains the address of the function’s first instruction. For top-level functions, which
are closed (modulo labels), this is all we need. In fact, the loader already creates
these values as part of the group header, so besides producing the function code, we
just need to fill these values with the correct code pointers.

For local functions, there’s more to do: they need to be converted to proper
closures, i.e., pairs of code pointer and term variable environment, for which we
must dynamically allocate heap storage. We represent closures as two consecutive
cells, where the first one holds the code pointer and the second one the environment
pointer. The function value itself then is the address of the first cell. This still
matches the calling convention: an indirect jump on the function value will reach the
first instruction of its code.

So let us look at the code emitted for local functions fix f(y, k). e by acodegen. It
consists of an active and an inactive part. The active part, executed immediately,
creates and returns the function closure; the inactive part is the code that the closure
references, i.e., that gets executed when the function is called.

• The active part starts off by allocating two cells of heap storage for the closure.
It then computes the absolute address of the beginning of the inactive part
and writes it into the first cell. Next, it writes the current environment pointer
into the second cell (recall that the values in this environment are read-only).
Having created and populated the closure, it stores the function value, i.e., the
address of the first closure cell, at the designated result location in the heap (see
above). Finally, it computes the address of the last instruction in the inactive
part and jumps one behind it, i.e., it skips over the inactive part and jumps to
whatever code follows.

• The inactive part consists of a prologue and of c, the code for the function body
e. The prologue first pushes the contents of registers ret and env on the stack.
Since the stack acts as the continuation environment, pushing ret and env (in
this order) means extending the continuation environment with an entry for the
function’s continuation argument k. If the function gets called from Pilsner-
compiled code, then this makes perfect sense as ret will be the continuation’s
code address and env its term environment (see the compilation of function
calls above). But even when the function gets called from arbitrary code, this
makes perfect sense: the calling convention requires that the function returns
to the address in ret and preserves the contents of env. Treating ret plus env as
a Pilsner continuation will have exactly this effect.

After pushing k on the stack, the code sets up the term variable environment
for e by extending the function’s own environment with entries for f and y.
Concretely, it first creates a list node for f in which it writes the function value
itself (stored in clo as per the calling convention) to it. It attaches this node
to the function’s existing term environment, which we know resides in [clo + 1]
(the second cell of the closure). Next, it creates a list node for y, writes the
contents of arg to it, attaches it to the previous node, and writes its address

5.10. THE CODEGEN PASS 215

codegen ∈ModI → [Lbl]→ModT
codegenM Γ := (mcodegen M (length Γ + 2 ∗ length M) 0 Γ)

mcodegen ∈ModI →Word→Word→ [Lbl]→ModT
mcodegen εmnΓ := (ε, ε)
mcodegen (F=a,M)mnΓ :=

let c := tcodegen a (m+ n) Γ in
let g := mcodegen m (n+ length c) (Γ, F) in
((F, n), g.cptrs, (map E c, g.data))

tcodegen (fix f(y, k). e)nΓ :=
let c := ecodegen e (10 + n) (Γ, f, y, k) in
sto 〈sp + 0〉 ret,
sto 〈sp + 1〉 env,
bop (+) sp sp 2,
ld aux1 2,
alloc aux1 aux1,
sto [aux1 + 0] clo,
ld env 2,
alloc env env,
sto [env + 0] arg,
sto [env + 1] aux1,
c

Figure 5.14: Code generation for modules.

into env. This concludes the function prologue and c is executed next.

Continuation bindings. As the final example, consider continuation bindings
let k = cont y. e2 in e1. The code emitted by ecodegen first gets its own address
so that it can calculate the absolute address of the continuation code (starting with
the first load instruction). It pushes this address onto the stack, together with the
current environment pointer, thus extending the continuation environment with an
entry for k. Next, the code for the binding’s body e1 is executed. If and when this
eventually leads to the continuation being invoked (directly or indirectly), the con-
tinuation can be sure to find its term environment and input value in env and arg,
respectively. It then extends its environment with the input value in order for e2’s
code, which it executes next, to find it there.

5.10.1.3 Compiling Modules

Code generation for modules is shown in Figure 5.14. The final transformation is
codegen, which takes an I module with a matching wellformedness context Γ (i.e.,

216 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

the list of imports), and produces a T module. This module consists of a single group
(recall the structure of machine modules from Section 4.2.5), which is generated by
the helper function mcodegen. For each function definition F=a in M , mcodegen
adds an entry for F to the group’s code pointer table and adds the code produced
for a to the group’s data block (after encoding the instructions as machine words).
In order to create the correct code pointer table entries, mcodegen maintains the size
n of the code generated so far (for the functions ”to the left”). Initially this is 0, so
the first function will be mapped to 0 as this is the offset in the data block where its
code starts. When using tcodegen to compile the functions, it also passes the correct
offset along, which is always the current n plus the fixed size m of the group header.

The helper tcodegen translates top-level functions, and top-level functions only
(Figure 5.14 shows the fix case but omits the analogous Λ case). As discussed pre-
viously, top-level functions are somewhat simpler than local functions. The code
generated by tcodegen corresponds to the inactive part that acodegen would gener-
ate, except that the prologue that sets up the term environment doesn’t need to load
and extend any existing environment.

5.10.2 Verification

Code generation is the most radical and low-level transformation in Pilsner, and so
it comes as no surprise that its proof is also the longest and most tedious. Here we
can only give an overview.

The main goal is to show the following theorem, which states the semantics preser-
vation of codegen in terms of our canonical -T I relation.

Theorem 21.
Γ `M : Γ′

Γ ` codegen M Γ -T I M : Γ′

Analogous to earlier proofs, a key part of this is finding a relation 4T I that
formalizes when some machine code implements an open I expressions. For this
relation we must prove something along the lines of

Γ ` e
Γ ` ecodegen e 4T I e

(and similarly for acodegen).

In 4T I , we want to ultimately say that the two programs are similar according to
E. But clearly the generated code makes many assumptions about its environment,
e.g., where term variables can be looked up, how continuations are laid out on the
stack, where temporary results are placed, etc. In order to restrict the environments
in which the code is placed, we must therefore express parts of the compiler-internal
protocol that the code follows. Naturally, the choice of the local world in Theorem 21
plays an important role in this.

5.10. THE CODEGEN PASS 217

Figure 5.15: Example of Pilsner’s local stack.

5.10.2.1 The Local World

We define a local world w for the verification of code generation such that a state s
consists of a stack (fragment) and a heap (fragment). They represent the memory
used internally by the machine code generated for module M . The configuration
relation w.C ensures that T ’s local heap is precisely the one given by the state,
and similarly for the stack (so from now on we use the terms local and internal
interchangeably).

Let us review the internal memory that Pilsner-generated code maintains.

Stack. The local stack s.q consists of the current continuation environment. Note
that this may not be one consecutive chunk due to calls to imported functions that
haven’t returned yet.

To illustrate a bit better what the local stack typically looks like, let’s assume
that the module for which we generate code provides the “main” function Fmain. And
that Fmain calls an imported higher-order function G, passing as argument another
function F from our module. After G calls F , the full machine stack looks as shown
in Figure 5.15. The parts that constitute the local stack s.q are shown in green.

The first chunk is part of our local stack and contains the continuations that
Fmain’s code allocated before it called G. The second chunk is not part of our local
stack, but part of the frame configuration that the E relation quantifies over. It
contains whatever G had pushed before it called F . We have no idea what that is
(if anything at all) because G may not have been compiled by Pilsner. The third
chunk is again part of our local stack. It contains the continuations that F ’s code
just allocated. The final chunk of the stack is free and infinite. It is owned by the
global world, as discussed in Section 4.4.2.3.

Heap. As is standard, the local heap s.h contains the label environment. Of interest
is what else it consists of: all the module’s code and the singly linked lists representing

218 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

Figure 5.16: Example of Pilsner’s local heap.

term variable environments that have been allocated so far (typically, many of them
share nodes).

For instance, consider a module consisting of a single function F :

F = fix f1(y1, k1).
let f2 = (fix f ′2(y2, k2). let y3 = 〈y1, y2〉 in k2 y3) in
k1 f2

Right before the execution of the main function, the local heap consists solely of
the label environment and the code for F (which, of course, includes the code for
the local function f2). After executing the main function’s prologue, the local heap
additionally contains a term environment that provides the values for f1 and y1

(pointed to by register env). Executing the let-binding has two effects: (i) it allocates
a new closure and (ii) it extends the environment with a new list node containing the
closure (the value for f2). Step (i) affects the local heap only partially: the second cell
of the closure, which points to the initial term environment, is part of the local heap.
However, the first cell, which contains the code pointer and represents the value of
the function, is part of the global heap instead. This is enforced by our global world
ΩT I : if we want f2 to be recognized as a proper function (e.g., so that we can pass
it to the unknown k1) then we must register it as such in the global state’s value
registry. This registry, as we have seen in Section 4.4.2.3, is tied to the global heap.

The next time the local heap changes is when k1 calls f2 (assuming such a call is
made, and assuming k1 does not happen to call F itself before). The prologue of f2

extends f2’s environment with nodes for f ′2 and y2. Then the let-binding (i) allocates
a new pair and (ii) further extends the environment with a node for y3. Step (i) does
not affect the local heap at all, because the representation of a pair as the address of
the first of two heap cells is nothing internal but rather part the official ”interface” of

5.10. THE CODEGEN PASS 219

values that every module must agree with. ΩT I enforces via the value registry that
both cells of the pair are exposed.

As a summary, Figure 5.16 depicts the shape of the local heap when execution
reaches the call to k2 inside of f2. Besides the group environment and the code, it
contains f2’s closure term environment, the cell of f2’s closure that points to this
environment, and an extension of that environment matching the current execution
of f2. The black arrows denote the ”next” pointers of the singly-linked environments.

The formal definition of w is quite simple:

Definition 50 (Local world w for the verification of code generation).

w ∈ LWorldΩIS .T

w.T.S := Stack× Heap
w.T.w := { ((q′, h′), (q, h)) | h′ ⊇ h }
w.T.wpub := { ((q′, h′), (q, h)) | h′ ⊇ h ∧ q′ = q }
w.C(G)(sg, (q, h)) := { (ca, cb) | ca = (∅, ∅, q, h) ∧ cb = (∅, ∅) }
w.O := gwf

Note that a state does not record any information about the I program’s memory.
I’s heap is only used for references, which we can all treat as global in this verification.
Hence the I configurations in w.C are empty.

Both transition relations allow the local heap to grow but not to be modified
otherwise, which matches the use in Pilsner code. Regarding the local stack, the full
transition relation allows arbitrary changes while the public one allows no changes at
all. This reflects the calling convention: a function may modify the stack arbitrarily
as long as it restores it again before returning.

We pick w’s initial state analogous to the example proof in Section 4.6. In
particular, we choose its local heap to be exactly the local heap given by cload.
This heap consists of two continuous chunks: (i) the label environment of size
length Γ + length Γ′, starting at whatever load address ΨT we are given, and (ii)
the code, starting at address ΨT + length Γ + 2 ∗ length Γ′. The initial local stack is
empty.

5.10.2.2 Relating Machine Code to Open Expressions

We now define the 4T I relation, which is of the form Γ ` f 4T I e and Γ ` f 4T I a.
But what is f? It doesn’t make sense to directly relate machine code (instruction
sequences) to control expressions or basic expressions, because the code that Pilsner
generates depends on its distance n to the label environment. We model this by
relating a meta-level function f ∈ Word → [Word] instead, which maps n to (en-
coded) instructions. In practice, f will always be λn. map E (ecodegen e nΓ) and
λn. map E (acodegen anΓ), respectively.

In the case of control expressions e, 4T I is defined as follows.

220 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

Definition 51.

Γ ` f 4T I e := ∀i. ∃i′. ∀G, s0, s,Ka,Kb, ψa, σa, σb,m, cur , old .

G ∈ GKw↑ ∧
s w s0 ∧
m 6= 0 ∧
(∃n. s.h ⊇ [m 7−→ f n] t [m− n 7−→ map snd ψa]) ∧
(∀F ∈ Γ. ∃va, vb. ψa(F) = va ∧ σb(F) = vb ∧ (va, vb) ∈ G(s)) ∧
Γ|Lbl = map fst ψa ∧
repr s.h (s.R(env)) (map snd σa) ∧
(∀y ∈ Γ. ∃va, vb. σa(y) = va ∧ σb(y) = vb ∧ (va, vb) ∈ G(s)) ∧
Γ|TVar = map fst σa ∧
s.q = [s0.R(sp) 7−→ cur] t old ∧
s.R(sp) = s0.R(sp) + length cur ∧
length cur = 2 ∗ length Γ|KVar ∧
KGs0 sKaKb i σb Γ

=⇒ ((m, ∅, ∅, ∅), (∅, (σb, e))) ∈ Ew↑(i
′ + i)(Ka,Kb)(G)(s0)(s)(⊥)

Definition 52.

repr h v d repr h v ε

h(v) = w h(v + 1) = v′ repr h v′ W

repr h v (w,W)

The conclusion of the implication states that a T configuration consisting of a
program counter m is E-related in state s of w↑ to an I configuration consisting of e
and some closing environment σb. Let us walk through the assumptions under which
this must hold.

The first larger condition connects the program counter m to f : it says that the
current local heap contains the sequence of words given by f n (think: the code),
starting at address m. The distance n is arbitrary but the condition also tells us that
the local heap contains some data starting at address m− n.

The next condition gives meaning to this data: it is actually the label environ-
ment. For any label F in Γ, the data chunk contains a value that is related to
whatever value F has in e’s environment σb. The subsequent condition says that the
values in the data chunk are ordered according to Γ. In effect, these conditions tell
us that looking up a label will yield the expected result (see also Lemma 78 below).

The next three conditions concern term variables. With the help of the predicate
from Definition 52, the first of these states that the current value of register env
(exposed via the global state) points to a singly-linked list in the local heap containing
certain elements (think: the term environment). The subsequent condition tells us
something about these elements: for each term variable y in Γ, there is an element
that is related to whatever value y has in e’s environment σb. And yet another
condition says that these elements are ordered according to Γ. In effect, these three
conditions tell us that looking up a term variable will yield the expected result (see
also Lemma 78 below).

5.10. THE CODEGEN PASS 221

The remaining four conditions concern continuation variables. The first says that
the local stack can be split into a ”current” and an ”old” part, and that the current
part starts where the stack ended in state s0. Next, that the current part is actually
the top part of the machine stack right now. The last two conditions intuitively say
that the current part is the continuation environment matching Γ (recall that each
continuation there takes up two slots) and that the stored continuations are related
to the corresponding ones in e’s environment σb (see also Lemma 78 below).

This last condition is itself somewhat complex, as it must in turn describe the
assumptions that code generated for continuations makes:

Definition 53.

KGs0 sKaKb i σb Γ := ∀k ∈ Γ. ∀j,ka, w,kb. j = index k Γ|KVar =⇒
s.q(s.R(sp)− 2 ∗ (1 + j)) = ka ∧
s.q(s.R(sp)− 2 ∗ (1 + j) + 1) = w ∧
σb(k) = kb ∧
(∀G′, s′, va, vb.

G′ ⊇ G ∧ s′ w s ∧ s′.R(sp) = s.R(sp)− 2 ∗ (1 + j) ∧
(∃p ∈ [Word]. length p = 2 ∗ (1 + j) ∧ s.q = s′.q t [s′.R(sp) 7−→ p]) ∧
s′.R(env) = w ∧ (va, vb) ∈ G′(s′)
=⇒
w↑.cqha(s

′)(ret va ka)× w↑.cqhb(s′)(ret vb kb) ⊆
Ew↑(i)(Ka,Kb)(G′)(s0)(s′)(⊥))

For each continuation variable k in Γ, it expresses the following: The first three
conditions state that, based on k’s position5 j in Γ, there are two adjacent slots
associated with it in the local stack. The first contains ka (think: code pointer) and
the second contains w (think: environment pointer). (k having position j means that
there are j continuations above it on the stack). The next condition says that k has
value kb in e’s environment σb.

The last condition then makes the connection between the T continuation and
the I continuation for k. Roughly, when they are used in some future state s′ with
related input values va, vb, then they must yield E-related computations as long as
the following preconditions are met: k itself and all continuations that were above it
in the stack have been popped (p represents the popped part) and apart from that,
the stack is unchanged; furthermore, k’s environment must have been loaded into
register env. It is easy to see that the code generated by ecodegen for continuation
calls establishes these conditions.

Let us now consider the definition of 4T I for basic expressions a ∈ BExp. Its
purpose is to capture the contract that acodegen-generated code adheres to.

5A variable that occurs multiple times is only considered once, as index returns the index of the
only relevant occurrence.

222 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

Definition 54.

Γ ` f 4T I a := ∀i, G, s0, s,Ka,Kb, ψa, σa, σb,m, n, v, i
′, x, e, ca, cb, ηa, ηb.

G ∈ GKw↑ ∧
s w s0 ∧
m 6= 0 ∧
(∃h. s.h = [m 7−→ f n] t [m− n 7−→ map snd ψa] t h) ∧
(∀F ∈ Γ. ∃va, vb. ψa(F) = va ∧ σb(F) = vb ∧ (va, vb) ∈ G(s)) ∧
Γ|Lbl = map fst ψa ∧
repr s.h (s.R(env)) (map snd σa) ∧
(∀y ∈ Γ. ∃va, vb. σa(y) = va ∧ σb(y) = vb ∧ (va, vb) ∈ G(s)) ∧
Γ|TVar = map fst σa ∧
(∀s′ wpub s. ∀va, vb.

s′.R(arg) = s.R(arg) ∧
s′.h(s′.R(arg)) = va ∧
(va, vb) ∈ G(s′)
=⇒ ((m+ length(f n), ∅, ∅, ∅),

(∅, (σb[x 7→vb], e))) ∈ Ew↑(i
′)(Ka,Kb)(G)(s0)(s′)(⊥)) ∧

(ca, cb) ∈ w↑.C(G)(s)
=⇒ ((m, ∅, ∅, [s.R(arg) 7→ v]) · ca · ηa,

(∅, (σb, let x = a in e)) · cb · ηb) ∈ Ew↑(i)(Ka,Kb)(G)(s0)(s)(ηa, ηb)

Several parts here look very much the same as for control expressions. Let us
highlight the important differences.

1. Since we cannot directly relate a basic expression using E (in the implication’s
conclusion), we wrap a with a let-binding. This does not restrict the appli-
cability, because—excluding top-level functions—a let-binding is the only way
a basic expression can be used. Top-level functions are not compiled using
acodegen, so we do not need to consider them here.

2. Instead of using E in the default mode, we use it in fixed mode (cf. Section 4.5.2)
and then explicitly assume that parts of the configurations are world-related
(namely ca and cb) and other parts are the frames (ηa and ηb). This would be
equivalent to just using the default mode and hiding these configurations if it
weren’t for [s.R(arg) 7→ v]. Here is the deal: We must assert ownership of the
heap cell initially pointed to by register arg, because this is where the code is
going to write its result (cf. Section 5.10.1.2). However, we cannot consider this
cell part of the local heap before the result has actually been written, because
w allows no mutation of the local heap. Concretely, if we were to state that s.h
contains [s.R(arg) 7→ v], where v is the arbitrary and irrelevant value currently
stored in that cell, then we would get stuck when reasoning about the final
write of the result: there would be no future state matching the final heap.

As an alternative to this definition’s use of the fixed mode, we could probably
have used a more complicated local world that allows for some cells of the

5.10. THE CODEGEN PASS 223

internal heap to initially be in an ”uncommitted” state, where their contents
can still change. The current approach seems simpler, though.

3. The last clause in the implication’s premise connects the two big unknowns:
the code following f ’s code in memory (which the execution of f ’s code will
eventually run into), and e, the expression that we had to introduce as part of
the let-binding.

It says that they must be E-related in any public future state s′ in which the
result cell is part of the local heap and contains a value va related to the one
that x is mapped to in e’s environment. Note that now that the result cell is
actually in the local heap, we can use E in its default mode again.

The reason for requiring s′ to be a public extension is that the local stack cannot
have changed (and it is important to know that). In fact, only registers and
the value of the result cell can have changed, which is why there is no need to
consider a future global knowledge. This is in contrast to control expressions,
whose evaluation can change global references and call external functions.

The reason for requiring that the contents of register arg hasn’t changed is
merely that the code of let-bindings relies on this (this could easily be changed,
though).

4. Nowhere do we say anything about continuation variables. This is fine, because
basic expressions cannot refer to any continuations coming from an outer lexical
scope (cf. Section 4.2.4.2).

5.10.2.3 Key Lemma

We are now able to formulate the desired key lemma.

Lemma 77.
Γ ` e

Γ ` (λn. map E (ecodegen e nΓ)) 4T I e

Proof. Reminiscent of compatibility lemmas (cf. Section 3.7.3), we prove one lemma
for each form of control expression and basic expression. For instance, the statement
for functions—as usual, the only one proven using coinduction—reads as follows:

Γ†, f, y, k ` (λn. map E (ecodegen e n (Γ†, f, y, k))) 4T I e

Γ ` (λn. map E (acodegen (fix f(y, k). e)nΓ)) 4T I (fix f(y, k). e)

As another example, here is the statement for applications:

x1 ∈ Γ x2 ∈ Γ k ∈ Γ

Γ ` (λn. map E (ecodegen (x1 x2 k)nΓ)) 4T I (x1 x2 k)

With an easy induction, these properties then yield the goal.

224 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

The various sub-proofs of Lemma 77 employ Lemmas 78 and 79. These provide
Hoare-style reasoning principles for the variable lookup code generated by the lookup
functions that we saw earlier. In particular the first one is tremendously useful, as
code generation makes use of lookupLbl∪TVar in over twenty places.

Lemma 78 (Label or term variable lookup). If

1. [pc− n 7−→ map snd ψa] ⊆ h ∧ Γ|Lbl = map fst ψa

2. repr h (R(env)) (map snd σa) ∧ Γ|TVar = map fst σa

3. [pc 7−→ map E c] ⊆ h ∧ c = lookupLbl∪TVar xnΓ r ∧ pc 6= 0

4. ψa(x) = v ∨ σa(x) = v

5. pc′ = pc+ length c ∧ R′ = R[r 7→v] ∧ i′ <length c i

6. ((pc′, R′, q, h), cb) ∈ Ew↑(i
′)(Ka,Kb)(G)(s0)(s)(ηa, ηb)

then ((pc,R, q, h), cb) ∈ Ew↑(i)(Ka,Kb)(G)(s0)(s)(ηa, ηb).

The lemma describes the precise effects of executing the lookup code and can
be read as follows: When reasoning about a T machine whose program counter
points to the first instruction of that code, it suffices to reason about the machine
after executing that code, which is obtained by incrementing the program counter
accordingly and by setting the r register to whatever the requested value is. (The
requested value is determined by condition (4) depending on whether x is a label or
a term variable.) Note how conditions (1) and (2) match the definition of 4T I .

Lemma 79 is analogous:

Lemma 79 (Continuation variable lookup). If

1. [pc 7−→ map E c] ⊆ h ∧ c = lookupKVar k Γ ∧ pc 6= 0

2. j = index k Γ|KVar ∧ R(sp) = n+ 2 ∗ (1 + j) ∧ q(n) = v ∧ q(n+ 1) = w

3. pc′ = pc+ length c ∧ R′ = R[sp 7→n][ret 7→v][env 7→w] ∧ i′ <length c i

4. ((pc′, R′, q, h), cb) ∈ Ew↑(i
′)(Ka,Kb)(G)(s0)(s)(ηa, ηb)

then ((pc,R, q, h), cb) ∈ Ew↑(i)(Ka,Kb)(G)(s0)(s)(ηa, ηb).

5.11 The Full Pilsner Compiler

At this point, we have verified each of Pilsner’s passes separately. Let us summarize
the results:

• The first pass:

Γ `M : Γ′

Γ ` cps M -IS M : Γ′ |Γ| ` cps M : |Γ′| uniqmod(cps M)

5.12. THE ZWICKEL COMPILER 225

• The intermediate passes:

Γ `M : Γ′ uniqmod(M)

Γ ` f M -∗II M : Γ′ Γ ` f M : Γ′ uniqmod(f M)

for f ∈ { inline, contify , dce, hoist , commute, dedup }

• The final pass:

Γ `M : Γ′ uniqmod(M)

Γ ` codegen M Γ -T I M : Γ′ ` codegen M Γ : Γ′

Thanks to transitivity of PILS (Theorem 15), the composition of all these transfor-
mations is correct w.r.t. -T S .

Note that it doesn’t actually matter which of the intermediate transformations
are applied. So we can easily allow the user of Pilsner to selectively disable some
optimizations6. Formally, we define Pilsner as follows. It takes a sequence of Boolean
flags, each enabling or disabling one intermediate transformation.

Definition 55 (Pilsner with selection).

pilsner ∈ B6 → [Lbl]→Mod→Mod
pilsner flags Γ :=

(λM. codegen M Γ) ◦
(if flags.6 then dedup else id) ◦
(if flags.5 then commute else id) ◦
(if flags.4 then hoist else id) ◦
(if flags.3 then dce else id) ◦
(if flags.2 then contify else id) ◦
(if flags.1 then inline else id) ◦
cps

No matter which flags the user chooses, Pilsner is always correct:

Theorem 22 (Correctness of Pilsner).

Γ `M : Γ′

Γ ` pilsner flags |Γ|M -T S M : Γ′ ` pilsner flags |Γ|M : |Γ′|

5.12 The Zwickel Compiler

The Zwickel compiler is a straightforward compiler from S directly down to T , not in-
volving any intermediate transformations. As such, it is rather different from Pilsner,
and being able to verify it using the PILS system developed in Chapter 4 provides
some evidence of the flexibility of our approach.

6We could even let the user choose the order in which optimizations are performed, but that may
not be very useful as optimizations are typically written with a certain order in mind.

226 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

lookupLbl ∈ Lbl→Word→ [Var]→ [Instr]
lookupLbl F nΓ :=

let i := index F (Γ|Lbl) in
lpc aux1,
bop (−) aux1 aux1 n,
ld aux1 [aux1 + i],
bop (+) sp sp 1,
sto 〈sp− 1〉 aux1

lookupTVar ∈ TVar→ [Var]→ [Instr]
lookupTVar y Γ :=

let i := index y (Γ|TVar) in
sto clo env
repeat i (ld clo [clo + 1]),
bop (+) sp sp 1,
ld clo [clo + 0],
sto 〈sp− 1〉 clo

Figure 5.17: Code generated for variable lookups.

5.12.1 Transformation

Despite the big difference to Pilsner as a whole, Zwickel is somewhat similar to
Pilsner’s code generation pass (Section 5.10). We can therefore keep this section
relatively short by focussing on the differences.

Recall that Pilsner’s codegen compiles I programs, not S programs. The code
that it generates for a pure expression writes the result value into a new environment
slot in the heap (because pure expressions can only occur in let-bindings, which
extend the environment); control expressions, on the other hand, do not directly
produce a value because they are in CPS. In S, there is no distinction between pure
and control expressions, and every expression produces a value (if it terminates).
For Zwickel, we thus follow the convention that the code for an expression e pushes
e’s value on the stack. We could have used a fixed register instead, but using the
stack makes Zwickel more different from Pilsner, where the stack is reserved for I’s
continuations instead.

Figures 5.17–5.19 below roughly correspond to Figures 5.11–5.13. Like Pilsner’s
codegen, the Zwickel code for looking up labels F—shown in Figure 5.17—reads
from the loader environment whose start address is known relative to the current
instruction. Similarly, term variables x are looked up in the linked-list environment
pointed to by register env. Since labels and term variables in S are syntactically
expressions, however, the found value is in both cases then pushed on the stack.
(This is why the lookup functions don’t take a register argument, as they did in
Pilsner.) Also, recall that there are no continuation variables in S.

5.12. THE ZWICKEL COMPILER 227

ezwickel ∈ Exp→Word→ [Var]→ [Instr]

ezwickel xnΓ :=
lookupTVar xnΓ

ezwickel F nΓ :=
lookupLbl F nΓ

ezwickel (inl e)nΓ :=
ezwickel e nΓ,
ld clo 2,
alloc clo clo,
ld aux1 0,
sto [clo + 0] aux1,
ld aux1 〈sp− 1〉,
sto [clo + 1] aux1,
sto 〈sp− 1〉 clo

Figure 5.18: Code generation for expressions.

Figures 5.18 and 5.19 show excerpts of Zwickel’s expression compilation ezwickel ,
which takes the same arguments as ecodegen and acodegen did in Pilsner. Let us here
just focus on compiling functions and function calls. Functions now have an epilogue
(the last four instructions) that moves the body’s value, found on the top of the stack,
into the function call’s result register arg, as required by the calling convention that
all modules adhere to. The epilogue also restores the callee-save register env that the
function stored on the stack as well. The code for an application does not simply
pass through a given return address, but provides its own such that it can push the
result value back onto the stack (an application is an expression). Of course it must
then also restore the original return address in ret, which it saved on the stack.

The module-level compilation zwickel ∈ ModS → [Lbl] → ModT is defined
analogous to that in Pilsner and thus not shown here.

5.12.2 Verification

The verification of Zwickel follows roughly that of Pilsner’s codegen (Section 5.10).
In fact, we use essentially the same local world w.

228 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

ezwickel (fix f(x). e)nΓ :=
let c := ezwickel e (22 + n) (Γ, f, x) in
ld clo 2,
alloc clo clo,
lpc arg,
bop (+) arg arg 8,
sto [clo + 0] arg,
sto [clo + 1] env,
bop (+) sp sp 1,
sto 〈sp− 1〉 clo,
bop (+) arg arg (16 + length c),
jmp arg,

active part

bop (+) sp sp 1,
sto 〈sp− 1〉 env,
ld env 2,
alloc env env,
sto [env + 0] clo,
ld aux1 [clo + 1],
sto [env + 1] aux1,
ld clo 2,
alloc clo clo,
sto [clo + 0] arg,
sto [clo + 1] env,
ld env clo,
c,
ld arg 〈sp− 1〉,
bop (−) sp sp 2,
ld env 〈sp + 0〉,
jmp ret

inactive part

ezwickel (e1 e2)nΓ :=
let c1 := ezwickel e1 nΓ in
let c2 := ezwickel e2 (length c1 + n) Γ in
c1, c2,
bop (−) sp sp 1,
ld clo 〈sp− 1〉,
sto 〈sp− 1〉 ret,
ld arg 〈sp + 0〉,
lpc ret,
bop (+) ret ret 3,
jmp [clo + 0],
ld ret 〈sp− 1〉,
sto 〈sp− 1〉 arg

Figure 5.19: Code generation for expressions (continued).

5.12. THE ZWICKEL COMPILER 229

Definition 56 (Local world w for the verification of Zwickel).

w ∈ LWorldΩT S .T

w.T.S := Stack× Heap
w.T.w := { ((q′, h′), (q, h)) | h′ ⊇ h }
w.T.wpub := { ((q′, h′), (q, h)) | h′ ⊇ h ∧ q′ = q }
w.C(G)(sg, (q, h)) := { (ca, cb) | ca = (∅, ∅, q, h) ∧ cb = (∅, ∅, ∅) }
w.N.NS := ∅
w.N.NR := ∅
w.O := gwf

The only differences are due to this being a local world for -T S rather than
for -T I . In particular, since we are now working in the typed version of PILS, we
must provide a set of type names w.N.NS and a relational interpretation w.N.NR for
them—we choose the empty set. Otherwise, the structure of w is the same as before,
although the contents of the stack s.q will look rather different in our Zwickel proofs
than they did for Pilsner.

Analogous to Definition 51 in Section 5.10, we define an auxiliary relation 4T S
between machine code parameterized over its load address (f) and its source ex-
pression (e), relative to a type and typing context. Similar to before, m is the
address at which we load the code f m, and the only f in which we are interested is
λn. map E (ezwickel e n |Γ|).

230 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

Definition 57.

Γ ` f 4T S e : τ := ∃i. ∀G, s0, s, δ, ψa, σa, σb,m, n, j, τ
′.

G ∈ GKw↑ ∧
s w s0 ∧
m 6= 0 ∧
(∃h. s.h = [m 7−→ f n] t [m− n 7−→ map snd ψa] t h) ∧
(∀F :τ ′ ∈ Γ. ∃va, vb. ψa(F) = va ∧ σb(F) = vb ∧ (va, vb) ∈ G(s)(δτ ′) ∧
map fst Γ|Lbl = map fst ψa ∧
repr s.h (s.R(env)) (map snd σa) ∧
(∀y:τ ′ ∈ Γ. ∃va, vb. σa(y) = va ∧ σb(y) = vb ∧ (va, vb) ∈ G(s)(δτ ′)) ∧
map fst Γ|TVar = map fst σa ∧
KGs0 sKaKb j (δτ) τ ′ (length (f n) +m)K

=⇒ ((m, ∅, ∅, ∅), (∅, ∅,K[σbe])) ∈ Ew↑(i+ j)(Ka,Kb)(G)(s0)(s)(⊥)(τ ′)

KGs0 sKaKb j τ τ
′mK = ∀G′, s′, va, vb.

G′ ⊇ G ∧
G′ ∈ GKw↑ ∧
s′ w s ∧
s′.R(env) = s.R(env) ∧
s′.R(ret) = s.R(ret) ∧
s′.R(sp) = s.R(sp) + 1 ∧
s′.q = [s.R(sp) 7→ va] t s.q ∧
(va, vb) ∈ G′(s′)(τ)

=⇒ ((m, ∅, ∅, ∅), (∅, ∅,K[vb])) ∈ Ew↑(j)(Ka,Kb)(G′)(s0)(s′)(⊥)(τ ′)

The key difference to 4T I concerns the last condition, which, earlier, described
how the top-most stack cells correspond to whatever σb provides for e’s continuation
variables. Here, however, K relates the evaluation context K (in which a closed
instance of e is being executed) to the machine code that gets executed after the
code for f n. This code starts at address m+ length (f n), i.e., it is simply whatever
comes next in memory (cf. the definition of ezwickel). K’s definition states that,
under some assumptions, this code is E-related to the filling of K with some value
vb. It quantifies over an extended global knowledge and a future state s′, whose
register file agrees with s on ret and env. This is important, for instance, in the
case of functions, whose code relies on ret having retained its original value when
the function epilogue jumps to it (cf. Figure 5.19). Moreover, K assumes that the sp
register has been increased by one and, correspondingly, the stack extended with a
new value va. Finally, this value must be related to vb at s′.

Lemma 80.
Γ ` e : τ

Γ ` (λn. map E (ezwickel e n |Γ|)) 4T S e : τ

5.13. THE SELF-MODIFYING AWKWARD EXAMPLE 231

Theorem 23 (Correctness of Zwickel).

Γ `M : Γ′

Γ ` zwickel M |Γ| -T S M : Γ′ ` zwickel M |Γ| : |Γ′|

5.13 The Self-Modifying Awkward Example

As we have now seen, the PILS system from Chapter 4 can be used to verify multiple
different compilers with the same source and target languages (namely at least Pilsner
and Zwickel). In this section we further demonstrate PILS’ flexibility by reporting
on the proof of the challenging refinement from Hur and Dreyer [32] mentioned in
Section 1.3, which relies on tricky manipulations of local state, far more involved
than those of any traditional compiler.

This example is based on Pitts and Stark’s “awkward” example, which have
visited in Section 2.2 and repeat here for convenience:

τ = (unit→ unit)→ int
e1 = λf. (f 〈〉; 1)
e3 = let x = ref 0 in λf. (x := 1; f 〈〉; !x)

Recall that both expressions evaluate to higher-order functions that, when applied,
call the argument “callback” function f and then return a number. In e1 this number
is simply 1. In e3 it is the result of dereferencing a local (private) reference x, which is
initialized to 0. Notice, though, that when e3 is called for the first time, it immediately
writes 1 to x. Since there are no other writes, the value of x returned at the end will
always be 1 as well.

Hur and Dreyer [32] adapt this example by substituting for e1 a tricky self-
modifying machine program that implements the same behavior, but in a rather
baroque way. Figure 5.20 shows what our version7 of this program looks like in
memory. It is parameterized by the load address n, and E(−) denotes the encod-
ing of an instruction as a machine word. Notice that part of the code has been
“encrypted” by adding 666 to its encoding. We briefly explain how the code works.

The first few lines allocate a new function closure with empty environment and
code pointer n+ 5, and return it to the context. When this function gets called the
first time, it starts out by decrypting the encrypted instructions (offsets 5–11), thus
replacing the encrypted code in memory. Subsequently (offsets 12–14), it replaces its
first instruction by a direct jump in order to skip over the decryption loop in future
executions. The remaining code (offsets 15–23), which is also the target of that jump,
simply performs the callback function call and then returns 1.

Hur and Dreyer showed that this contrived implementation refines the high-level
program e3 as a demonstration that their KLR approach is flexible enough to reason
about semantically involved “transformations”, even ones whose correctness relies
on low-level internal state changes that clearly have no high-level counterpart. By

7We have slightly modified the original one to account for a difference in calling convention.

232 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

offset word comment

n+ 0 E(ld arg 1) create and return closure
E(alloc arg arg)
E(ld aux1 n+ 5)
E(sto [arg + 0] aux1)
E(jmp ret)

n+ 5 E(ld aux2 n+ 11) (closure begins here)
E(ld aux1 [aux2 + 0]) decrypt in loop
E(bop − aux1 aux1 666)
E(sto [aux2 + 0] aux1)
E(bop + aux2 aux2 1)

n+ 10 E(bop − aux1 n+ 24 aux2)
666 + E(jnz aux1 n+ 6)
666 + E(ld aux1 E(jmp n+ 15)) update code

666 + E(ld aux2 n+ 5)
666 + E(sto [aux2 + 0] aux1)

n+ 15 666 + E(sto 〈sp + 0〉 ret) save and set return address
666 + E(bop + sp sp 1)
666 + E(ld ret n+ 20)
666 + E(sto clo arg) call function
666 + E(jmp [clo + 0])

n+ 20 666 + E(bop − sp sp1) clean up and return 1
666 + E(ld ret 〈sp + 0〉)
666 + E(ld arg 1)
666 + E(jmp ret)

Figure 5.20: Self-modifying “awkward” example

5.14. MECHANIZATION AND EXTRACTION 233

verifying the same example (with respect to -T S), we aim to demonstrate that PILS
are equally flexible.

Fortunately (and, as should be clear by now, not coincidentally), the high-level
structure of our proof closely follows that of Hur and Dreyer’s proof. Let us here
merely sketch the local world that we use. Full details can be found in the Coq
development.

The S module that we are interested in is a singleton module whose only function
is a thunked e3, i.e., λ . e3. The T module under consideration is a singleton module
whose function has the “code” shown in the figure. A state s of our local world
consists of the following:

1. The load address of the machine module. Given how loading works, this address
determines the function value (i.e., the heap address at which the code pointer
is stored), the code address itself, and the precise memory contents at that
address (i.e., the code). In order for the latter to be uniquely determined, the
state also records. . .

2. . . . whether or not the code has already been decrypted. This has an all-or-
nothing semantics, meaning that we do not have states representing the inter-
mediate stages of the memory where some instructions have been decrypted
but others still remain encrypted. Such states are not necessary for the proof
since no functions get called during decryption.

3. The part of the machine stack occupied by not-yet returned instances of the self-
modifying function. It consists entirely of return addresses, one per invocation.

4. Concerning the S module, the state records the allocated memory, i.e., all
references x (created by calling the exported function) and their current values
(either 0 or 1)—in other words, the local heap.

Let’s look at the possible state transitions. The load address (of the machine
module) remains the same in all future states. The encryption status can change,
but only from encrypted from unencrypted, after which it will remain unencrypted
in all future states. The local machine stack can change arbitrarily in private, but
must remain unchanged in public. Finally, the local source heap can change in two
dimensions: new references can be added (when the exported wrapper function gets
called), and existing references can change their contents from 0 to 1 (when one of
closures gets called for the first time).

5.14 Mechanization and Extraction

Even though having our model be somewhat language-generic helped us avoid a lot
of duplicate work, the mechanization effort was huge and so is the actual Coq code,
consisting of roughly 13,000 lines of definitions and 24,000 lines of proofs.

234 CHAPTER 5. THE PILSNER COMPILER AND ITS VERIFICATION

In general, proofs done directly in the model tend to be very tedious—in particular
when the assembly language is involved, such as the example sketch in Section 4.6.
There is certainly room for more sophisticated automation here, but ultimately we
would like to develop better abstractions and reasoning principles on top of the model.

From the start we formalized our work on PILS in Coq. This was critical for
gaining high confidence in the results. Given the amount of technical details involved,
we consider it impractical to carefully write and check many of the proofs by hand.
Of course it is also immensely helpful that, after having modified some definition,
Coq points one to all places that need to be updated.

Besides obviously being a very time-demanding task, the formalization also posed
several other challenges. The compilation (including proof checking) of the Coq
development takes very long (over 1 hour for the whole project). This seems to be
not only due to the large number of definitions and proofs but also due to the large
size of some proof terms. In fact we had to break up some large proofs in unnatural
ways just to avoid intolerable slowdowns.

To work more productively, we wrote a script that would first compile all files
with (most) proofs erased, in order to more quickly produce the “.vo” files needed
for interactive development. After that, a regular build would run. We welcome the
recent work on parallelizing compilation in Coq, which implements a similar idea and
other features aimed at speeding up compilation and workflow [86].

Our Coq development contains a script that extracts Pilsner, Zwickel, and the
linker as OCaml code, and couples the compilers with code for parsing command-line
arguments as well as a lexer and parser for the source language. In order to execute
target machine code, we have implemented a single-step interpretation function in
Coq and proved that it conforms to the operational semantics. This function is also
extracted to OCaml and wrapped in a loop. Please see the “README.txt” file for
further details and instructions on how to build and run the programs.

5.15 Putting It All Together

In Section 5.11 we have established the correctness of Pilsner w.r.t. -T S , and in
Section 5.12 also that of Zwickel. As discussed in Section 5.13, we have moreover
proven the correctness of a manual “translation” of the awkward example to a self-
modifying T machine program.

Thanks to the modularity of PILS, specifically that of -T S (Theorem 14), this
immediately means that we can link together the self-modifying machine program
module with any Pilsner-produced and/or any Zwickel-produced code, and that doing
so results in a T program that refines the linking of the corresponding sources.

Our Coq development contains one simple example of this, involving a Zwickel-
compiled main function that acts as client of the awkward function and of a Pilsner-
compiled factorial function. Please see the “README.txt” file for details.

Chapter 6

Related Work

6.1 Logical Relations

The body of work on applying and extending logical relations is vast. We can only
give a few pointers here.

Early days The idea of logical relations is over 50 years old. Often quoted as one
of the earliest use of the technique is Tait’s proof of strong normalization for the
typed lambda calculus [84]. Other early work includes that of Plotkin and Statman,
who investigated lambda-definability [66, 67, 76].

Parametricity Girard [26, 27, 25] and Reynolds [69] generalized logical relations
to the polymorphic lambda calculus, a key insight being the quantification over rela-
tional interpretations of a program’s abstract types. Reynolds introduced parametric-
ity, which led to further work on reasoning about abstract types [53, 54, 90, 36, 60].

State Although they were originally geared toward reasoning about pure λ-calculi,
logical relations have been successfully generalized to reason about state. In Pitts
and Stark’s seminal work on Kripke logical relations (KLRs) [65], logical relations
are indexed by possible worlds, which characterize the runtime environment (e.g., the
assumptions about heaps) under which two programs are considered to be equivalent.

These early KLRs for reasoning about local state imposed serious restrictions on
memory contents by allowing references only to integers [65] or, say, to references of
integers [8, 68]. The first to deal with full higher-order store were Birkedal et al. [16,
14].

In more recent work on KLRs, Dreyer et al. [4, 22] showed how to generalize
Pitts and Stark’s technique to reason about (1) modules whose correctness proofs
require fine-grained control over how local state evolves over time, and (2) ML-like
languages with higher-order state. W.r.t. point (1), they model possible worlds as
state transition systems (STSs), as we have reviewed in Chapter 2. PBs (and PILS)
adopt Dreyer et al.’s STS technique directly, and thus it is relatively straightforward

235

236 CHAPTER 6. RELATED WORK

to port all the Fµ! equivalence proofs given in their papers from using KLRs to using
PBs.

W.r.t. point (2), the challenge of supporting higher-order state in Kripke logical
relations is that a naive attempt to construct a model of general reference types leads
to a circularity. Intuitively, `1 and `2 are related at ref τ under a possible world W iff
W encodes the invariant that the heaps of the two programs map `1 and `2 to values
v1 and v2 that are logically related at type τ . But how can the logical relation be
indexed by a possible world W , which itself is defined in terms of the logical relation?
If τ is restricted to base type (e.g., int), there’s no issue because the logical relation
at int is simply the identity relation, but at higher type we have a problem.

Dreyer et al. handle higher-order state by means of Appel, McAllester, and
Ahmed’s technique of step-indexed logical relations (SILRs) [5, 2]. That is, they cut
the aforementioned semantic circularity by indexing the model by a natural number
(“step index”) k, which represents the number of steps left on “the clock” and which
gets decremented every time around the cycle between logical relations and possible
worlds. As discussed in Chapter 2, it seems fundamentally difficult to compose SILR
proofs transitively.

PBs and PILS employ the idea of global knowledge in order to avoid the need
for step-indexing in modeling higher-order state. Specifically, by parameterizing the
heap relations in our worlds over the global knowledge G, we give heap invariants a
way of referring to the global value equivalence, which is essentially what the step-
indexed stratification of Kripke worlds is trying to achieve as well. Our method does
not bake in any syntactic typing assumptions.

Dreyer et al. [22] also proposed the distinction between private and public tran-
sitions to prove equivalences that only hold in the absence of control features such as
call/cc. Orthogonally, they showed how equivalences that only hold when restricting
store to first order can be handled by allowing a kind of backtracking in the STSs.

Our notions of logical reduction steps and stuttering from Sections 3.10 and 4.5.1
are reminiscent of Svendsen et al.’s transfinite step-indexing [83], which relaxes the
coupling of a logical relation’s step-index to the physical reduction steps of related
programs. This enables proofs where one can decrease the step-index by an arbitrary
finite amount even when there is only a single corresponding physical reduction step.

Logics Several logics based on logical relations models have been developed [23,
21, 87], with increasing power and complexity. They attempt to abstract away tech-
nical details of the models (e.g., the step-indexing) and offer higher-level reasoning
principles.

6.2 Bisimulations

Aside from their general coinductive flavor, PBs and PILS are closely related to two
different bisimulation techniques.

6.2. BISIMULATIONS 237

From normal form (or open) bisimulations [71, 43, 78, 44, 45], we take the idea
of treating unknown equivalent functions as black boxes. In particular, our expres-
sion equivalence relation E, which deals explicitly with the possibility (in its third
disjunct) that related terms may get stuck by calling unknown functions, is highly
reminiscent of the formulation of normal form bisimulations. The main difference
is that we express the notion of “stuckness” semantically, via the global knowledge
parameter G, whereas normal form bisimulations express it syntactically by requiring
related stuck terms to share a common head variable.

Normal form bisimulations draw much inspiration from game-semantics mod-
els [57], and our distinction between global and local knowledge has a seemingly
gamey flavor as well. We leave a deeper study of the connection to game semantics
to future work.

Sumii et al.’s environmental bisimulations (aka “relation-sets bisimulations”)
are perhaps the most powerful form of bisimulation yet developed for ML-like lan-
guages [63, 81, 41, 74, 79]. As the latter name suggests, these bisimulations are not
term relations, but sets X whose elements are themselves term relations R (possibly
paired with some additional environmental information, such as knowledge about the
state of the heap). In essence, each R ∈ X defines some piece of “local knowledge”
(following our terminology) about program equivalence. In order to show X to be
a bisimulation, one must check that for all R ∈ X , uses of terms related by R will
never result in observably different outcomes and will always produce values that are
related by some R′ ∈ X s.t. R′ ⊇ R.

Viewed in terms of PBs, one can understand an environmental bisimulation X
as effectively defining an abstract state space, with each R ∈ X as a distinct state.
However, the accessibility (transition) relation between these states is essentially
baked in: roughly speaking, a term relation R′ is (publicly) accessible from another
term relation R if R′ ⊇ R. Thus, environmental bisimulations provide less control
over the structure of the transition system than PBs do, and they do not support
anything directly analogous to the distinction between public and private transitions.

As a consequence, environmental bisimulations are most effective at proving
equivalences that require transition systems with only public transitions (e.g., the
twin abstraction example), and their proofs for examples where private transitions
are required (e.g., the well-bracketed state change example) are comparatively “brute-
force”. It is an open question whether environmental bisimulations can be generalized
to support the full power of PBs and PILS with both public and private transitions.

Our approach to reasoning about parametricity of ADTs, by populating the local
knowledge of a world with relations at abstract type names, is inspired directly by
Sumii and Pierce [81].

Well-Founded Bisimulations Our technique of logical reduction is inspired by
Namjoshi’s well-founded [58, 48] bisimulations, which were developed as an alterna-
tive formulation of stuttering bisimulations [17] that can be checked by only reasoning
about single transitions instead of infinite computations. In order to support finite

238 CHAPTER 6. RELATED WORK

but unbounded stuttering, well-founded bisimulations employ a “rank function” map-
ping states to some well-founded ordering, and insist (roughly) that, for states related
in a bisimulation, either both make physical transitions to related states or else one
side makes a transition while the rank of the pair of states decreases. In our model,
we use the stutter budget to effectively bake a particular rank function into our
bisimulations, which is sufficient for our purposes and convenient to work with. As
far as we aware, this is the first time that the idea of well-founded bisimulations has
been adapted for use in reasoning about open programs in a higher-order language
setting.

6.3 Compositional Compiler Correctness

Research on compiler correctness has a long history. Here we focus only on compo-
sitionality, referring to Dave’s extensive bibliography [20] for the broader area.

Using Logical Relations Benton and Hur [6] proposed the idea of using logical
relations to define compositional semantics preservation. In addition to being inher-
ently modular, logical relations are highly flexible, having been used in the past as an
effective technique for proving correctness of a wide variety of program transforma-
tions in a wide variety of languages [4, 22]. Moreover, unlike contextual refinement,
logical relations can be used to relate different source and target languages.

Hur and Dreyer [32] developed this idea further by formalizing the compositional
correctness of a simple, single-pass compiler from an ML-like source language to an
idealized assembly language. They additionally demonstrated the flexibility of their
inter-language logical relations by using them to verify a contrived but illustrative
example, wherein a higher-order ML function was implemented in a rather baroque
way by some tricky hand-written self-modifying assembly code. Thanks to the modu-
larity of their logical relations method, this highly non-standard assembly code could
nonetheless be safely linked with assembly modules produced by their verified com-
piler, with the resulting assembly program guaranteed to preserve the semantics of
the corresponding linked source modules.

Unfortunately, it is not clear how to scale Hur et al.’s approach from single- to
multi-pass compilers because, although logical relations are modular and flexible,
they are not typically transitive.

Our language-generic style of defining PILS is very much inspired by Hur and
Dreyer’s generic KLR setup [32]. Their point, however, was mainly to “simplify and
clarify the formal presentation”—they only ever instantiated their definitions with a
single language pair and proved only a few very basic properties about the generic
model; all the rest was proven about the concrete instantiation.

Multi-language semantics. Motivated by the goal of supporting compiler ver-
ification for programs that interoperate between different languages, Perconti and

6.3. COMPOSITIONAL COMPILER CORRECTNESS 239

Ahmed [62] propose an approach based on multi-language semantics [49]. In par-
ticular, they define a “big-tent” language that comprises the source, target, and
intermediate languages of a compiler, and provides “wrapping” operations for em-
bedding terms of each language within the others. They then use logical relations
to prove that every source module is contextually equivalent to a suitably wrapped
version of the target module to which it is compiled. In this way, their method syn-
thesizes the benefits of logical relations (modularity and different source and target
languages) and contextual equivalence (transitivity).

One downside of their approach is that the intermediate languages (ILs) used in
a compiler show up explicitly in the statement of compiler correctness. This leads
to a loss of flexibility: the semantics of source-level linking is not preserved when
linking the results of compilers that have different ILs. Another limitation with
respect to flexibility is that their approach seems to be restricted to compilers that
use typed intermediate and assembly languages, and has only so far been applied
to a purely functional source language. On the other hand, Perconti and Ahmed
are more flexible than we are with respect to multi-language interoperation. One of
their explicit goals is to reason about the linking of ML code with arbitrary typed
assembly code, whereas we only support verified linking with assembly modules that
refine some source-level counterpart. As we observed in footnote 1, we do not believe
this is a fundamental limitation of our approach: it should in principle be possible
to develop PILS for a different source language in which high- and low-level modules
may interoperate, in which case the “source”-level specification of a “target”-level
module could be the target-level module itself.

In the above work, the source and intermediate languages are purely functional,
and the target language is still very high-level. In recent follow-up work, Patter-
son et al. [61] develop a multi-language semantics that provides safe interoperability
between the former source language and a truly low-level typed assembly language.
They also construct a logical relation that supports compositional reasoning, but
they do not define a compiler.

Compositional verified compilation for C. Motivated by the goal of compo-
sitional compiler verification, Beringer et al. [9, 77] propose an adaptation of the
CompCert framework based on a novel “interaction” semantics that differentiates
between internal (intra-module) and external (inter-module) function calls. They
introduce a notion of “structured simulation” that assumes little about the memory
transformations performed by external function calls.

Beringer et al.’s approach is transitive, and like Perconti and Ahmed’s (but unlike
ours), it supports verified compilation of multi-language programs—in this case, pro-
grams that link C and assembly modules. However, also like Perconti and Ahmed’s
approach, Beringer et al.’s is somewhat lacking in flexibility. It depends on com-
piler passes only performing a restricted set of memory transformations—additional
transformations could potentially break the transitivity property. In addition, their
method appears to be geared specifically toward compilers à la CompCert, which em-

240 CHAPTER 6. RELATED WORK

ploy a uniform memory model across source, intermediate, and target languages. It
is not clear how to generalize their technique to support richer (e.g., ML-like) source
languages, or compilers whose source and target languages have different memory
models.

In recent work, Kang et al. [37] adapt CompCert such that it supports separate
compilation when all modules are compiled with the same compiler. This is clearly
weaker than our horizontal compositionality. However, the restriction to a single
compiler makes it possible to phrase the compositional verification in terms of the
existing whole-program verification and thus reuse most of the proofs. While carrying
out the work, Kang et al. discovered two bugs in CompCert: an incorrect axiom and
an analysis that becomes invalid in the presence of linking.

Wang et al. [91] have also recently explored compositional compiler verification for
a restricted C-like language called Cito. Their approach embeds the verification state-
ment within a Hoare logic for partial correctness of assembly modules, thus enabling
support for verified cross-language linking, but without guaranteeing preservation of
termination behavior. Further work is needed to better understand the relationship
between this approach and traditional refinement-based compiler verification.

6.4 Miscellaneous

Large vs. Small Worlds While PBs (and PILS) build very closely on the state
transition systems in Dreyer et al.’s KLRs [4, 22], there is a big difference between
them, which we like to think of in terms of large vs. small worlds.

Under Dreyer et al.’s approach, in order to demonstrate the equivalence of func-
tions f1 and f2 under a “possible world” W , one proves that they behave the same
when passed arguments that are related under any “future world” W ′ of W , which
may contain arbitrary new invariants concerning the local state of other modules in
the program. One can really think of the “future world” relation (i.e., the Kripke
structure) as defining its own transition system (or large world), with the possible
worlds W as its states.

In contrast, our PBs rely only on small worlds. For us, worlds W are static
entities that contain only the local invariants relevant to the module we are reasoning
about, and nothing about any invariants for other parts of the program. In proving
equivalence of functions f1 and f2 under W , we never quantify over any future worlds
that extend W . Of course, in order to support compositional reasoning—i.e., in order
to show that consistency of worlds is preserved under separating conjunction—we
must show that f1 and f2 behave the same when applied to arguments drawn from
some larger relation than just W ’s local knowledge; but for that purpose we quantify
over the global knowledge G, which is not a world, but rather an arbitrary extension
of W ’s local knowledge.

These different accounts of worlds are strongly reminiscent of the different tech-
niques that have been proposed for modeling resource invariants in logics of storable
locks. Gotsman et al. [30] and Hobor et al. [31] presented, roughly contemporane-

6.4. MISCELLANEOUS 241

ously, two different models of a concurrent separation logic for local reasoning about
programs that dynamically allocate locks and store them in the heap. The central
challenge in developing such a model is in dealing with the semantic circularity that
arises when accounting for locks whose resource invariants are essentially recursive.

Gotsman et al. deal with this circularity syntactically, by assuming a static set of
named “sorts” of resource invariants, which includes not all possible invariants, but
only those needed for reasoning about a particular program. In contrast, Hobor et al.
(and more recently, Buisse et al. [18]) deal with the circularity head-on, defining once
and for all what recursive resource invariants mean using step-indexing. The latter
is analogous to Dreyer et al.’s “large worlds” approach, which defines the space of all
possible heap invariants, while the former is analogous to our “small world” approach
of defining only the heap invariants needed within the module we are reasoning about.

Our small-world relations seem easier to compose transitively, precisely because
we make no assumption whatsoever about the relatedness of functions defined outside
of whatever module we are reasoning about. That is, the global knowledge G that we
quantify over (e.g., when proving world consistency) could include complete garbage,
and our transitivity proofs rely in a fundamental way on the surgical insertion of
contentful garbage into the global knowledge.

242 CHAPTER 6. RELATED WORK

Bibliography

[1] Samson Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research
Topics in Functional Programming, pages 65–117. 1990.

[2] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton
University, 2004.

[3] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quanti-
fied types. In ESOP, 2006.

[4] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent represen-
tation independence. In POPL, 2009.

[5] Andrew Appel and David McAllester. An indexed model of recursive types for
foundational proof-carrying code. TOPLAS, 23(5):657–683, 2001.

[6] Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and compiler
correctness. In ICFP, 2009.

[7] Nick Benton and Vasileios Koutavas. A mechanized bisimulation for the nu-
calculus. Journal of Higher Order and Symbolic Computation, 2013.

[8] Nick Benton and Benjamin Leperchey. Relational reasoning in a nominal se-
mantics for storage. In TLCA, 2005.

[9] Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel.
Verified compilation for shared-memory C. In ESOP, 2014.

[10] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for Algol-like languages. LMCS, 2(5:1), 2006.

[11] Lars Birkedal and Aleš Bizjak. A note on the transitivity of step-indexed logical
relations. Manuscript, November 2012.

[12] Lars Birkedal and Robert W. Harper. Constructing interpretations of recursive
types in an operational setting. Information and Computation, 155:3–63, 1999.

[13] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Realizability seman-
tics of parametric polymorphism, general references, and recursive types. In
FOSSACS, 2009.

243

244 BIBLIOGRAPHY

[14] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Relational parametric-
ity for references and recursive types. In Proceedings of the 4th International
Workshop on Types in Language Design and Implementation, TLDI ’09, pages
91–104, New York, NY, USA, 2009. ACM.

[15] Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce. Relational
lenses: A language for updateable views. In Principles of Database Systems
(PODS), 2006. Extended version available as University of Pennsylvania tech-
nical report MS-CIS-05-27.

[16] Nina Bohr. Advances in Reasoning Principles for Contextual Equivalence and
Termination. PhD thesis, IT University of Copenhagen, 2007.

[17] M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing finite Kripke
structures in propositional temporal logic. Theor. Comput. Sci., 59(1-2):115–
131, July 1988.

[18] Alexandre Buisse, Lars Birkedal, and Kristian Støvring. A step-indexed Kripke
model of separation logic for storable locks. In MFPS, 2011.

[19] The Coq Proof Assistant. http://coq.inria.fr/.

[20] Maulik A. Dave. Compiler verification: A bibliography. SIGSOFT Softw. Eng.
Notes, 28(6):2–2, November 2003.

[21] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations. LMCS, 7(2:16):1–37, June 2011.

[22] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state
and control effects on local relational reasoning. JFP, 22(4-5), 2012.

[23] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. A relational
modal logic for higher-order stateful ADTs. In POPL, 2010.

[24] Matthew Fluet and Stephen Weeks. Contification using dominators. In ICFP,
2001.

[25] Jean H Gallier. On Girard’s “candidats de reductibilité”. Manuscript, 1989.

[26] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[27] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1989.

[28] Andrew D. Gordon. Bisimilarity as a theory of functional programming. Theor.
Comput. Sci., 228(1-2):5–47, October 1999.

http://coq.inria.fr/

BIBLIOGRAPHY 245

[29] Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-order calculus
of objects with subtyping. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’96, pages 386–395,
New York, NY, USA, 1996. ACM.

[30] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv.
Local reasoning about storable locks and threads. In APLAS, 2007.

[31] Aquinas Hobor, Andrew Appel, and Francesco Zappa Nardelli. Oracle semantics
for concurrent separation logic. In ESOP, 2008.

[32] Chung-Kil Hur and Derek Dreyer. A Kripke logical relation between ML and
assembly. In POPL, 2011.

[33] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. The marriage
of bisimulations and Kripke logical relations. In POPL, 2012.

[34] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of
parameterization in coinductive proof. In POPL, 2013.

[35] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. A logical
step forward in parametric bisimulations. Technical Report MPI-SWS-2014-003,
MPI-SWS, 2014.

[36] Patricia Johann and Janis Voigtländer. The impact of seq on free theorems-based
program transformations. Fundamenta Informaticae, 69(1–2):63–102, 2006.

[37] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor
Vafeiadis. Lightweight verification of separate compilation. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’16, pages 178–190, New York, NY, USA, 2016.
ACM.

[38] Andrew Kennedy. Relational parametricity and units of measure. In Peter Lee,
Fritz Henglein, and Neil D. Jones, editors, POPL, pages 442–455. ACM Press,
1997.

[39] Andrew Kennedy. Compiling with continuations, continued. In ICFP, 2007.

[40] Vasileios Koutavas, Paul Blain Levy, and Eijiro Sumii. From applicative to
environmental bisimulation. In MFPS, 2011.

[41] Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about
higher-order imperative programs. In POPL, 2006.

[42] Ramana Kumar, Magnus Myreen, Michael Norrish, and Scott Owens. CakeML:
A verified implementation of ML. In POPL, 2014.

[43] Soren Lassen. Eager normal form bisimulation. In LICS, 2005.

246 BIBLIOGRAPHY

[44] Soren B. Lassen and Paul Blain Levy. Typed normal form bisimulation. In CSL,
2007.

[45] Soren B. Lassen and Paul Blain Levy. Typed normal form bisimulation for
parametric polymorphism. In LICS, 2008.

[46] Vu Le, Mehrdad Afshari, and Zhengdong Su. Compiler validation via equivalence
modulo inputs. In PLDI, 2014.

[47] Xavier Leroy. A formally verified compiler back-end. Journal of Automated
Reasoning, 43(4):363–446, 2009.

[48] Panagiotis Manolios. Mechanical Verification of Reactive Systems. Ph.D. thesis,
Department of Computer Science, The University of Texas at Austin, August
2001.

[49] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-
language programs. In POPL, 2007.

[50] John Mccarthy and James Painter. Correctness of a compiler for arithmetic
expressions. pages 33–41. American Mathematical Society, 1967.

[51] Paul-André Melliès and Jérôme Vouillon. Recursive polymorphic types and para-
metricity in an operational framework. In LICS, 2005.

[52] Robin Milner. Communicating and Mobile Systems: The π-calculus. Cambridge
University Press, 1999.

[53] John C. Mitchell. Representation independence and data abstraction. In Pro-
ceedings of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL ’86, pages 263–276, New York, NY, USA, 1986.
ACM.

[54] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
ACM Transactions on Programming Languages and Systems, 10(3):470–502,
July 1988.

[55] J. Strother Moore. A mechanically verified language implementation. J. Autom.
Reason., 5(4):461–492, November 1989.

[56] Lawrence S. Moss. Parametric corecursion. Theor. Comput. Sci., 260(1-2):139–
163, June 2001.

[57] Andrzej S. Murawski and Nikos Tzevelekos. Game semantics for good general
references. In LICS, 2011.

[58] Kedar S. Namjoshi. A simple characterization of stuttering bisimulation. In
FSTTCS, pages 284–296, 1997.

BIBLIOGRAPHY 247

[59] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structuring the ver-
ification of heap-manipulating programs. In POPL, 2010.

[60] Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametric-
ity. JFP, 21(4&5):497–562, 2011.

[61] Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. Fun-
TAL: Reasonably mixing a functional language with assembly. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, pages 495–509, New York, NY, USA, 2017. ACM.

[62] James T. Perconti and Amal Ahmed. Verifying an open compiler using multi-
language semantics. In ESOP, 2014.

[63] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the poly-
morphic pi-calculus. Journal of the ACM, 47(3):531–586, 2000.

[64] Andrew Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 7. MIT Press, 2005.

[65] Andrew Pitts and Ian Stark. Operational reasoning for functions with local
state. In HOOTS, 1998.

[66] Gordon Plotkin. Lambda-definability and logical relations. Technical Report
SAI-RM-4, Univ. of Edinburgh, School of Artificial Intelligence, 1973.

[67] Gordon Plotkin. Lambda-definability in the full type hierarchy. In J. P. Seldin
and J. R. Hindley, editors, Combinatory Logic, Lambda Calculus, and Formalism
(Curry Festschrift), pages 363–373. Academic Press, Amsterdam, 1980.

[68] Uday S. Reddy and Hongseok Yang. Correctness of data representations involv-
ing heap data structures. Science of Computer Programming, 50(1–3):129–160,
March 2004.

[69] John C. Reynolds. Types, abstraction, and parametric polymorphism. Informa-
tion Processing, 1983.

[70] Andreas Rossberg, Claudio Russo, and Derek Dreyer. F-ing modules. Journal
of Functional Programming, 24(5):529–607, 2014.

[71] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Infor-
mation and Computation, 111(1):120–153, 1994.

[72] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2012.

[73] Davide Sangiorgi. Origins of bisimulation and coinduction. In Davide Sangiorgi
and Jan Rutten, editors, Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press, 2012.

248 BIBLIOGRAPHY

[74] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimula-
tions for higher-order languages. TOPLAS, 33(1), 2011.

[75] Jaroslav Sevcik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagan-
nathan, and Peter Sewell. CompCertTSO: A Verified Compiler for Relaxed-
Memory Concurrency. Journal of the ACM (JACM), 60(3):22, 2013.

[76] Richard Statman. Logical relations and the typed lambda-calculus. Information
and Control, 65(2/3):85–97, 1985.

[77] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel.
Compositional CompCert. In POPL, 2015.

[78] Kristian Støvring and Soren Lassen. A complete, co-inductive syntactic theory
of sequential control and state. In POPL, 2007.

[79] Eijiro Sumii. A complete characterization of observational equivalence in poly-
morphic λ-calculus with general references. In CSL, 2009.

[80] Eijiro Sumii and Benjamin Pierce. A bisimulation for type abstraction and
recursion. JACM, 54(5):1–43, 2007.

[81] Eijiro Sumii and Benjamin Pierce. A bisimulation for type abstraction and
recursion. Journal of the ACM, 54(5):1–43, 2007.

[82] Eijiro Sumii and Benjamin C. Pierce. Logical relation for encryption. J. Comput.
Secur., 11(4):521–554, July 2003.

[83] Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. Transfinite step-
indexing: Decoupling concrete and logical steps. In Proceedings of the 25th
European Symposium on Programming Languages and Systems - Volume 9632,
pages 727–751, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[84] W. W. Tait. Intensional interpretations of functionals of finite type I. Journal
of Symbolic Logic, 32(2):198–212, 1967.

[85] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott
Owens, and Michael Norrish. A new verified compiler backend for CakeML. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, pages 60–73, New York, NY, USA, 2016. ACM.

[86] Enrico Tassi. Coq reference manual: Asynchronous and parallel proof processing.
https://coq.inria.fr/refman/async-proofs.html.

[87] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming, ICFP
’13, pages 377–390, New York, NY, USA, 2013. ACM.

BIBLIOGRAPHY 249

[88] Viktor Vafeiadis. Concurrent separation logic and operational semantics. In
MFPS, 2011.

[89] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR, 2007.

[90] Philip Wadler. Theorems for free! In FPCA, 1989.

[91] Peng Wang, Santiago Cuellar, and Adam Chlipala. Compiler verification meets
cross-language linking via data abstraction. In OOPSLA, 2014.

[92] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in C compilers. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’11,
pages 283–294, New York, NY, USA, 2011. ACM.

	Zusammenfassung
	Summary
	Note
	Acknowledgements
	Introduction
	Compiler Correctness
	Compositionality
	State of the Art
	This Thesis
	First Part
	Second Part
	Other Chapters
	Proof Mechanization

	Background: Logical Relations and Protocols
	Kripke Logical Relations
	State Transition Systems
	The Limitation of Worlds as Memory Relations
	The Power of Worlds as State Transition Systems
	Private Transitions

	Dealing With Recursive Language Features
	Step-Indexing

	Parametric Bisimulations
	Overview
	Notation
	The Language F!
	Syntax and Static Semantics
	Dynamic Semantics
	Contextual Equivalence
	Deterministic Allocation

	Global vs. Local Knowledge
	Warmup: Parametric Bisimulations for
	Definitions
	Example Proof
	Basic Properties and Soundness
	Transitivity

	Parametric Bisimulations for F!
	Worlds
	Treatment of Universal and Existential Types
	Treatment of Reference Types
	Lifting and Separating Conjunction of Local Worlds
	Program Equivalence
	Expression and Continuation Equivalence
	Living in a Different World

	Metatheory
	Basics
	Symmetry
	Compatibilities
	Congruency
	Soundness

	Examples
	Well-Bracketed State Change
	Twin Abstraction
	World Generator
	Twin Abstraction, Alternate Proof
	A Free Theorem

	Transitivity
	Structure of the Transitivity Proof
	First Part: Constructing the Full World W
	Second Part: Constructing the Corresponding Local World w

	Stuttering Parametric Bisimulations
	The Problem with Eta
	Guardedness Revisited
	Logical Reduction and the Stutter Budget
	Eta Revisited
	First-Class Continuations
	Comparison to Step-Indexing

	Greatest Local Knowledge
	Comparison To Logical Relations

	Parametric Inter-Language Simulations
	Overview
	Transitivity

	Languages
	Language-Generic Approach
	Language Specification
	Source Language S
	Intermediate Language I
	Target Language T

	Worlds
	Queries
	Value Closure
	Lifting and Separating Conjunction of Local Worlds

	Concrete Global Worlds
	Global References
	Unary Parts

	Simulations
	Stuttering according to algebraic well-founded orders.
	The two modes of E and cfg.
	A Note on the Untyped Model
	Convenience Lemmas

	Example
	Modules
	Proof

	Metatheory
	Basics
	Adequacy
	Modularity

	Proof of Transitivity
	Overview
	Constructing the Local World
	Discussion

	The Pilsner Compiler and Its Verification
	Overview
	From S to I: CPS Transformation
	Definition
	Verification

	Infrastructure for Optimizations
	Relating Open Expressions
	Annotating Expressions With Transformations

	The Commute Pass
	Transformation
	Verification
	Alternative Implementation.

	The Dedup Pass
	Transformation
	Verification

	The Hoist Pass
	Transformation
	Verification

	The Dead Code Elimination Pass
	Transformation
	Verification

	The Inline Pass
	Transformation
	Verification
	Freshening

	The Contify Pass
	Transformation
	Verification

	The Codegen Pass
	Transformation
	Verification

	The Full Pilsner Compiler
	The Zwickel Compiler
	Transformation
	Verification

	The Self-Modifying Awkward Example
	Mechanization and Extraction
	Putting It All Together

	Related Work
	Logical Relations
	Bisimulations
	Compositional Compiler Correctness
	Miscellaneous

	Bibliography

