
Unifying Refinement and Hoare-Style Reasoning
in a Logic for Higher-Order Concurrency

Aaron Turon
MPI-SWS

turon@mpi-sws.org

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

Abstract
Modular programming and modular verification go hand in hand,
but most existing logics for concurrency ignore two crucial forms
of modularity: higher-order functions, which are essential for
building reusable components, and granularity abstraction, a key
technique for hiding the intricacies of fine-grained concurrent data
structures from the clients of those data structures. In this paper,
we present CaReSL, the first logic to support the use of granularity
abstraction for modular verification of higher-order concurrent pro-
grams. After motivating the features of CaReSL through a variety
of illustrative examples, we demonstrate its effectiveness by using
it to tackle a significant case study: the first formal proof of (partial)
correctness for Hendler et al.’s “flat combining” algorithm.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Refinement, fine-grained concurrency, linearizability,
separation logic, logical relations, data abstraction, local state

1. Introduction
Over the past decade, a number of Hoare logics have been devel-
oped to cope with the complexities of concurrent programming [20,
32, 7, 3, 18, 4, 27]. Unsurprisingly, the name of the game in these
logics is improving support for modular reasoning along a vari-
ety of dimensions. Concurrent Abstract Predicates (CAP) [3], for
example, utilizes a deft combination of separation logic [26] (for
spatially-modular reasoning about resources and ownership), rely-
guarantee [15] (for thread-modular reasoning in the presence of
interference), and abstract predicates [21] (for hiding invariants
about a module’s private data structures from its clients).

At the same time, of course, the importance of modularity is
not restricted to verification. Programmers use modularity in the
design of their concurrent programs, precisely to enable reasoning
about individual program components in relative isolation. And
indeed, certain aspects of advanced concurrency logics, such as
their aforementioned use of abstract predicates, are geared toward
building proofs that reflect the data abstraction inherent in well-
designed programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500600

We contend, however, that existing concurrency logics are not
exploiting the modular design of sophisticated concurrent programs
to full effect. In particular, we observe that there are two crucial di-
mensions of modular concurrent programming that existing logics
provide no way to leverage in the construction of proofs: namely,
higher-order functions and granularity abstraction.

Higher-order concurrency Higher-order functional abstraction
is of course one of the most basic hammers in the modern program-
mer’s toolkit for writing reusable and modular code. Moreover, a
number of concurrent programming patterns rely on it: work steal-
ing [2], Concurrent ML-style events [25], concurrent iterators [16],
parallel evaluation strategies [29], and monadic approaches to con-
current programming [10], just to name a few.

Yet, verification of higher-order concurrent programs remains
a largely unexplored topic. To our knowledge, only a few existing
logics can handle higher-order concurrent programs [27, 17, 14],
but these logics are limited in other ways—in particular, they do not
presently support verification of “fine-grained” concurrent ADTs.
This leads us directly to the second limitation we observe of the
state of the art, concerning granularity abstraction.

Granularity abstraction via contextual refinement An easy way
to adapt a sequential mutable data structure for concurrent access
is to employ coarse-grained synchronization: use a single global
lock, and instrument each of the operations on the data structure so
that they acquire the lock before they begin and release it after they
complete. On the other hand, more sophisticated implementations
of concurrent data structures employ fine-grained synchronization:
they protect different parts of a data structure with different locks,
or avoid locking altogether, so that threads can access disjoint
pieces of the data structure in parallel.

There may seem at first glance to be a fundamental trade-
off here. Fine-grained synchronization enables parallelism, but
makes the data structures that use it very tricky to reason about di-
rectly, due to their complex internal coordination between threads.
Coarse-grained synchronization sequentializes access to the data
structure, which is bad for parallelism but perfect for client-side
reasoning, since it enables clients to reason about concurrent ac-
cesses as if each operation takes effect atomically.

Fortunately, modular programming comes to the rescue. In par-
ticular, so long as tricky uses of fine-grained synchronization are
confined to the hidden state of a carefully crafted ADT, it is possible
to prove that the fine-grained implementation of the ADT is a con-
textual refinement of some coarse-grained implementation. Contex-
tual refinement means that, assuming clients only access the ADT
through its abstract interface (so that the state really is hidden), ev-
ery behavior that clients can observe of the fine-grained implemen-
tation is also observable of the coarse-grained one. Thus, clients can
pretend, for the purpose of simplifying their own verification, that
they are using the coarse-grained version, yet be sure that their code
will still be correct when linked with the more efficient fine-grained
version. This is what we call granularity abstraction. (Note: gran-

1

ularity abstraction is similar to atomicity abstraction [19], but is
more general in that, as we will see in the iterator example later in
this section, it applies even if the target of the abstraction is only
somewhat coarse-grained.)

To illustrate this point more concretely, let us consider a simple
motivating example of reasoning about Treiber’s stack [28]. (We
will in fact use this very example as part of a larger case study later
in the paper.) Treiber’s stack is a fine-grained implementation of a
concurrent stack ADT. Instead of requiring concurrently executing
push and pop operations to contend for a global lock on the whole
stack (as a coarse-grained implementation would), Treiber’s imple-
mentation allows them to race to access the head of the stack using
compare-and-set (CAS). (The implementation of Treiber’s stack is
shown in Figure 9, and discussed in detail in §3.3.)

Now, the reader may expect that stacks should admit a canoni-
cal, principal specification (spec, for short), perhaps something like
the following “precise” spec which tracks the exact contents s of
the stack using the abstract predicate Con(s):
{Con(s)} push(x) {Con(x :: s)}
{Con(s)} pop() {ret. (ret = none ∧ s = nil ∧ Con(s))

∨ (∃x, s′.ret = some(x) ∧ s = x :: s′ ∧ Con(s′))}

The trouble with using this spec in a concurrent setting is that
knowledge about the exact contents of the stack is not stable under
interference from other threads. As a result, some concurrency
logics prohibit this spec altogether. Others permit the spec, but
force the Con(s) predicate to be treated as a resource that only one
thread can own at a time, thus effectively preventing any concurrent
access to the stack and defeating the point of using Treiber’s stack
in the first place!

We want instead to capture the idea that the client threads of
a data structure interact with it according to some (application-
specific) protocol. Take, for example, the following “per-item”
spec, which abstracts away from the LIFO nature of the stack and
instead imposes an item-level protocol:

∀x. {p(x)} push(x) {true}
∧ {true} pop() {ret. ret = none ∨ (∃x. ret = some(x) ∧ p(x))}

Given an arbitrary predicate p of the client’s choice, this per-item
spec asserts that the stack contains only elements that satisfy the
predicate p. It is pleasantly simple, and sufficient for the purposes
of the case study we present later in the paper. It should be clear,
however, that this “per-item” spec is far from a canonical or prin-
cipal specification of stacks: the same spec would also be satisfied,
for instance, by queues.

This brings us to our key point: different clients have different
needs, and so we may want to verify the stack ADT against a range
of different Hoare-style specs, but we do not want to have to re-
verify Treiber’s implementation each time. Ideally, we would like
to modularly decompose the proof effort into two parts:

1. Prove that Treiber’s implementation is a contextual refinement
of a coarse-grained, lock-based implementation, which serves
as a simple reference implementation of the stack ADT.

2. Use Hoare-style reasoning to verify that this reference imple-
mentation satisfies the various specs of interest to clients.

This decomposition engenders a clean separation of concerns, con-
fining the difficulty of reasoning about Treiber’s particular imple-
mentation1 to the proof of refinement, and simplifying the verifica-
tion of the stack ADT against different client specs.

The story we have just told is, in principle, nothing new. The
ability to prove granularity abstraction via contextual refinement
has been accepted in the concurrency literature as a useful correct-

1 Treiber’s stack is actually one of the easiest fine-grained data structures to
reason about, but our general line of argument applies equally well to more
sophisticated implementations, such as the HSY elimination stack [12].

ness criterion for tricky concurrent data structures, precisely be-
cause of the modular decomposition of proof effort that it ought
to facilitate [13, 8, 9]. Unfortunately, despite the utility of such a
modular decomposition in theory, no existing concurrency logic ac-
tually supports it in practice. In particular, very few systems sup-
port proofs of contextual refinement at all, and those few that do
support refinement proofs—such as the recent work of Liang and
Feng [18]—do not provide a means of composing refinement with
client-side Hoare-style verification in a unified logic.

Granularity abstraction for higher-order functions Although
supporting granularity abstraction is already a challenge for first-
order concurrent programs, it becomes even more interesting for
higher-order concurrent programs.

Suppose, for instance, we wished to add a higher-order iterator,
iter, to the concurrent stack ADT. (Such concurrent iterators are
already commonplace [16].) Adding iter to Treiber’s implementa-
tion is trivial: iter(f) will (without acquiring any lock) just read
the current head pointer of the stack and apply f to each element
of the stack accessible from it. But how do we specify the behavior
of this iterator? What reference implementation should we use in
proving granularity abstraction? Unlike for push and pop, it does
not make sense for the reference implementation of iter(f) to be
“maximally” coarse-grained (i.e., to execute entirely within a crit-
ical section) because that will not correspond to the reality of the
implementation we just described. In particular, the Treiber imple-
mentation does not freeze modifications to the stack while f is be-
ing applied to each element, so it does not contextually refine the
maximally coarse-grained implementation of iteration.

Rather, what the Treiber iterator guarantees is that f will be
applied to all the elements that were accessible from some node
that was the head of the stack at some point in time. A clean way
to specify this behavior is via a reference implementation that (1)
acquires the lock, (2) takes a “snapshot” (i.e., makes a copy) of
the stack, (3) releases the lock, and (4) iterates f over the snapshot.
(For the code of this reference implementation, see Figure 9.) What
makes this reference implementation so intriguing is that it is only
somewhat coarse-grained, yet as we will show later in the paper, it
is nonetheless quite useful as a target for granularity abstraction.

This example demonstrates the flexibility of refinement, a flexi-
bility which has not heretofore been tested, since no one has previ-
ously applied granularity abstraction to higher-order ADTs.

CaReSL: A logic for higher-order concurrency
In this paper, we present CaReSL (pronounced “carousel”), the
first logic to support the use of granularity abstraction for modular
verification of higher-order concurrent programs.

In providing both refinement and Hoare-style reasoning, CaReSL
builds on ideas from two distinct lines of research:

• Kripke logical relations [22, 1, 5]. Logical relations are a funda-
mental technique for proving refinement in languages with e.g.,
higher-order functions, polymorphism, and recursive types.
Logical relations explain observable behavior in terms of the
logical interpretation of each type. For example, two functions
of type τ → τ ′ are logically related if giving them related in-
puts of type τ implies that they will produce related results of
type τ ′. Kripke logical relations are defined relative to a “possi-
ble world” that describes the relationship between the internal,
hidden state of a program and that of its spec.

• Concurrent separation logics [20, 32, 3]. Separation logic is a
reimagining of Hoare logic in which assertions are understood
relative to some portion of the heap, with the separating con-
junction P ∗Q dividing up the heap between assertions P and
Q. The motivation for separation is local reasoning: pre- and
post-conditions need only mention the relevant portion of the

2

Treiber refines
CG stack (§3.3)

foreach satisfies
Hoare spec (§3.1)

Spinlock satisfies
Hoare spec (§3.2)︸ ︷︷ ︸

CG stack satisfies
Per-item Hoare spec (§3.3)︸ ︷︷ ︸

Flat combiner refines
CG wrapper (§4)

Figure 1. The structure of the case study—and paper

heap, and the rest of the heap can be presumed invariant. Most
concurrent separation logics also add some form of protocols
(e.g., rely-guarantee), which facilitate compositional reasoning
by constraining the potential interference between threads op-
erating concurrently on some shared portion of the heap.

Rather than a combination of these approaches, CaReSL is an
attempt to unify them. So, for example, the logic does not include
refinement as a primitive notion. Instead, refinement is derived
from Hoare-style reasoning: to prove that e refines e′, one merely
proves a particular Hoare triple about e, allowing the tools of
concurrent separation logic to be exploited in the proof of logical
relatedness. In the other direction, CaReSL is a modal logic with
the possible worlds of Kripke logical relations, which can in turn be
used to express the shared-state protocols of concurrent separation
logics. The unification yields surprising new techniques, such as the
use of modal necessity (�) to hide resources that an ADT’s client
would otherwise have to thread through their reasoning (§3.2).2

The semantics of CaReSL is derived directly from the model
of Turon et al. [31], who presented the first formal proofs of re-
finement for fine-grained data structures in an ML-like setting (al-
though they did not use it to reason about higher-order examples).
Compared with Turon et al.’s work, which was purely semantic,
CaReSL provides a syntactic theory for carrying out refinement
proofs at a much higher level of abstraction. This proof theory, in
turn, is inspired by Dreyer et al.’s LADR [5], a modal logic for
reasoning about contextual equivalence of (sequential) stateful ML
programs. CaReSL exemplifies how the key ideas of LADR are just
as relevant to—and arguably even more compelling when adapted
to—the concurrent setting.

To demonstrate the effectiveness of CaReSL, we use it to tackle
a significant case study: namely, the first formal proof of (partial)
correctness for Hendler et al.’s “flat combining” algorithm [11].
Flat combining provides a generic way to turn a sequential ADT
into a relatively efficient concurrent one, by having certain threads
perform—in one fell swoop—the combined actions requested by
a whole bunch of other threads. The flat combining algorithm is
interesting not only because it itself is a rather sophisticated higher-
order function, but also because it is modularly assembled from
other higher-order components, including a fine-grained stack with
concurrent iterator. We therefore take the opportunity to verify flat
combining in a modular way that mirrors the modular structure of
its implementation.

Figure 1 illustrates the high-level structure of our proof, which
involves an intertwined application of refinement and Hoare-style
verification. For example, we prove that Treiber’s stack refines the
coarse-grained (CG) reference implementation of stacks; we then
use Hoare-style reasoning to prove that the reference implementa-
tion satisfies the per-item spec; and finally we rely on the per-item
spec in the proof that the flat combining algorithm refines an even

2 Previously, such hiding required the subtle anti-frame rule [24].

Syntax
Val v ::= () | true | false | (v, v) | inji v | rec f(x).e | Λ.e | `
Exp e ::= v | if e then e else e | e e | e | (e, e) | prji e | inji e

| case(e, inj1 x⇒ e, inj2 y ⇒ e) | new e | get e | e := e
| CAS(e, e, e) | newLcl | getLcl(e) | setLcl(e, e) | fork e

CType σ ::= B | ref τ | refLcl τ | µα.σ
Type τ ::= σ | 1 | α | τ × τ | τ + τ | µα.τ | ∀α.τ | τ → τ

ECtx K ::= [] | if K then e else e |K e | v K | · · ·

Typing contexts
∆ ::= · |∆, α Γ ::= · | Γ, x : τ Ω ::= ∆; Γ

Well-typed expressions ∆; Γ ` e : τ

Ω ` e : ref σ Ω ` eo : σ Ω ` en : σ

Ω ` CAS(e, eo, en) : B

Ω ` e : ∀α.τ
Ω ` e : τ [τ ′/α]

Machine configurations

TLV L ∈ N fin
⇀ Value

Heaps h ∈ N fin
⇀ (Val ∪ TLV)

TPool E ∈ N fin
⇀ Expression

Config ς ::= h; E

Thread-local lookup bLc(i) ,
{

none i /∈ dom(L)

some(L(i)) otherwise

Pure reduction e
pure→ e′

(rec f(x).e) v
pure→ e[rec f(x).e/f, v/x] (Λ.e)

pure→ e

Per-thread reduction h; e
i→ h′; e′

h; e
i→ h; e′ when e

pure→ e′

h; newLcl
i→ h] [` 7→ ∅]; `

h] [` 7→ L]; setLcl(`, v)
i→ h] [` 7→ L[i := v]]; ()

h; getLcl(`)
i→ h; v when h(`) = L, bLc(i) = v

h;CAS(`, vo, vn)
i→ h; false when h(`) 6= vo

h] [` 7→ vo];CAS(`, vo, vn)
i→ h] [` 7→ vn]; true

General reduction h; E → h′; E ′

h; e
i→ h′; e′

h; E] [i 7→ K[e]]→ h′; E] [i 7→ K[e′]]

h; E] [i 7→ K[fork e]]→ h; E] [i 7→ K[()]]] [j 7→ e]

Figure 2. The calculus: Fµ! with fork, CAS, and thread-local refs

higher-level abstraction. Every component of the case study in-
volves higher-order code and therefore higher-order specifications.

2. The programming model
The programming language for our program logic is sketched in
Figure 2; the full details are in the appendix [30]. It has a stan-
dard core: the polymorphic lambda calculus with sums, products,
references, and equi-recursive types. We elide all type annotations
in terms, but polymorphism is nevertheless introduced and elimi-
nated by explicit type abstraction (Λ.e) and application (e). To
this standard core, we add concurrency (through a fork construct),
atomic compare-and-set (CAS) and thread-local references (type
refLcl τ).

While normal references provide shared state through which
threads can communicate, thread-local references allow multiple
threads to access disjoint values in memory (a different one for
each thread) using a common location. Formally, each thread-local
reference has an associated thread ID-indexed table L, which is
initially empty. Thus for refLcl τ , the getLcl operation returns an

3

“option” of type 1+τ , reflecting whether the thread-local reference
has been initialized for the thread that invoked it.3 Thread-local ref-
erences are commonly used when a single data structure needs mu-
table, thread-local storage for an unbounded number of threads; the
flat combining algorithm presented in §4 embodies this technique.

We define a small-step, call-by-value operational semantics,
using evaluation contexts K to specify a left-to-right evaluation
order within each thread. The

pure→ relation gives the reductions that
do not interact with the heap, while i→ gives general, single-thread
reductions for the thread with ID i. These reductions are then lifted
to general reduction→ of machine configurations ς , which consist
of a heap h together with an ID-indexed pool E of threads.

The type system imposes two important restrictions. First, re-
cursive types µα.τ must be guarded, meaning that all free occur-
rences of α in τ must appear under a non-µ type constructor. Sec-
ond, because CAS exposes physical equality comparison of word-
sized values at the hardware level, it can only be applied to refer-
ences of comparable type σ, which we take to be base types and
locations.

If Ω ` eI : τ and Ω ` eS : τ , we say eI contextually refines eS,
written Ω |= eI � eS : τ , if, for every pair of thread IDs i and j,
∀C : (Ω, τ) (∅,B). ∀v.∀EI. ∅; [i 7→ C[eI]] →∗ hI; [i 7→ v]] EI

=⇒ ∃ES. ∅; [j 7→ C[eS]]→∗ hS; [j 7→ v]] ES

where C : (Ω, τ) (Ω′, τ ′) is the standard typing judgment for
contexts (guaranteeing that Ω ` e : τ implies Ω′ ` C[e] : τ ′). This
definition resembles the standard one for sequential languages, but
take note that only the termination behavior of the main thread is
observed; as with most languages in practice, we assume that once
the main thread has finished, any forked threads are aborted.

3. CaReSL
While CaReSL ultimately provides mixed refinement and Hoare-
style reasoning about higher-order concurrent programs, it is eas-
iest to understand by first considering less powerful “sublogics”,
and then gradually incorporating more powerful features:

• We begin with a core logic that provides separation-logic rea-
soning for sequential (but higher-order) programs (§3.1). In this
core logic, both Hoare triples and heap assertions live in a single
syntactic class: they are propositions. Thus propositions include
e.g., implications between Hoare triples, which are ubiquitous
when reasoning about higher-order code. Propositions also in-
clude first- and second-order quantification, guarded recursion,
separating conjunction, and modal necessitation—all standard
concepts whose interplay we explain in §3.1.

• We then add concurrency, leading to a concurrent separation
logic for higher-order programs (§3.2). The new concept needed
to deal with concurrency is that of a protocol governing some
shared region of the heap. We express protocols through tran-
sition systems whose states provide an abstraction of the heap
region’s actual state. Threads can gain or lose roles in the pro-
tocol, which determine the transitions those (and other) threads
are permitted to take. Traditional rely/guarantee reasoning can
be recovered as a particular, restricted way of using protocols.

• Finally, we show how to reason about refinement, yielding
a Concurrent and Refined Separation Logic (CaReSL) for
higher-order programs (§3.3). As explained in the introduction,
CaReSL does not simply add refinement as a primitive notion
on top of a concurrent separation logic. Instead, CaReSL treats
refinement as a derived notion, expressed as a particular Hoare-
style specification. In order to do so, however, CaReSL does
require one further extension: the notion of “spec resources”,

3 Throughout, we let none , inj1 () and some(e) , inj2 e.

first introduced by Turon et al. [31], which allow pieces of a
program configuration (heap and threads) to be manipulated as
logical resources within Hoare-style proofs.

While CaReSL is the main contribution of the paper, its sublogics
are of independent interest. We explain them by way of idiomatic
higher-order examples, each of which serves as a component of the
case study in §4.

3.1 Core logic: Sequential higher-order programs
To motivate the basic ingredients of core CaReSL, we begin with
the quintessential higher-order stateful combinator, foreach:

foreach : ∀α.(α→ 1)→ list(α)→ 1 list(α) , µβ.1 + (α× β)

foreach , Λ. λf. rec loop(l). case l of none ⇒ ()
| some(x, n)⇒ f(x); loop(n)

A specification of foreach should explain that foreach f l “lifts”
the imperative behavior of f (which works on elements) to l (a list
of elements). But to do so, it needs to quantify over the unknown
behavior of an unknown function in a way that can be lifted to lists.

One possibility is to characterize f by means of a Hoare triple,
while ultimately quantifying over the pre- and post-conditions of
that triple. Suppose that p(x) and q(x) are predicates on values x,
and that r is an arbitrary proposition, such that

∀x. {p(x) ∗ r} f(x) {q(x) ∗ r}
The idea is that when f is applied to an element x of the list,
it may assume both that p(x) holds and that an invariant r holds
of a disjoint portion of the heap. If f(x) transforms p(x) to q(x)
while maintaining the invariant, then foreach lifts that behavior to
an entire list—regardless of what the predicates actually are. To
capture the assumption that p(x) holds of each element of a list l,
we need something like the following recursive predicate:4

Map(p, l) , l = none ∨ (∃x, n. l = some(x, n) ∗ p(x) ∗Map(p, n))

Note that, thanks to the use of the separating conjunction ∗, for each
x in l there is a disjoint region of the heap satisfying p(x).

These ideas lead to the following spec for foreach:
∀p, q, r. ∀f. (∀x.{p(x) ∗ r} f(x) {q(x) ∗ r})

⇒ ∀l. {Map(p, l) ∗ r} foreach f l {Map(q, l) ∗ r}
Formalizing this sketch will require a logic with a number of basic
features: we need to be able to mix Hoare triples with other kinds
of connectives (e.g., implication), to quantify over both values (e.g.,
f and x) and predicates (e.g., p and q), and to define recursive
predicates (e.g., Map). With these goals in mind, we now explore
CaReSL’s design more systematically.

Syntax Figure 3 presents core CaReSL—the fragment of the
logic appropriate for reasoning about sequential, higher-order code.
CaReSL is a multi-sorted second-order logic, meaning that its syn-
tax is stratified into the following three layers.

First, there are terms M,N , which come in a variety of sorts
Σ, including the values and expressions of the language, as well
as thread-local storage (with operations b−c,] and :=). The judg-
ment X ` M : Σ gives the sort of a term (where X is a variable
context giving the sorts of term and predicate variables).

Second, there are propositions P,Q,R, which include the con-
nectives of multi-sorted first-order logic (e.g., ∀X ∈ Σ.P) and
second-order logic (e.g., ∃p ∈ P(Σ).P) with their standard mean-
ings. The judgment X ` P : B asserts that the proposition P is
well-sorted.

Third, there are predicates ϕ,ψ, which are just propositions
parameterized by a term: a predicate of sort P(Σ) can be introduced
by (X ∈ Σ).P , which binds an unknown term X of sort Σ in P ,

4 Throughout, names of functions and types are written in lower case sans-
serif, while predicate names are Capitalized Serif.

4

Syntax
Terms M ::= X | (M,M) | n | e |M]M | bMc(M) |M [M := M]

Sorts Σ ::= 1 | Σ× Σ | Nat | Val | Exp | AtomicExp | LclStorage

Preds ϕ ::= p | (X ∈ Σ).P | µp ∈ P(Σ).ϕ

Propositions P ::=

True | P ⇒ P | P ∧ P | P ∨ P | ∃X ∈ Σ.P | ∀X ∈ Σ.P | .P |
ϕ(M) | ∃p ∈ P(Σ).P | ∀p ∈ P(Σ).P | P ∗ P |M ↪→I M | A

Necessary (“always”) propositions A ::=

�P |M pure→ M |M=M | LP M M Z⇒IS M LϕM | {P} M Z⇒ M {ϕ}

Contexts
X ::= · | X , X : Σ | X , p : P(Σ) P ::= · | P, P C ::= X ;P

Well-sorted terms X `M : Σ

X , X : Σ ` X : Σ

X `M : LclStorage X ` N : Nat
X ` bMc(N) : Val

· · ·

Well-sorted props. X ` P : B Well-sorted preds. X ` ϕ : P(Σ)

Figure 3. Core CaReSL: Syntax

and eliminated by ϕ(M) (also written M ∈ ϕ) which substitutes
M for the parameter of ϕ. Because sorts include unit and products,
predicates can express relations of arbitrary arity. The judgment
X ` ϕ : P(Σ) asserts that ϕ is a well-sorted predicate over terms
of sort Σ.

In general, term variables are written X . But to avoid cluttering
our rules and proofs with sort annotations, we use variables x, y, z
for sort Val and i, j, k for sort Nat. We abuse notation, writing
e.g., v, e or L to stand for a term of sort Val, Exp or LclStorage,
respectively.

In addition to this standard logical setup, CaReSL adopts key
connectives from separation logic. In general, these connectives
will refer to a variety of “resources” that will be introduced as we go
along. In core CaReSL, however, the only resource is the heap. The
points-to assertion i ↪→I v holds of any heap containing a location
i that points to the value v. (Ignore the I subscript for now; we will
return to it in §3.3). The separating conjunction P ∗Q holds if the
currently-owned resources (here, a portion of the heap) can be split
into two disjoint parts satisfying P and Q respectively.

While the truth of some propositions (e.g., i ↪→I v) is contin-
gent on the presence of certain resources, others (e.g., M = N)
are necessary: if they hold, they do so regardless of the currently-
owned resources, and therefore will continue to hold in any future
state. (Such propositions are called “pure” in separation logic par-
lance.) The syntactic subcategory A of necessary propositions in-
cludes claims about term equality, about the operational semantics
(M

pure→ N), and Hoare triples. Arbitrary propositions can be made
necessary via the � (“always”) modality, where �P holds if P
holds for all possible resources. As we will see shortly, necessary
propositions play by special rules: they can move freely through
Hoare triples and separating conjunctions.

Ultimately, CaReSL distinguishes between triples about general
expressions e and those about atomic expressions a (which execute
in a single step). Since this distinction is motivated by concurrency,
we postpone its explanation to §3.2. We include the distinction
syntactically in core CaReSL, but it can be safely ignored for now.

Atomic expressions a have the following grammar:
new v | get v | v := v |CAS(v, v, v) | newLcl | getLcl(v) | setLcl(v, v)

The propositions for atomic triples5 LP M i Z⇒IS a LϕM and general
triples {P} i Z⇒ e {ϕ} are both parameterized by a thread ID i;
the expression may access thread-local storage, in which case its
behavior is ID-dependent. (When the thread ID doesn’t matter, we

5 Again, ignore the IS subscript until §3.3.

Logical axioms and rules
X ;A ` P
X ;P, A ` �P

�I
C ` P
C ` .P

MONO
C, .P ` P
C ` P

LÖB

�(P ⇒ Q) ⇒ �P ⇒ �Q
A ⇒ �A
�P ⇒ P

A ∗ P ⇔ A ∧ P
True ∗ P ⇔ P
.(P ∗Q)⇔ .P ∗ .Q

C, p : P(Σ) ` P
C ` ∀p ∈ P(Σ). P

∀2I M ∈ (X ∈ Σ).P ⇔ P [M/X]
M ∈ (µp.ϕ)⇔M ∈ ϕ[µp.ϕ/p]

Figure 4. Core CaReSL: Selected logical axioms and rules

write {P} e {ϕ} as short for ∀i. {P} i Z⇒ e {ϕ}.) In addition,
since we are working with an expression language (as opposed to a
command language), postconditions are predicates over the return
value of the expression, rather than simply propositions about the
final state of the heap. But when an expression returns unit, we
often abuse notation and write a proposition instead.

In order to support recursive assertions, the logic includes
guarded recursion (µp ∈ P(Σ). P), which entails the following
tradeoff. On the one hand, guarded recursion allows occurrences
of the recursive predicate p to appear negatively, which is crucial
for modelling recursive types (§3.3) but is usually prohibited for
lack of monotonicity. On the other hand, the recursion is “guarded”
in that references to p in P must appear under the . modality.
A proposition .Q represents the present knowledge that Q holds
later, i.e., after at least one step of computation. Guarded recursion
supports a coinductive style of reasoning: to prove P one can as-
sume .P , but this assumption is only useful after at least one step
of computation. As we explain in §5, our use of guarded recursion
descends from a line of work on step-indexed logical relations, but
the interaction with Hoare triples is a novelty of CaReSL.

Proof rules The main judgment of CaReSL is written C ` P ,
where C = X ;P is a combined context of annotated term/predicate
variables X and propositional assumptions P . The meaning is the
usual one: for any way of instantiating the variables in X , if the
hypotheses P are true for a given resource (i.e., for the moment,
a given heap), then P is true of the same resource. We implicitly
assume X ` Q : B for every proposition Q in P and likewise that
X ` P : B holds.

A few basic logical axioms and proof rules for core CaReSL
are shown in Figure 4. Axioms hold in an arbitrary well-sorted
context. The axioms include all the standard ones for a multi-
sorted second-order logic (we show only ∀2I), as well as several
characterizing separating conjunction and the � and . modalities.
We’ll just mention the highlights:

• Because True is a unit for separating conjunction (and ev-
ery proposition implies True), propositions are affine: we can
“throw away” resources, because (P ∗Q)⇒ (True ∗Q)⇒ Q.

• The two conjunctions ∗ and∧ are identical if at least one of their
operands is a necessary proposition. Consequently, necessary
propositions can be “freely copied”: A⇒ A ∗A.

• The LÖB rule provides a coinductive reasoning principle: to
prove P , you may assume P—but only under the . modality,
which guards use of the assumption until at least one step of
computation has taken place. On the other hand, MONO says
that any proposition can be weakened to one that is guarded.
(Both MONO and LÖB are inherited from LADR [5].) We will
momentarily see how . is eliminated in Hoare-style reasoning.

• The . modality distributes over ∗, as it does with most other
connectives, except implication and recursion.

5

Atomic Hoare logic (where IS ::= I | S as explained in §3.3)

LTrueM i Z⇒IS new v Lret. ret ↪→IS vM
Lv ↪→IS v′M i Z⇒IS get v Lret. ret = v′ ∗ v ↪→IS v′M
Lv ↪→IS −M i Z⇒IS v := v′ Lret. ret = () ∗ v ↪→IS v′M

LTrueM i Z⇒IS newLcl Lret. ret ↪→IS ∅M
Lv ↪→IS LM i Z⇒IS getLcl(v) Lret. ret = bLc(i) ∗ v ↪→IS LM
Lv ↪→IS LM i Z⇒IS setLcl(v, v′) Lret. ret = () ∗ v ↪→IS L[i := v′]M
Lv ↪→IS v′M i Z⇒IS

CAS(v, vo, vn)

Lret. (v′ = vo ∗ ret = true ∗ v ↪→IS vn)

∨ (v′ 6= vo ∗ ret = false ∗ v ↪→IS v′)

M

X ;P ` P ′ C ` LP ′M i Z⇒IS a Lx. Q′M X , x;Q′ ` Q
X ;P ` LP M i Z⇒IS a Lx. QM

ACSQ

C ` LP M i Z⇒IS a Lx. QM
C ` LP ∗RM i Z⇒IS a Lx. Q ∗RM

AFRAME
(ADISJ, AEX elided)

General Hoare logic

C ` LP M i Z⇒I a LQM
C ` {.P} i Z⇒ a {Q}

PRIVATE

C ` e pure→ e′

C ` {P} i Z⇒ e′ {ϕ}
C ` {.P} i Z⇒ e {ϕ}

PURE

C ` {P} i Z⇒ e {x. Q} C, x ` {Q} i Z⇒ K[x] {R}
C ` {P} i Z⇒ K[e] {R}

BIND

C ` {True} i Z⇒ v {x. x = v} RET (CSQ, FRAME, DISJ, EX elided)

C ` A
C ` {P ∗A} i Z⇒ e {ϕ}
C ` {P} i Z⇒ e {ϕ}

AIN
C, A ` {P} i Z⇒ e {ϕ}
C ` {P ∗A} i Z⇒ e {ϕ}

AOUT

Derivable rules
C, f, ∀x. {.P} i Z⇒ f x {ϕ} ` ∀x. {P} i Z⇒ e {ϕ}

C ` ∀x. {.P} i Z⇒ (rec f(x).e) x {ϕ}
REC

C ` {P} i Z⇒ e {x. ∃y. (x = inj1 y ∗ .Q1) ∨ (x = inj2 y ∗ .Q2)}
∀k ∈ {1, 2} : C, x, y ` {x = injk y ∗Qk} i Z⇒ ek {ϕ}
C ` {P} i Z⇒ case(e, inj1 y ⇒ e1, inj2 y ⇒ e2) {ϕ}

Figure 5. Core CaReSL: Hoare logic

The rules for atomic triples (Figure 5) are formulated in the
standard style of separation logic. They transcribe the operational
semantics of atomic expressions, mentioning only the part of the
heap relevant to the expression. Atomic Hoare logic supports the
usual rules—consequence, framing, disjunction, ∃-elimination—
with one important exception: it does not support a sequencing rule,
since a sequence of atomic expressions is not atomic.

All atomic expressions take exactly one step to execute, and
in so doing allow us to peel off a layer of the . modality. To cut
down on clutter, the precondition in an atomic triple is implicitly
understood as being under one . modality. The rule PRIVATE,
which lifts an atomic triple to a general one, makes this implicit
assumption explicit. (In core CaReSL, all resources are private;
§3.2 adds shared resources.) To handle pure reduction steps (like
β-reduction), the PURE rule appeals directly to the operational
semantics using the necessary proposition e

pure→ e′. The rest of the
rules for general Hoare triples are mostly standard; we show only
the nonstandard rules in Figure 5.

In an expression language, the monadic nature of Hoare logic
becomes visible: the BIND rule replaces the usual rule of sequenc-
ing, while RET is used to inject a value into a Hoare triple.

We also have a rule allowing necessary propositions to move
freely from the proof context into preconditions (AIN), and vice
versa (AOUT). In general, any contingent assumptions like x ↪→I 3
need to be given explicitly in the precondition of a Hoare triple,

because the truth of such statements can change over time; the triple
says that it is only usable at times when its precondition holds. But
in the specific case of necessary propositions, we can do better: we
know that if such a proposition happens to be true now, it will be
true forever, and so it does not need to be given explicitly in the
precondition. As we will see in §3.2, these rules will allow us to
completely hide pieces of state that are known to always obey a
certain protocol.

Finally, using LÖB and PURE, together with standard Hoare
rules, we can derive specialized rules for constructs like recursive
functions and pattern matching—the two derived rules in Figure 5.

Verifying foreach Having seen core CaReSL in detail, we can
now return to the foreach example. First, we need to rewrite our
sketch of the specification more formally. The Map predicate needs
to employ guarded recursion:

Map(ϕ) , µm ∈ P(Val). (l ∈ Val).
l = none ∨ (∃x, n. l = some(x, n) ∗ ϕ(x) ∗ .m(n))

while the foreach spec should be annotated with sorts:
∀p, q ∈ P(Val).∀r ∈ P(1). ∀f. (∀x.{p(x) ∗ r} f(x) {q(x) ∗ r})
⇒ ∀l. {Map(p)(l) ∗ r} foreach f l {Map(q)(l) ∗ r}

To prove foreach correct, we use a kind of Hoare “proof outline”,
annotating each program point with a proposition:

foreach , Λ. λf. rec loop(l).

Prop context: Variables: f, i, p, q, r, l, loop
∀x. {p(x) ∗ r} i Z⇒ f(x) {q(x) ∗ r}
∀n. {.(Map(p)(n) ∗ r)} i Z⇒ loop n {Map(q)(n) ∗ r}

{Map(p)(l) ∗ r}
case l of none⇒ {l = none ∗Map(p)(l) ∗ r} () {Map(q)(l) ∗ r}

| some(x, n)⇒ {l = some(x, n) ∗Map(p)(l) ∗ r}
{l = some(x, n) ∗ p(x) ∗ .Map(p)(n) ∗ r}
f(x);

{l = some(x, n) ∗ q(x) ∗ .Map(p)(n) ∗ r}
loop(n)

{l = some(x, n) ∗ q(x) ∗Map(q)(n) ∗ r}
{Map(q)(l) ∗ r}

Proof outlines implicitly apply the Hoare logic rule corresponding
to each language construct: for recursive functions and pattern
matching we use the derived rules shown earlier; for an atomic
expression we use the corresponding axiom; when going under a
Λ or λx we use the PURE rule and prove a triple about the function
as applied to or x respectively. The frame rule is applied implicitly
as needed, while uses of consequence are shown by writing a
sequence of assertions (each one implying the next). We do not
explicitly write the thread ID in a proof outline, but it is always
clear from context (and, for our examples, always the variable i).

We supplement traditional proof outlines with boxed context as-
sertions spelling out an extension to both the variable context X
and proposition context P . Extending the context with new vari-
ables introduces a universal quantification (using e.g., the rule ∀2I
in Figure 4), while adding propositions introduces an implication.
We use the AIN rule implicitly to bring necessary consequences of
the proof context into the Hoare-style outline.

The proof for foreach is quite straightforward: the initial case
analysis on the input list allows us to expand the definition of the
Map predicate, which for the nonempty case gives us the necessary
knowledge to execute f on an element of the list; note the heavy
use of the frame rule to add invariant propositions. The use of . in
Map is neatly dispatched by the use of the REC rule for foreach.

3.2 Adding concurrency: Reasoning about shared protocols
To reason about concurrency, we need to reason about the protocols
governing shared (and often hidden) state. Take, for example, the
following higher-order spinlock:

6

tryAcq , λx. CAS(x, false, true)

acq , rec loop(x). if tryAcq(x) then () else loop(x)

rel , λx. x := false

mkSync : 1→ ∀α.∀β.(α→ β)→ (α→ β)

mkSync , λ(). let lock = new false in
Λ.Λ.λf.λx. acq(lock); let z = f(x) in rel(lock); z

Each invocation mkSync() creates a new wrapper that closes over
a fresh, hidden lock. The wrapper can then be used to add simple
synchronization to an arbitrary function. There are, of course, a
variety of ways to use synchronization, but a particularly common
one is to protect access to some shared resource characterized by
an invariant p—an idea that leads to the following specification:

∀p ∈ P(1). {p} i Z⇒ mkSync ()
{
s. Syncerp(s)

}
where Syncerp , (s ∈ Val). �∀f, x, q, r. {p ∗ q} f x {z. p ∗ r(z)}

⇒ {q} s f x {z. r(z)}

The spec says that for each invocation of mkSync(), the client
can choose some invariant resource p, giving up control over the
resource in exchange for a synchronization wrapper s. When s is
later applied to a function f , it provides f with exclusive access to
the resource p (seemingly out of thin air), which f can use however
it pleases, so long as the invariant is reestablished on completion.

Intuitively, the reason that mkSync satisfies its specification is
that the lock itself is hidden: all access to it is mediated through the
wrapper s, which the client can only apply to invariant-preserving
functions. Hiding enables mkSync to maintain an internal protocol
in which, whenever the lock is free, the invariant p holds. To
express this protocol, as well as the more sophisticated protocols
needed for fine-grained concurrency (§3.3, §4), CaReSL provides a
syntactic treatment of the local protocols given in Turon et al. [31].

Protocols A local protocol π governs a shared resource ab-
stractly, by means of a set of protocol states (S) equipped with a
transition relation (). Each state s ∈ S has an associated propo-
sition ϕ(s) giving its concrete interpretation in terms of e.g., heap
resources. The idea is then that any thread is allowed to update
the shared resource, so long as at each atomic step those concrete
updates correspond to a permitted abstract transition.

In general, although all threads must abide by a given protocol,
not all of them play the same role within it. For example, a protocol
governing a lock might have two states, Locked and Unlocked,
with transitions in both directions, but we usually want to allow
only the thread that acquired the lock to be allowed to release it (as
is the case in the mkSync example). To allow threads to take on
or relinquish roles dynamically, local protocols employ tokens that
individual threads may own. By taking a transition, a thread may
“earn” a token from the protocol; conversely, certain transitions
require a thread to “pay” by giving up a previously-earned token.
For the locking protocol, we use a single token Lock:

Unlocked; Lock Locked

In the Unlocked state, the protocol itself owns the Lock, which
we show by annotating the state with the token. A thread that
transitions from Unlocked to Locked then earns (takes ownership
of) the Lock. Conversely, to transition back to the Unlocked state,
a thread must transfer the Lock back to the protocol—a move only
possible for the thread that owns the Lock.

Formally, a local protocol π = (S, , T , ϕ) is given by a
transition system (S and), a function T giving the set of tokens
owned by the protocol at each state, and a predicate ϕ on states
giving their interpretations. To be able to talk about states and
tokens in the logic, we add sorts State and TokSet, for which we
will use the metavariables s and T respectively; see Figure 6. We
leave the grammar of terms for these sorts open-ended, implicitly

Protocols
Protocol π ::= (S, , T , ϕ) where S ⊆ State, ⊆ S × S,

T ∈ S → TokSet, ϕ token-pure

(s, T) π (s′, T ′) , s (π.) s′, π.T (s)] T = π.T (s′)] T ′
frameπ(s, T) , (s, AllTokens− (π.T (s)] T))

(s, T) vguar
π (s′, T ′) , (s, T) ∗π (s′, T ′)

(s, T) vrely
π (s′, T ′) , frameπ(s, T) ∗π frameπ(s′, T ′)

Syntax
Sort Σ ::= · · · | State | TokSet

Prop P ::= · · · | M M
π | Tid(M)

AbProp A ::= · · · |M vrely
π M |M vguar

π M | TokPure(P)

Hoare logic (where πJbK , ∃s.b = (s,−) ∧ π.ϕ(s))

C ` {P} i Z⇒ e {x. Q ∗ πJbK}

C ` {P} i Z⇒ e
{
x. Q ∗ ∃n. b nπ

} NEWISL

C ` ∀b
rely
wπ b0. LπJbK ∗ P M i Z⇒I a Lx. ∃b′

guar
wπ b. πJb′K ∗QM

C `
{
b0

n
π ∗ .P

}
i Z⇒ a

{
x. ∃b′. b′ nπ ∗Q

} UPDISL

C ` {P ∗ Tid(j)} j Z⇒ e {ret. ret = ()}
C ` {P} i Z⇒ fork e {ret. ret = ()}

FORK

Logical axioms and rules

s1, T1 n
π ∗ s2, T2 n

π ⇔ SPLITISL

∃s. s, T1] T2 n
π ∧ (s, T1)

rely
wπ (s1, T1) ∧ (s, T2)

rely
wπ (s2, T2)

Figure 6. CaReSL: Incorporating concurrency

extending it as needed for particular transition systems.6 Thus, we
can give an interpretation LockInterpp for the lock protocol that is
appropriate for an instance of mkSync protecting an invariant p:

LockInterpp , (s ∈ State). s = Locked ∨ (s = Unlocked ∗ p)

The combination of transition systems and tokens gives rise to
token-sensitive transitions. A transition from state/tokens (s, T) to
state/tokens (s′, T ′) is permitted by π, written (s, T) π (s′, T ′),
so long as the law of token conservation holds: the disjoint union of
the thread’s tokens and the protocols tokens T]π.T (s) before the
transition must be the same as the disjoint union T ′] π.T (s′) af-
terwards.7 Token-sensitive transitions constrain both what a thread
can do (the guarantee moves vguar

π enabled by its tokens) and what
its environment can do (the rely moves vrely

π enabled by the tokens
owned by other threads). See Figure 6.

Island assertions In CaReSL, all resources are either privately
owned by a thread, or else governed by a shared protocol. When
a heap assertion like x ↪→I 3 appears in the pre- or postcondition
of a triple, it is understood as asserting private ownership over the
corresponding portion of the heap; no other thread is allowed to
access it. Thus the rules of core CaReSL are immediately sound in
a concurrent setting: there is no interference to account for.

To talk about shared resources, CaReSL includes island asser-
tions b nπ (similar to region assertions in RGSep/CAP). As the
name suggests, each island is an independent region of the heap
governed by its own laws (the protocol π). The number n is the
“name” of the island, which is used to distinguish multiple islands
with the same protocol; we often leave off the name when it is exis-

6 To be completely formal, we could allow each transition system to come
equipped with its own explicit grammar of states and tokens.
7 We use notation like π.T to extract named components from a tuple.

7

tentially quantified. The term b (of sort State× TokSet) asserts pri-
vate ownership of a set of tokens,8 and acts as a “rely-lower bound”
on the state of the protocol: the current state of the protocol is some
b′ wrely

π b. Thus, in CaReSL every assertion about shared resources
is automatically stable under interference.

While a thread’s island assertions cannot be invalidated by a
change its environment makes, they can be invalidated by a change
the thread itself makes. For example, if a thread owns Lock in
Locked state of the mkSync protocol, the environment cannot
change the state at all—but the thread itself can move to the Un-
locked state. There is, however, a special class of island assertions
which are “completely” stable, i.e., that act as necessary proposi-
tions: island assertions that do not claim any tokens. To understand
why, consider that when no tokens are owned, the vrely

π relation
degenerates to the underlying transition system of the protocol,
which means it contains all possible moves that any thread can
make. Formally, we have (M, ∅) n

π ⇒ � (M, ∅) n
π .

When island assertions do claim ownership over tokens (a form
of resource), they can be meaningfully combined by separating
conjunction; see the SPLITISL rule in Figure 6, which takes into
account the fact that the assertions give only rely-lower bounds.9

There are two Hoare logic rules for working with islands (Fig-
ure 6). The rule NEWISL creates a new island starting with an initial
state and token set bound b; the resources necessary to satisfy the
protocol’s initial state must be present as private resources, and af-
terwards will be shared. (The shorthand πJbK just gives the interpre-
tation at the state in b.) Once an island is established, the only way
to access the shared resources it governs is through the UPDISL
rule, which can only be applied to an atomic expression. Starting
from an initial bound b0, the atomic expression a might be (instan-
taneously) executed in any rely-reachable b; for each such state, the
expression is granted exclusive access to the shared resource, but in
its single atomic step, it must make a guarantee move in the proto-
col. This rule reveals the important semantic difference between
atomic and general triples: atomic triples have access to the con-
crete resources owned by shared islands, while general triples can
only work with island assertions.

Thread creation In a local protocol, threads gain and lose roles
(tokens) by making deliberate moves within the protocol. But there
is also a role that every thread plays automatically: the role of being
a thread with a certain ID. To support protocols that use thread
IDs (such as the one in §4), CaReSL builds in a proposition Tid(j)
that asserts the existence of a thread j, and acts as an uncopyable
resource: Tid(j) ∗ Tid(j) ⇔ False. The resource is introduced
by the FORK rule, which also allows the parent thread to transfer
an arbitrary P to the newly-forked thread. (The parent can keep
resources for itself via the FRAME rule.) The trivial postconditions
in FORK may seem alarming, but they reflect the fact that the
only form of communication between threads is shared state, which
must be mediated by a shared protocol.

Verifying mkSync The interpretations π.ϕ(s) of protocol states
in CaReSL inherit a limitation from their semantic treatment by
Turon et al. [31]: they must be token-pure, i.e., they cannot assert
ownership of island tokens. The necessary proposition TokPure(P)
can be used to assert that, for example, an unknown proposition is
token-pure and thus safe to use in an interpretation, and we need
such a restriction on p in mkSync:

∀p ∈ P(1). TokPure(p)⇒ {p} i Z⇒ mkSync ()
{
s. Syncerp(s)

}
where Syncerp , (s ∈ Val). �∀f, x, q, r. {p ∗ q} f x {z. p ∗ r(z)}

⇒ {q} s f x {z. r(z)}

8 An island assertion is only satisfied if the asserted token set is disjoint
from the tokens owned by the protocol at the asserted state.
9 We assume that terms M include disjoint union on token sets.

The hidden protocol LockProtp for mkSync just puts together the
pieces we have already seen:

LockProtp , ({Locked,Unlocked}, , T ,LockInterpp)

where and T are given by the transition system for locking
shown above.

The high-level proof outline for mkSync is straightforward:

λ(). Prop context: TokPure(p) Variables: p

{p} let lock = new false {p ∗ lock ↪→I false}
{∃n. Unlocked, ∅ nLockProtp

}
Λ.Λ.λf.λx.

Prop context: Variables: f, x, q, r
� Unlocked, ∅ LockProtp

{p ∗ q} f x {z. p ∗ r(z)}

{q} { Unlocked, ∅ LockProtp
∗ q}

acq(lock); { Locked, Lock LockProtp
∗ p ∗ q}

let z = f(x) { Locked, Lock LockProtp
∗ p ∗ r(z)}

rel(lock); { Unlocked, ∅ LockProtp
∗ r(z)}

z {z. r(z)}

After allocating the hidden lock, we move it into a fresh island us-
ing NEWISL, and then move that island assertion (wrapped with
�) into the proof context (using AOUT) before reasoning about the
returned wrapper function. In this way the protocol is completely
hidden from the client, yet available to the closure we return to the
client—mirroring the fact that lock is hidden from the client but
available in the closure. Since the contents of the Syncer spec is
within the � modality, the client may move the spec into its proof
context, which means that the client can freely use the synchro-
nization wrapper without threading any assertion about it through
its proof. (Previous logics, like CAP, require at least that the client
thread through an abstract predicate standing for the lock.)

When verifying the closure, we begin with a precondition q of
the client’s choice, but then apply AIN to load the hidden island as-
sertion into the precondition. The subsequent lines use the locking
protocol to acquire the resource p, execute the client’s function f ,
and then return p to the protocol. The tokens in the island asser-
tions, which say what the thread owns at each point, are the mirror
image to those labelling the corresponding states in the protocol.

The triples for acq and rel must ultimately be proved by appeal
to the UPDISL rule. For acq, the bound on the protocol is just
(Unlocked, ∅), which means that the actual state might be either
Locked or Unlocked. The CAS within acq will return:

• true if successful; the state must have been Unlocked. We make
a guarantee move to (Locked, Lock), gaining the token.

• false if it fails; the state must have been Locked. We do not
change the state, and the acq function retries by calling loop.

On the other hand, for rel, the bound (Locked, Lock) means that
the protocol must be in state Locked: the environment cannot move
to Unlocked because it does not own Lock. But since rel does own
Lock, it can simply update the lock to false, corresponding to a
guarantee move to the Unlocked state in the protocol.

3.3 Adding refinement: Reasoning about specification code
At this point, we have seen the fragment of CaReSL providing
Hoare-style specs and proofs for higher-order concurrent programs,
as exemplified (in a simple way) by the mkSync example. This
section explains the other major component of the logic: higher-
order granularity abstraction, exemplified (in a simple way) by the
Treiber stack with iterator.

8

Syntax
Σ ::= · · · | EvalCtx
M ::= · · · |K |M [M]

P ::= · · · |M ↪→S M |M Z⇒S M

A ::= · · · | P →S P |M ./ M

Spec rewriting

C ` e pure→ e′

C ` (P ∗ j Z⇒S K[e])→S (P ∗ j Z⇒S K[e′])
SPURE

C ` LP M j Z⇒S a Lx. QM
C ` (P ∗ j Z⇒S K[a])→S (∃x. Q ∗ j Z⇒S K[x])

SPRIM

C ` (j Z⇒S K[fork e])→S (j Z⇒S K[()] ∗ k Z⇒S e) SFORK

Hoare logic (AEXECSPEC elided)

C ` {P} i Z⇒ e {x. Q} C ` Q→S R

C ` {P} i Z⇒ e {x. R}
EXECSPEC

C, j ./ j′ `
{
P ∗ Tid(j) ∗ j′ Z⇒S eS

}
j Z⇒ eI {x. x = ()}

C `
{
P ∗ i′ Z⇒S K[fork eS]

}
i Z⇒ fork eI

{
i′ Z⇒S K[()]

} FORKS

Figure 7. CaReSL: Incorporating spec resources

Spec resources While it is possible to formulate a relational ver-
sion of Hoare logic (with Hoare quadruples [33]), or to develop
special-purpose logics for refinement [5], our goal with CaReSL
is to support both standard Hoare-style reasoning and refinement
reasoning in a single unified logic. In particular, we want a treat-
ment of refinement that re-uses as much Hoare-style reasoning as
possible. To this end, we adapt the idea of specification resources,
first proposed by Turon et al. [31] as a way of proving refinement
when threads engage in “cooperation” (a point we return to in §4).
We will show how spec resources make it possible to state and
prove refinements as an entirely derived concept on top of the Hoare
logic we have already built up, in particular allowing protocols and
triples to serve double-duty when reasoning about spec code.

To prove that eI refines eS, one must (intuitively) show that every
behavior observable of eI is observable of eS as well. Our strategy
is to encode these proof obligations into certain Hoare triples about
the execution of eI, but with pre- and postconditions instrumented
with pieces of the corresponding spec state—both heap and code—
which we treat as resources in CaReSL. These spec resources are
entirely a fiction of the logic: they do not reflect anything about the
physical state of eI, but they must be used through logical rules that
enforce the operational semantics for eS.

There are two basic spec resource assertions: the (spec) points-
to assertion i ↪→S v, which claims ownership of a fragment of
the spec heap containing a location i that points to the value v,
and the spec thread assertion i Z⇒S e, which claims ownership
of a spec thread with ID i executing expression e. The separating
conjunction P ∗ Q works in the usual way with these resources,
dividing up the spec heap and thread pool between the propositions
P and Q. We also add a final sort, EvalCtx, and terms K and
M [N] for expressing and combining them, which makes it possible
to abstract over the evaluation context for some spec thread. (By
convention, the variable κ is always of sort EvalCtx.)

In addition, CaReSL provides a necessary proposition P →S Q,
which says that the spec resources owned by P can, according to
the operational semantics, take a step to those owned by Q. All
other resources must be left invariant. The rule SPURE lifts the pure
stepping relation from the operational semantics directly. The rule
SPRIM, on the other hand, re-uses atomic triples to support reason-
ing about atomic spec expressions. (The subscript IS in the laws
of atomic triples allows them to be used in either implementation
mode I or spec mode S.) The EXECSPEC Hoare rule (and identical
AEXECSPEC rule for atomic triples) allows the specification to be

Relating expressions
(eI, eS) ↓ ϕ , ∀(i ./ j), κ.
{Tid(i) ∗ j Z⇒S κ[eS]} i Z⇒ eI {xI. ∃xS. ϕ(xI, xS) ∗ Tid(i) ∗ j Z⇒S κ[xS]}

Relating values
J1K , (xI, xS). xI = xS = ()

JBK , (xI, xS). (xI = xS = true) ∨ (xI = xS = false)

Jµα.τK , µα.JτK
JαK , α

Jτ1 × τ2K , (xI, xS). (prj1 xI, prj1 xS) ↓ Jτ1K ∧ (prj2 xI, prj2 xS) ↓ Jτ2K
Jτ1 + τ2K , (xI, xS). (.∃(yI, yS) ∈ Jτ1K. xI = inj1 yI ∧ xS = inj1 yS)

∨ (.∃(yI, yS) ∈ Jτ2K. xI = inj2 yI ∧ xS = inj2 yS)

Jτ → τ ′K , (xI, xS). �∀yI, yS.(.(yI, yS) ∈ JτK)⇒ (xI yI, xS yS) ↓ Jτ ′K
J∀α.τK , (xI, xS). �∀α.Type(α)⇒ (xI , xS) ↓ JτK
Jref τK , (xI, xS). Inv(∃(yI, yS) ∈ JτK. xI ↪→I yI ∗ xS ↪→S yS)

JrefLcl τK , (xI, xS). Inv

(
∃LI, LS. xI ↪→I LI ∗ xS ↪→S LS ∗
∀(i ./ j). (bLIc(i), bLSc(j)) ∈ J1 + τK

)
Invariant protocols Inv(P) , ∃n. 0, ∅ n

({0},∅,[0 7→∅],(s).P)

Type interpretations Type(ϕ) , �∀(xI, xS) ∈ ϕ. �(xI, xS) ∈ ϕ

Logical relatedness (i.e., refinement)
α;x : τ ` eI � eS : τ ,

α, xI, xS; Type(α), (xI, xS) ∈ JτK ` (eI[xI/x], eS[xS/x]) ↓ JτK

Figure 8. Encoding refinement in CaReSL

“executed” within any postcondition, i.e., at any point in a proof.
Since EXECSPEC can be applied repeatedly, a single step of some
implementation code—e.g., an atomic expression—can correspond
to an arbitrary number of spec steps.

Putting these pieces together, a triple like
{j Z⇒S eS} i Z⇒ eI {xI. ∃xS. j Z⇒S xS ∗ ϕ(xI, xS)}

says that if eI produces some value xI, then eS can be executed to
produce some value xS such that ϕ(xI, xS) holds—exactly the kind
of observational claim we set out to make.

Encoding refinement To give a full account of refinement, we
also need to ensure that visible updates to the heap by the imple-
mentation are matched in lock-step by updates by the spec, which
we will do by imposing a protocol governing visible (shared) refer-
ence cells. And to account for thread-local references, we must also
track a correspondence between implementation and specification
thread IDs, which allows us to state invariants connecting the stor-
age on either side. The (necessary) assertion i ./ j asserts that the
implementation thread i and spec thread j exist, and obeys the law
(i ./ j) ∧ (i′ ./ j′) ⇒ (i = i′ ⇔ j = j′). Correspondences are
introduced using the rule FORKS, a variant of FORK that jointly
creates fresh implementation and spec threads.

And that’s all: using these ingredients, we can encode refine-
ment by simply writing down a particular predicate in CaReSL.

The encoded predicate expresses a logical relation—a variant
of the relation given semantically by Turon et al. [31]—following
the approach first laid out by Plotkin and Abadi [23]. We define the
relation in stages (see Figure 8).

First, we have the proposition (eI, eS) ↓ ϕ, which is a more
general version of the triple we gave earlier: it includes assump-
tions about thread IDs, and permits compositional reasoning about
specs by quantifying over an unknown evaluation context κ. The
expressions do not begin with private ownership of any heap re-
sources because, when proving refinement, we must assume that
any pre-existing state is shared with the context. As we will see in
a moment, this shared state is governed by an extremely liberal pro-
tocol; all we can assume about the context is that it is well-typed.

Second, we have the binary predicate JτK, which is satisfied
by (vI, vS) when the observations a context can make of vI can

9

stackS : ∀α. (α→ 1)× (1→ (1 + α))× ((α→ 1)→ 1)

stackS , Λ. let sync = mkSync(), hdS = new (none)
let push = λx. hdS := some(x, get hdS)
let pop = λ(). case get hdS of none ⇒ none

| some(x, n)⇒ hdS := n; some(x)
let snap = sync (λ().get hdS)
let iter = λf. foreach f (snap())
in (sync push, sync pop, iter)

stackI , Λ. let hdI = new nil where nil , new none,
let push = rec try(x). cons e , new some(e)

let c = get hdI , n = cons(x, c)
in if CAS(hdI, c, n) then () else try(x),

let pop = rec try().
let c = get hdI in case get c of

none⇒ none
| some(d, n)⇒ if CAS(hdI, c, n) then some(d) else try()

let iter = λf. let rec loop(c) = case get c of
none⇒ () | some(d, n)⇒ f(d); loop(n)

in loop(get hdI)
in (push, pop, iter)

Figure 9. Coarse- and fine-grained stacks, with iterators

also be made of vS—the heart of the logical relation. It is defined
by induction on the structure of τ , since the ways a value can be
observed depend on its type:

For ground types, the context can observe the exact value, so
only equal values are in the interpretation. For product types, the
context can project both sides of the product, so two values are
related only if each of their projections are related; similarly for
sums. The context can observe functions only by applying them,
so one function is related to another only if, when applied to related
values, they produce related results.

Recursive and polymorphic types are interpreted via guarded
recursion and second-order quantification, respectively; we pun
type variables α, β as predicate variables, which are implicitly
assumed to be of sort P(Val × Val), and for quantification ex-
plicitly required to satisfy Type(α). These two constraints guar-
antee that the relation JτK is a resource-insensitive, binary pred-
icate on values. The resource-insensitivity reflects the fact that
refinement between values must hold in an arbitrary context of
observation/usage—including contexts that freely copy the val-
ues in question—which means that we can assume nothing about
privately-owned resources.

The context can interact with reference types by either reading
or writing at any time. Thus, references assert the existence of a
particularly simple protocol with a single state, whose interpreta-
tion says that related locations must continuously point to related
values. For thread-local references, the statement is qualified by
indexing the storage table by related thread IDs.

The uses of . throughout reflect both the guardedness of our
equi-recursive types and the guardedness of recursion in CaReSL;
it takes one step of computation to eliminate values of any of
the types in which . appears. Uses of (eI, eS) ↓ ϕ are implicitly
guarded, because postconditions are implicitly guarded for any
non-value expression.

Finally, eI is logically related to eS at some context Ω and type
τ if Ω ` eI � eS : τ , which is shorthand for a use of the C ` P
judgment of CaReSL. The proof context closes all type variables
α with arbitrary type interpretations and all term variables x with
pairs of term variables related at the appropriate types. Thus, a
term with a free variable of type ref τ will gain access in its
proof context to a shared protocol governing the corresponding
location. The protocol in turn forces updates to the reference in the
implementation to occur in lock-step with those in the spec. Private
references, i.e., those allocated within the implementation or spec,
face no such requirement—unless or until they are exposed.

Treiber’s stack, with an iterator We now sketch a simple refine-
ment proof. Figure 9 gives two stack implementations. The first,
stackS, is a coarse-grained reference implementation (which we
think of as a specification). Its representation includes a mutable
reference hdS to an immutable list, as well as a synchronization
wrapper sync provided by mkSync. The exported functions to push
and pop from the stack simply wrap the corresponding updates to
hdS with synchronization. But the iterator is not fully synchronized:
it takes an atomic snapshot of the stack, but then calls its argument
f on each element of the snapshot without holding any locks. By
the time f is called, the contents of the stack may have changed.

The second implementation, stackI, is Treiber’s stack supple-
mented with an iterator. Treiber’s stack [28] is one of the simplest
lock-free data structures—a kind of “Hello World” for concurrent
program logics. Like stackS, Treiber’s stack maintains a reference
hdI to a list that it uses to represent the stack. Instead of using a
lock, however, it updates hdI directly (and atomically) using CAS,
which requires the contents of hdI to have a comparable type, i.e.,
to be testable for pointer equality. Thus hdI is of type ref clist(α),
where clist(α) , µβ. ref (1 + (α× β)). The push and pop func-
tions employ optimistic concurrency: instead of acquiring a lock
to inform other threads that they are going to make a change, they
just take a snapshot of the current hdI, compute a new value, and
use CAS to install the new value if the identity of the hdI has not
changed. Intuitively, this strategy works because if the hdI’s iden-
tity has not changed, then nothing about the stack has changed:
all mutation is performed by identify-changing updates to hdI. The
iterator simply walks over the stack’s contents starting from a (pos-
sibly stale!) snapshot of hdI.

To prove that stackI refines stackS, we begin as follows:

stackI , Λ. Prop context: Type(α), i ./ j Variables: α, i, j, κ

{j Z⇒S κ[stackS]} let hdI = new nil

{j Z⇒S κ[stackS] ∗ ∃x. hdI ↪→I x ∗ x ↪→I none} (EXECSPEC){
∃ hdS, lockS. hdS ↪→S none ∗ lock ↪→S false ∗ j Z⇒S κ[stack′S] ∗
∃x. hdI ↪→I x ∗ x ↪→I none

}
We have executed the “preambles” of both the implementation and
spec—the code that allocates their respective hidden state. (Let
stack′S denote the rest of the spec code after the let-binding of sync
and hdS.) At this point, we will use NEWISL to move all of this
state into a hidden island, with a protocol that we can use when
proving refinement for each exported function.

The states s of the protocol are maps Loc fin
⇀ Val which simply

record the identity and contents of every node added to stackI. The
transition relation s s′ , s ⊆ s′ captures the idea that, once
a node has appeared in the stack, its contents never change. There
are no tokens. We interpret a state s as follows:

ϕ , (s). lock ↪→S false ∗∗`∈dom(s)
` ↪→I s(`)

∗ ∃xI, xS. hdI ↪→I xI ∗ hdS ↪→S xS ∗ Link(s, xI, xS)

Because the lock is protected by the protocol, we can only execute
the exported spec functions with AEXECSPEC, as part of an appli-
cation of UPDISL; the interpretation furthermore requires that we
run the spec in “big steps”, starting and ending in unlocked states.
It also says that the implementation and spec stack contents are
linked, in the following sense:

Link , µp. (s, xI, xS). ∃x′I , s′. s = [xI 7→ x′I]] s′ ∗

(x′I = none ∗ xS = none) ∨

 ∃yI, zI. x′I = some(yI, zI) ∗
∃yS, zS. xS = some(yS, zS) ∗
(yI, yS) ∈ α ∗ .p(s′, zI, zS)

Linking requires that the stack state s contains an entire linked list
starting from hdI, and that each element of the list is related (at
type α) to the corresponding element of the list in hdS. But it does
so without mentioning the heap at all! This is the key: it means
that Link(s, xI, xS) ⇒ �Link(s, xI, xS), so the Link assertion can

10

be freely copied in the proof for iter when the traversal begins.
Since the abstract state s of the stack can only grow, all of the
nodes mentioned in this “snapshot” of Link are guaranteed to still
be available in the region of the heap governed , with their original
values, as traversal proceeds—even if, in the meantime, the nodes
are no longer reachable from hdI.

The full proof outlines are available in the appendix [30].

Combining refinement and Hoare-style reasoning Suppose a
client of Treiber’s stack wishes to use it in only a very weak way,
as if it were a lock-free bag with the following spec:

PerItem , (e ∈ Expr). ∀p, q ∈ P(Val).
(∀x. TokPure(p(x)) ∧ (p(x)⇒ �q(x)))⇒
{True} e {bag. bag = (add, rem, iter) ∧ P}, where

P , ∀x. {p(x)} add {ret. ret = ()}
∧ {True} rem {ret. ret = none ∨ (∃x. ret = some(x) ∗ p(ret))}
∧ ∀f, r. (∀x. {q(x) ∗ r} f(x) {r})⇒ {r} iter(f) {r}

This “per-item” spec associates a resource p with each element
of the stack, which is transferred to and from the data structure
when adding or removing elements. If, in addition, each per-item
resource entails some permanent knowledge �q, then that knowl-
edge can be safely assumed by a function concurrently iterating
over the stack, even if the resources originally supporting it have
been consumed. As we will see in the case study (§4), this spec for
iteration is useful for associating permanent, token-free knowledge
about some other protocol with each item that appears in the stack.

While the per-item spec could in principle be applied directly to
Treiber’s stack (i.e., we could prove Bag(stackI)), doing so entails
repeating much of the verification we just performed. On the other
hand, proving PerItem(stackS) is nearly trivial: we just instantiate
the lock specification given in §3.2 with the representation invariant
Repp , ∃l. hdS ↪→I l ∗ Map(p)(l). To verify iter, we need only
notice that Map(p)(l) ⇒ �Map(q)(l), i.e., the snapshot of the
stack provides a list of necessarily true associated facts. (The details
are in the appendix [30].) By mixing refinement and Hoare logic,
we can significantly modularize our verification effort.

3.4 Soundness
The model theory of CaReSL is based directly on the semantic
model of Turon et al. [31], with minor adjustments to accommo-
date the assertions Tid(i) and i ./ j necessary for reasoning about
thread-local storage. Since this paper is focused on the complemen-
tary aim of giving a syntactic proof theory, we do not delve into the
model here; it can be found in full in the appendix [30]).

Soundness for CaReSL encompasses two theorems. First, that
C ` P implies C |= P , where the latter is the semantic entail-
ment relation of the model. Proving this theorem requires validat-
ing, in particular, the key Hoare logic rules, which we do in the ap-
pendix; these proofs resemble the proofs of key lemmas supporting
Turon et al.’s model. Second, that · ` (Ω ` eI � eS : τ) implies
Ω |= eI � eS : τ , i.e., that the logical relation is sound for contex-
tual refinement. Again, this proof follows the soundness proof of
Turon et al., except that we can carry it out at a much higher level
of abstraction using CaReSL’s proof rules.

4. Case study: Flat combining
Using CaReSL’s combination of Hoare-style and refinement rea-
soning, we can verify higher-order concurrent algorithms in layers
of abstraction—and this section shows how to do it.

We study the recent flat combining construction of Hendler
et al. [11], which takes an arbitrary sequential data structure and
transforms it into a concurrent one in which all operations appear
to take effect atomically. One can do so by merely wrapping each
operation with synchronization on a global lock—indeed, this is

flatS , mkSync() : [∀α. ∀β. (α→ β)→ (α→ β)]

flatI , Λ[α]. Λ[β]. λf : [α→ β]. (Types annotated for clarity)
let lock : [ref B] = new (false)

let lclOps : [refLcl op] = newLcl (where op , ref (α+ β))
let (add, , iter) = stackI [op]
let install : [α→ op] = λ req. case getLcl(lclOps)

of some(o)⇒ o := inj1 req; o
| none⇒ let o = new (inj1 req) in setLcl(lclOps, o); add(o); o

let doOp : [op→ 1] = λo. case get(o)
of inj1 req⇒ o := inj2 f(req)
| inj2 res⇒ ()

in λx : [α]. let o = install(x)
let rec loop() = case get(o)
of inj1 ⇒ if not(get lock) and tryAcq(lock) then

iter doOp; rel(lock); loop()
else loop()

| inj2 res⇒ res
in loop()

Figure 10. Flat combining: Spec and implementation

what our spec does—but flat combining takes a cache-friendly
approach intended for hard-to-parallelize data structures.

The basic idea is to allow concurrent threads to advertise,
through a lock-free side channel, their intent to perform an op-
eration on the data structure. One of the threads then becomes the
combiner: it locks the data structure and services the requests of all
the other threads, one at a time (though new requests may be pub-
lished concurrently with the combiner’s execution). The algorithm
exhibits relatively good cache behavior for two reasons: (1) most of
the time, operations do not need to execute any CASes to complete
and (2) the combining thread enjoys good cache locality when ex-
ecuting the operations of the sequential data structure. In practice,
flat combining yields remarkably strong performance, even when
compared against completely lock-free data structures.

The algorithm and its spec The flat combining algorithm was
originally given as informal prose, so our first task is to formalize
its implementation and find an appropriate spec, while making its
higher-order structure explicit. We do so in Figure 10.

We model an “arbitrary sequential data structure” as a closure
of some type α → β, where α represents an operation to perform,
β represents a result, and calling the function performs the oper-
ation by imperatively updating some state hidden within the clo-
sure. In other words, α → β represents an object. The goal of flat
combining, then, is to wrap this object with (cache-efficient) syn-
chronization. Its spec, flatS, simply uses mkSync to provide generic
synchronization via global locking.

Our flat combining implementation flatI uses three data struc-
tures to control synchronization.10 First, it has a global lock that is
used to ensure that only one thread acts as the combiner at a time.
Second, it has an instance of Treiber’s stack, through which threads
enroll in the data structure. To enroll, a thread inserts an operation
record (type ref (α+ β)) through which it can advertise requests.
The combiner can then perform these requests by iterating over the
stack, executing each record that is in the α state and updating it to
the β state with its result. Finally, the thread-local reference lclOps
allows threads to re-use their operation record once they have en-
rolled. Note that operation records can be added to the stack or reset
from β to α at any time—even when the combiner holds the lock.

10 This implementation simplifies Hendler et al.’s description in three re-
spects: it uses a stack rather than a queue, operation records are never de-
enrolled, and the combiner does not coalesce multiple operations into a sin-
gle step. The first simplification makes little difference, because ultimately
we give a modular proof using our per-item spec, which could be applied to
a queue as well. The other two need only minor changes to the protocol.

11

Init

⊥; •i, �i

Req(`, j,K, v); �i Exec(`); Lock

Resp(`, j,K, v′); �iAck(`); •i, �i

`, j,K, v

v′j,K, v

Note that, once ` has been established, it never changes when going around the cycle.

JInitKLi , Tid(i)

JReq(`, j, κ, xI)KLi , L(i) = ` ∗ ` ↪→I inj1 xI ∗ Tid(i) ∗ ∃xS. (xI, xS) ∈ α ∗ j Z⇒S κ[f ′S xS]

JExec(`)KLi , L(i) = ` ∗ ` ↪→I inj1 − ∗ Tid(i)

JResp(`, j, κ, yI)KLi , L(i) = ` ∗ ` ↪→I inj2 yI ∗ Tid(i) ∗ ∃yS. (yI, yS) ∈ β ∗ j Z⇒S κ[yS]

JAck(`)KLi , L(i) = ` ∗ ` ↪→I inj2 −

where f ′S , λx. acq(lockS); let r = fS(x) in rel(lockS); r

Figure 11. The protocol for the operation record of thread i

Unfortunately, if we set out to prove the refinement
· ` flatI � flatS : ∀α. ∀β. (α→ β)→ (α→ β)

we will run headlong into a problem: it does not hold! To wit: let
C , let r = newLcl, f = [] (λ(). getLcl(r))

in fork (setLcl(r, true); f()); setLcl(r, false); f()

When this context is applied to flatS, it always returns some(false),
because the final f() is always executed on the thread whose local
r is false. But when applied to flatI, it can also return some(true):
the forked thread might act as the combiner, performing both ap-
plications of f and thus using its own thread-local value for r.

The crux of the problem is that thread-local storage allows
functions to observe the identity of the thread executing them. We
need to rule out this kind of side-effect. We do so by unrolling the
definition of refinement for functions, and simply removing access
to ID-related knowledge, leading to a qualified refinement:

∀α, β, fI, fS.Type(α) ∧ Type(β) ∧ �(∀(xI, xS) ∈ α.(fI xI, fS xS) ↓pure β)
⇒ · ` flatI fI � flatS fS : α→ β

where (eI, eS) ↓pure ϕ , ∀i, j, κ.
{j Z⇒S κ[eS]} i Z⇒ eI {xI. ∃xS. ϕ(xI, xS) ∗ j Z⇒S κ[xS]}

This “pure” notion of related expressions embodies a semantic ver-
sion of purity in a type-and-effect system where the only effect is
“uses thread-local storage”. It coincides exactly with the expres-
sion relation in Turon et al. [31], where thread-local storage was
not present. It is easy to prove, using CaReSL, that for any well-
typed f : τ → τ ′ that does not use thread-local storage (i.e., an
“effect-free” f) we have�∀(xI, xS) ∈ JτK. (f xI, f xS) ↓pure Jτ ′K.

The protocol To prove the qualified refinement, we need to for-
mulate a protocol characterizing the algorithm. We do so by giving
a local protocol governing the operation record of each thread, and
then tying these local protocols together into a single global one.
Figure 11 gives the local protocol for a thread with ID i, where the
states have the following informal meanings:

⊥ thread i has not yet created its operation record.
Init thread i is creating its operation record.
Req thread i has an active request.
Exec the combiner is executing thread i’s operation.
Resp thread i’s operation is complete.
Ack thread i has acknowledged the completion.

The cyclic nature of the protocol reflects that, once thread i has
enrolled an operation record, it can reuse that record indefinitely.
The labels on transitions signify branching that depends on the
chosen values of the listed variables. Note that, while ` (the location
of the operation record) is chosen arbitrarily during initialization, it
must remain fixed thereafter.

Movement through the local protocol encompasses two roles:
that of thread i, and that of the combiner. The protocol guarantees:
(1) when thread i begins execution of the flat combining algorithm,
the current state is either ⊥ or Ack, meaning that either there is no
operation record associated with the thread, or that the associated
record is ready to be re-used; (2) only thread i can move to or from
Init and Ack; and (3) only the combiner can move to or from Exec.

To fully understand how these constraints are enforced, we must
take into account both the tokens and the state interpretations of
the protocol. The tokens include •i and �i (one for each thread i,
used only in i’s local protocol) and a single global token Lock
representing ownership of the lock.

The interpretations J−KLi of the non-⊥ states are shown in the
figure; the parameter L represents the contents of lclOps. With the
exception of ⊥ and Ack, all states assert ownership of Tid(i). On
the other hand, when thread i begins executing the algorithm, it will
have ownership of Tid(i) (recall the definition of refinement, §3.3).
Thus, thread i can assume that the protocol is in state ⊥ or Ack—
and only thread i can take a step away from these states. For thread
i to take such a step, it must “prove” that it is thread i by giving
up Tid(i), but in return it gains the token •i as a “receipt” that can
later be traded back for Tid(i) (by later moving to Ack). All told,
the ownership of Tid(i) and the corresponding token •i account for
the first two of the guarantees listed above.

The third guarantee is achieved using a similar strategy: to move
to the Exec state, the combiner must “prove” that it holds the lock
by temporarily giving up the (global) Lock token, but it receives the
(local) token �i as a receipt. Subsequently, only the combiner can
move to Resp, making the opposite trade.

After initialization, each state also asserts that the location `
of the operation record for thread i both corresponds to L(i) and
points to an appropriate sum injection (depending on the state).

A final aspect of the local protocol is capturing the cooperation
inherent in flat combining: the combiner executes code on behalf of
other threads. Cooperation is difficult for compositional refinement
techniques to handle, because such techniques usually require prov-
ing that for each piece of implementation code the corresponding
piece of spec code behaves the same way—and thus they typically
provide no way to account for the mismatch between implemen-
tation and spec that cooperation entails. While our definition of re-
finement (§3.3) likewise imposes a one-to-one relationship between
implementation and spec code in its pre- and post-conditions, our
treatment of spec code as a resource allows ownership to be trans-
ferred to other threads during the execution of the implementation.

Thus, the Req and Resp states the flat combining protocol assert
shared ownership of the spec code for thread i. In moving from Req
to Exec the combiner thread is forced to take ownership of thread
i’s spec code, and to subsequently move to Resp, the combiner
must actually execute this code on thread i’s behalf. On the other
hand, by moving to the Ack state, thread i regains ownership of
both Tid(i) and its spec code, by giving up •i, its “reciept” token.

The global transition system is then a product construction:

State space

{
(S, s)

∣∣∣∣∣ S ∈ N fin
⇀ OpState, s ∈ LockState,

at most one S(i) or s owns Lock

}
Transitions (S, s) (S′, s′) , s ?

lock s
′ ∧ ∀i. S(i) ?

i S
′(i)

Owned tokens T (S, s) , Tlock(s) ∪
⋃
i Ti(S(i))

A global state includes a collection S of local states from the
operation record protocol (Figure 11), one for each thread ID. In
giving the state space, we pun the ⊥ state with an “undefined”

12

input to a partial function—and thus, we require that only a finite
number of threads i have a non-⊥ state in S. Global states also have
a single state s drawn from the standard locking protocol (§3.2),
reflecting the state of the global lock. The global Lock token is
shared amongst all of the combined protocols: in a valid global
state, at most one of the local states S(i) or s may claim the
Lock token. A transition in the global protocol allows at most one
transition in any of the local protocols. Finally, the tokens owned
in a global state are just the union of all the tokens claimed by the
local states.

We interpret states of the locking protocol as follows:

JUnlockedK , lock ↪→I false ∗ lockS ↪→S false
JLockedK , lock ↪→I true

Thus, the combiner gains private ownership of both the Lock token
and the spec lock (i.e., the internal lock used by mkSync; see f ′S
in Figure 11) when it acquires the implementation lock. Finally,
we lift these local interpretations to interpret global states via the
following predicate:

(S, s). JsK ∗ ∃L. lclOps ↪→I L ∗∗i∈dom(S)
JS(i)KLi

The proof We close with a high-level view of the proof itself;
details, as usual, are in the appendix. Unrolling the statement of
qualified refinement, we need to prove
{Tid(i) ∗ j Z⇒S κ[flatS fS]} i Z⇒ flatI fI

{xI. ∃xS. (xI, xS) ∈ Jα→ βK ∗ Tid(i) ∗ j Z⇒S κ[xS]}
under the assumptions
i ./ j, Type(α), Type(β), �(∀(xI, xS) ∈ α.(fI xI, fS xS) ↓pure β)

The proof begins in much the same way as the refinement proof for
Treiber’s stack (§3.3): we execute the let-bound expressions that
allocate the hidden state in both the implementation and spec, i.e.,
lock ↪→I false ∗ lclOps ↪→I ∅ ∗ ∃ lockS. j Z⇒S κ[f ′S] ∗ lockS ↪→S false

where lockS is the lock allocated by mkSync and f ′S is as in
Figure 11. These resources are precisely what we need to apply
NEWISL for our global protocol, moving them from private to
shared ownership. Letting π be the global protocol defined above,
we can claim � (∅,Unlocked); ∅ nπ , i.e., permanent knowledge
that the global protocol exists. We must then, in the context of this
island and our previous assumptions, show that the closure returned
by flatI refines the one returned by flatS, i.e., f ′S , at type α→ β.

We first verify a version flat′I of the flat combining algorithm
that is identical to the one in Figure 10, except that it uses the
coarse-grained stack, allowing us to use the per-item spec of §3.3.
We instantiate the per-item spec using the same predicate Op for
per-item resources and iteration knowledge (p and q, respectively,
in the per-item spec): Op , (`). ∃k. [k 7→ Req(`,−,−,−)] nπ .11

This is a local assertion about the global protocol, in that the states
of threads other than k can be in any rely-future state of⊥, i.e., any
state whatsoever. The Op predicate just claims that location ` is an
initialized operation record for some thread. By the per-item spec,
all locations inserted into the stack must satisfy this property—and
since we have Op(`)⇒ �Op(`), the property can be assumed even
when iterating over stale elements of the stack. Operation records
are created via install, whose specification consumes Tid(i) and
associated spec resources in exchange for the “receipt” •i:{

Tid(i) ∗ j Z⇒S κ[f ′S xS]
}
i Z⇒ install x

{
o. [i 7→ Req(o, j, κ, x)]; •i nπ

}
The combiner actually performs operations via doOp,

{Op(o) ∗ P} doOp o {P} where P , ∅; Lock n
π ∗ lockS ↪→S false

which assumes that the given location o is a valid operation record,
and that the invoking thread owns the Lock token as well as the spec

11 We leave off the locking state when it is Unlocked.

lock. The shape of the spec for doOp exactly matches that required
for iteration in the per-item spec (§3.3), with P serving as the loop
invariant, thus allowing us to deduce {P} iter doOp {P}. These
auxiliary specs make it quite straightforward to prove refinement
for the closures returned by flat′I (the version using the coarse-
grained stack) and flatS.

Finally, suppose we plug the combiner into a client context C
that provides a suitable argument f . The above proof allows (to-
gether with soundness, §3.4) us to deduce |= C[flat′I] � C[flatS] : τ .
Likewise, refinement for the Treiber stack allows us to deduce
|= C[flatI] � C[flat′I] : τ . Because contextual refinement is transi-
tive, we can conclude |= C[flatI] � C[flatS] : τ .12 Hence, we have
given a modular proof for flat combining, layering refinement and
Hoare-style reasoning.

5. Related work
In many respects, CaReSL builds directly on the semantic founda-
tion that we and colleagues laid in our prior work [31]. There, we
developed a relational Kripke model of a language very similar to
the one considered here, and showed how granularity abstraction
for several sophisticated (but structurally simple) fine-grained data
structures could be established by direct appeal to the model. The
present work is a natural continuation of that work. First, we pro-
vide a logic that greatly simplifies reasoning compared to working
with the model; such a proof theory is essential for scaling the ver-
ification method to large examples. Second, we use our logic not
just to prove granularity abstraction results in isolation (as we did
before), but also to facilitate the modular verification of a higher-
order, structurally complex program. Along the way, we also extend
our prior model to handle thread-local storage.

The logic itself draws inspiration from LADR [5], which in turn
provided a proof theory for reasoning about a sequential relational
Kripke model (ADR [1]). Aside from incorporating concurrency,
CaReSL provides a deeper unification of refinement and Hoare
logic by treating refinement as a mode of use of Hoare logic.

Higher-order functions and concurrency While there has been
stunning progress in logics for concurrency over the last decade,
very few of these logics meaningfully support higher-order pro-
gramming, and among those that do, none supports reasoning about
fine-grained synchronization or granularity abstraction.

The logic that comes closest is higher-order concurrent ab-
stract predicates (HOCAP), first proposed for reasoning about first-
order code [4] (the “higher-order” refers to the logic of predicates)
and very recently applied to higher-order code as well [27]. HO-
CAP, like its predecessor CAP [3], accounts for concurrency by
way of “shared region” assertions that constrain the possible up-
dates to a shared resource. Our island assertions resemble shared
region assertions—indeed, we have adopted notation suggesting
as much—but work at a higher level of abstraction (i.e., protocol
states), separating knowledge bounding the state of the protocol
(treated as a copyable assertion) from the rights to change the state
(treated as a linear resource: tokens); see [31] for a more detailed
comparison. Because CAP lacks granularity abstraction, it is diffi-
cult to give a single “principal” specification for a data structure. In-
stead, one gives specialized specs (like the per-item spec for stacks)
reflecting particular usages envisioned for a client—which means
new client scenarios necessitate new proofs. HOCAP attempts to
address this shortcoming by explicitly quantifying over the way a
client uses a data structure, but (1) this introduces the potential for

12 We are appealing to semantic refinement here to take advantage of transi-
tivity. This reasoning can be internalized in CaReSL by adding a proposition
for semantic refinement and axioms for refinement soundness and transitiv-
ity, but there is little benefit to doing so.

13

a problematic circularity, which clients must explicitly prove does
not arise, and (2) it is not clear how to scale the approach to handle
cooperation between threads (as in the flat combiner).

Other concurrency logics that support higher-order functions—
such as Hobor et al.’s extension of concurrent separation logic [14],
or the very recent Subjective Concurrent Separation Logic [17]—
support only reasoning about simple lock-based synchronization,
and do not enable the kinds of refinement proofs we have presented.

Granularity abstraction Herlihy and Wing’s seminal notion of
linearizability [13] has long been held as the gold standard of cor-
rectness for concurrent data structures, but as Filipović et al. ar-
gue [8], what clients of these data structures really want is a contex-
tual refinement property. Filipović et al. go on to show that, under
certain (strong) assumptions about a programming language, lin-
earizability implies contextual refinement for that language. More
recently, Gotsman and Yang generalized both linearizability and
this result (the so-called abstraction theorem) to include potential
ownership transfer of memory between concurrent data structures
and their clients in a first-order setting [9]. While in principle proofs
of linearizability can be composed with these results to support
granularity abstraction, no existing logic has provided support for
doing so. We found it simpler to work with refinement directly (in
particular, to encode it directly into a Hoare logic). CaReSL en-
ables clients to layer ownership-transferring protocols on top of a
coarse-grained reference implementation, after applying granular-
ity abstraction, as we showed with the per-item spec (§3.3).

The only Hoare logic we are aware of that can (formally) prove
refinement results is Liang and Feng’s new logic [18] (extending
LRG [7]), which is inspired by the use of ghost state in Vafeiadis’s
thesis [32]. The logic is powerful enough to deal with a range of
sophisticated, fine-grained concurrent algorithms, but it is limited
to first-order code. In addition, the specifications used in refine-
ment are not reference implementations, but are instead essentially
atomic Hoare triples. While such specifications are appealingly ab-
stract, they present two limitations: (1) they do not model the more
general notion of granularity abstraction (supporting only atomic-
ity abstraction, as we explained in footnote 1) and (2) they do not
support the kind of transitive composition of proofs that we used
in our case study. As a result, it is unclear how to use the logic to
build modular proofs layering Hoare logic and refinement.

A radically different approach to atomicity abstraction is Lip-
ton’s method of reduction [19], which is based on showing that an
atomic step commutes with all concurrent activity, and can there-
fore be coalesced into a larger atomic block with e.g., code that
is sequenced after it. Elmas et al. developed a logic for proving
linearizability via a combination of reduction and abstraction [6],
which in some ways resembles our interleaved application of re-
finement and Hoare-style reasoning, but with a rather different way
of proving refinement. It is limited, however, to first-order code and
atomicity refinement, and like HOCAP it is not powerful enough to
handle fine-grained algorithms that employ cooperation. Moreover,
it does not allow linearizability proofs to be composed transitively.

Acknowledgements We would like to thank David Swasey for
his careful reading of both the paper and its appendix, and the
anonymous reviewers for their suggestions and encouragement.
This work was partially funded by the EC FET project ADVENT.

References
[1] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-

tion independence. In POPL, 2009.
[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.

Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. JPDC, 37(1):55–69, Aug. 1996.

[3] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis.
Concurrent abstract predicates. In ECOOP, 2010.

[4] M. Dodds, S. Jagannathan, and M. Parkinson. Modular reasoning for
deterministic parallelism. In POPL, 2011.

[5] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal
logic for higher-order stateful ADTs. In POPL, 2010.

[6] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying
linearizability proofs with reduction and abstraction. In TACAS, 2010.

[7] X. Feng. Local rely-guarantee reasoning. In POPL, 2009.
[8] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for

concurrent objects. Theoretical Computer Science, 411, 2010.
[9] A. Gotsman and H. Yang. Linearizability with ownership transfer. In

CONCUR, 2012.
[10] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable

memory transactions. In PPOPP, 2005.
[11] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and

the synchronization-parallelism tradeoff. In SPAA, 2010.
[12] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack

algorithm. In SPAA, 2004.
[13] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition

for concurrent objects. TOPLAS, 12(3):463–492, 1990.
[14] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics for

concurrent separation logic. In ESOP, 2008.
[15] C. B. Jones. Tentative steps toward a development method for inter-

fering programs. TOPLAS, 5(4):596–619, 1983.
[16] D. Lea. The java.util.concurrent ConcurrentHashMap.
[17] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-

grained concurrency. In POPL, 2013.
[18] H. Liang and X. Feng. Modular verification of linearizability with

non-fixed linearization points. In PLDI, 2013.
[19] R. J. Lipton. Reduction: a method of proving properties of parallel

programs. Commun. ACM, 18(12):717–721, 1975.
[20] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.

Comput. Sci., 375(1-3):271–307, 2007.
[21] M. Parkinson and G. Bierman. Separation logic and abstraction. In

POPL, 2005.
[22] A. M. Pitts and I. Stark. Operational reasoning for functions with local

state. In HOOTS, 1998.
[23] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In

TLCA, 1993.
[24] F. Pottier. Hiding local state in direct style: a higher-order anti-frame

rule. In LICS, 2008.
[25] J. H. Reppy. Higher-order concurrency. PhD thesis, Cornell Univer-

sity, 1992.
[26] J. C. Reynolds. Separation logic: A logic for shared mutable data

structures. In LICS, 2002.
[27] K. Svendsen, L. Birkedal, and M. Parkinson. Modular reasoning about

separation of concurrent data structures. In ESOP, 2013.
[28] R. Treiber. Systems programming: coping with parallelism. Technical

report, Almaden Research Center, 1986.
[29] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones.

Algorithm + strategy = parallelism. JFP, 8(1):23–60, Jan. 1998.
[30] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-

style reasoning in a logic for higher-order concurrency: Appendix.
http://www.mpi-sws.org/~turon/caresl/appendix.pdf.

[31] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer.
Logical relations for fine-grained concurrency. In POPL, 2013.

[32] V. Vafeiadis. Modular fine-grained concurrency verification. PhD
thesis, University of Cambridge, 2008.

[33] H. Yang. Relational separation logic. TCS, 375(1-3):308–334, 2007.

14

http://www.mpi-sws.org/~turon/caresl/appendix.pdf

	1 Introduction
	2 The programming model
	3 CaReSL
	3.1 Core logic: Sequential higher-order programs
	3.2 Adding concurrency: Reasoning about shared protocols
	3.3 Adding refinement: Reasoning about specification code
	3.4 Soundness

	4 Case study: Flat combining
	5 Related work

