
Practical Type Theory for Recursive Modules

Derek Dreyer
Toyota Technological Institute at Chicago

dreyer@tti-c.org

Abstract
There has been much work in recent years on extending ML with
recursive modules. We consider two problems with the typecheck-
ing of recursive modules that have proven to be serious stumbling
blocks for existing proposals. Both problems involve the interac-
tion of recursion and data abstraction. The first, more fundamental
problem is that, inside a recursive module, one may wish to define
an abstract data type in a context where a name for the type already
exists. We call this the double vision problem because it has the
effect that the programmer sees two distinct versions of the same
type when they should only see one. The second, more superficial
problem is that the use of data abstraction inside recursive modules
often requires the programmer to write duplicate signature annota-
tions for no clear reason. We call this the repetitive stress problem.

In this paper, we present a recursive module calculus called
RMC that addresses both of these problems. We formalize RMC
using an elaboration semantics that translates recursive ML-style
modules into an internal module type system. The design of the in-
ternal language exploits previous work of ours on a type-theoretic
foundation for solving the double vision problem. To remedy the
repetitive stress problem, our elaboration algorithm employs a
novel form of bidirectional typechecking. Although our approach
to elaboration generally follows the framework of Harper and
Stone, in certain key details it more closely resembles the Defini-
tion of Standard ML. The RMC design thus illustrates a viable hy-
brid of two approaches to defining ML that are commonly viewed
as incompatible.

1. Introduction
While the ML module system [14] is esteemed for its strong sup-
port for data abstraction and code reuse, it has also been criti-
cized for lacking a feature common to less sophisticated mod-
ule systems—namely, recursive modules. The absence of recursive
modules in ML means that programmers are forced to consoli-
date mutually recursive code and type definitions within a single
module, often at the expense of modularity. Consequently, in re-
cent years, language researchers have proposed and implemented
a variety of recursive module extensions to ML in the interest of
remedying this deficiency [23, 13, 3, 18].

The author’s Ph.D. thesis [3] describes several problems in the
design of a recursive module construct that all of the aforemen-
tioned proposals have had to deal with in one way or another. By
far the most serious of these problems is one that involves the inter-
action of recursion and data abstraction. Inside a recursive module,
one may wish to define an abstract data type in a context where
a name for the type already exists, and there is no way in tradi-
tional accounts of ML-style type generativity to connect the old
name with the new definition. We call this the double vision prob-
lem because it has the effect that the programmer sees two distinct
versions of the same type when they should only see one. (An ex-
ample of the problem is given in Section 2.1.)

Double vision has proven difficult to cure. Existing recursive
module proposals address the problem either by imposing se-
vere restrictions on the use of data abstraction within recursive
module definitions, or else by implementing tricky typechecking
maneuvers that are difficult to explain and do not always work.
(See Section 5 for an overview of the existing proposals.) Neither
of these approaches is really satisfactory.

Recently, Nakata and Garrigue [18] have called attention to an-
other, related problem involving the interaction of data abstraction
and recursive modules. Nearly all recursive module extensions re-
quire a recursive module definition to be accompanied by a forward
declaration signature specifying the components of the module that
may be referred to recursively. If the module also contains uses of
data abstraction via opaque signature ascription (aka sealing), then
the programmer ends up being forced to write down the same signa-
ture annotation twice. We refer to this as the repetitive stress prob-
lem. Ordinarily in ML, such repetitive stress could be mitigated
by the use of signature definitions, which bind signatures to short-
hand identifiers. However, as we argue in Section 2.2, this common
technique does not scale well to handle the general case in which
the signatures in question are themselves recursively dependent [1].
While the repetitive stress problem is a problem of convenience and
thus not as fundamental as the double vision problem, in practice it
is likely to prove a major source of programmer irritation.

In this paper, we tackle both of these problems head on. Con-
cerning the double vision problem, we have recently proposed a
cure for it at the level of a core type system for recursive type gen-
erativity (RTG) [2]. The key idea of this type system is to separate
the creation of an abstract type name from the point at which it is
defined. This allows new definitions to be given to existing as-yet-
undefined names, thus avoiding double vision in a way that is sim-
ple to understand and explain to the programmer. (See Section 3.1
for details.)

In the present work, we show how to lift this solution to the level
of a Standard ML-style module calculus, which we call RMC (for
Recursive Module Calculus). The formalization of RMC follows
Harper and Stone’s approach of defining a programmer-level ex-
ternal language (EL) by elaboration into an internal language type
system (IL) [9]. Instead of basing our IL on a traditional module
type system in the style of Harper-Lillibridge [6] and Leroy [11],
as Harper and Stone do, we base it on a variant of our RTG core
calculus extended with a simple form of modules-as-namespaces.

As for the repetitive stress problem, we relieve it using a novel
form of bidirectional typechecking, reminiscent of work on type
inference such as Pierce and Turner’s local type inference [21]
and Pottier and Gianas’ stratified type inference [22], but different
in detail. The basic idea is as follows. If a module is annotated
with a certain signature—as recursive modules are required to be—
then the programmer should be able to reuse information from
that signature during the typechecking of the module itself. In
particular, in RMC, if the programmer wishes to seal a module
mod with the same signature that was already used to specify

1 2006/8/31

mod in a surrounding forward declaration signature, then they need
only write seal mod , and the signature with which to seal the
module can be inferred from context. This bidirectional approach to
module typechecking is easily accommodated by the Harper-Stone
elaboration framework.

Aside from solving two important problems for recursive mod-
ules, the design of RMC is interesting for two other reasons. First,
it addresses a longstanding gripe about ML—namely, that when a
module mod is ascribed a signature sig , any algebraic datatype def-
initions given in sig must be duplicated in the body of mod . We ob-
serve that this datatype duplication problem is just a special case of
the more general repetitive stress problem. Correspondingly, RMC
provides a keyword canonical that instructs the elaborator to gen-
erate the canonical implementation of a module component (in par-
ticular, a datatype definition) according to its specification in the
surrounding sig .

Second, while RMC elaboration follows the architecture of
Harper-Stone, certain key details of the RMC formalization more
closely resemble the Definition of SML [15]. In particular, sig-
natures in RMC’s internal language are very similar to semantic
objects in the Definition, and our treatment of abstract types via
explicit type names follows the style of the Definition as well. On
the other hand, like Harper-Stone, the RMC elaborator translates
programs into a type system, for which type soundness is proven
syntactically by progress and preservation. This makes proof of
soundness more straightforward than it is for Definition-style for-
malisms [4, 26]. The RMC design thus illustrates a viable hybrid
of two approaches to defining ML that are commonly viewed as
incompatible.

A key feature that RMC does not account for in its present form
is the ability to compile mutually recursive modules separately.
While the RTG calculus that forms the semantic basis of RMC’s
internal language was designed originally with the goal of support-
ing separate compilation [2], it is still unclear how best to introduce
this feature into the external language.1 I leave this as an important
direction for future work.

The rest of the paper is structured as follows. In Section 2,
we present an example of mutually recursive modules in order to
illustrate the double vision and repetitive stress problems as well as
our solutions for them. In Section 3, we define the RMC internal
language type system, and explain formally how it addresses the
double vision problem. In Section 4, we present the design of the
RMC external language and formalize an elaboration semantics for
external language programs. Finally, in Section 5, we conclude with
a comparison to related work.

2. Motivating Example
In this section, we motivate the double vision and repetitive stress
problems by means of an illustrative example. We also use the ex-
ample to describe at a high level how RMC addresses these prob-
lems. So that this may serve as a running example throughout the
paper, the details of the example are concise to the point of being
contrived. For more thorough expositions of the double vision and
repetitive stress problems and more realistically detailed examples,
see Dreyer [3] and Nakata and Garrigue [18].

2.1 The Double Vision Problem

Consider the example in Figure 1 of two mutually recursive mod-
ules A and B, with A providing a type component t and a value
component f, and B providing a type component u and a value com-
ponent g. In this example, the types of both value components, A.f
and B.g, refer to both type components A.t and B.u. So that we

1 None of the existing work on extending ML with recursive modules
seriously addresses this issue either.

signature SA = sig
type u; type t;
val f : t -> u * t ...

end
signature SB = sig

type t; type u;
val g : t -> u * t ...

end
signature S =

rec (X) sig
structure A : SA where type u = X.B.u
structure B : SB where type t = X.A.t

end

structure AB = rec (X : S) struct
structure A :> SA where type u = X.B.u = struct
type u = X.B.u
type t = int
fun f (x:t) : u * t =

let val (y,z) = X.B.g(x+3) (* Error 1 *)

in (y,z+5) end (* Error 2 *)
...

end
structure B :> SB where type t = X.A.t = struct
type t = X.A.t
type u = bool
fun g (x:t) : u * t = ...X.A.f(...)...
...

end
end

Figure 1. Problematic Recursive Module Example

may write down the signature for each module independently and
bind it to a signature identifier (SA and SB), each of these signa-
tures includes a specification of the type component from the other
module. This is a standard technique in ML programming, which
Harper and Pierce have recently dubbed fibration [8].

When we write down the forward declaration signature S, we
need a way to connect the two copies of each type component.
For this purpose, we employ a recursively dependent signature
(or rds), written rec (X) sig. The concept of the rds is due to
Crary et al. [1], and has been adopted (with minor variations) by
subsequent recursive module proposals [23, 13]. The idea is that X
here represents the module whose signature we are in the process
of defining. Using ML’s where type mechanism, we can reify the
specification of A.u so that it is transparently equal to X.B.u (and
similarly so that B.t is transparently equal to X.A.t).

Now we come to the recursive module definition itself. Within
the definition of module A, the type t is defined to be int. The
function f takes a value x of type t as an argument (i.e., an integer)
and calls X.B.g on x+3. Unfortunately, this is not well-typed,
because X.B.g expects a value of type X.A.t, not t, and X.A.t is
not known to equal int. Of course, to the programmer this seems
bizarre, since X.A.t is merely a recursive reference to t, so the two
types should be indiscernible. This is the first instance of the double
vision problem. The second instance comes on the following line
of code. The call to X.B.g has returned a value z of type X.A.t,
which the function f then tries to add 5 to. The typechecker will
prevent it from doing so, though, for the same reason as before—
X.A.t does not equal int.

The only simple solution to this problem that we are aware of
is to throw away the sealing of module A and expose the definition
of A.t as int in the forward declaration signature S. However, we
find this approach to be unsatisfactory because it negates one of the
raisons d’être of recursive modules, namely the ability to introduce
abstraction boundaries between mutually recursive pieces of code.

2 2006/8/31

signature S =
rec (X) sig

structure A : sig
type t
val f : t -> X.B.u * t ...

end
structure B : sig

type u
val g : X.A.t -> u * X.A.t ...

end
end

structure AB = rec (X : S) struct
structure A = seal struct

(* Within A, X.A.t = int *)
type t = int
fun f (x:t) : X.B.u * t =

let val (y,z) = X.B.g(x+3) (* No more *)
in (y,z+5) end (* double vision *)

...
end
(* From here on, X.A.t = A.t, but both are abstract *)
structure B = seal struct

(* Within B, X.B.u = bool *)
type u = bool
fun g (x:X.A.t) : u * X.A.t = ...X.A.f(...)...
...

end
end
(* From here on, AB.A.t and AB.B.u are abstract *)

Figure 2. Reworking of Figure 1 in RMC

2.2 The Repetitive Stress Problem

In addition to the double vision problem, the recursive module
example of Figure 1 also suffers from the repetitive stress problem.
In particular, the signatures used to seal A and B must each be
written down twice: once in the forward declaration signature, and
once at the point of sealing in the body of the recursive module.
Thanks to the signature bindings for SA and SB, this is admittedly
a very mild case of repetitive stress, so mild in fact that it does not
seem like much of a problem.

However, as the number of mutually recursive modules we
wish to define increases, the repetitive stress becomes more severe.
Imagine an analogous example with n mutually recursive mod-
ules, whose signatures spin a web of recursive dependencies. In
this general case, the signature fibration technique does not scale
well. The signature of each module may have to include specifi-
cations of O(n) type components from the other modules in order
to be written down independently, and those O(n) types will have
to be reified (using where type) twice for each module—once in
the forward declaration and once at the point of sealing. While the
situation imagined here is clearly a worst-case scenario, the fact
remains that the programmer who wishes to enforce data abstrac-
tion between recursive modules is forced to write down the same
information multiple times without a clear explanation of why.

2.3 Reworking the Example in RMC

Before we present the design of RMC, we want to give the reader
an intuitive feel for how RMC addresses the double vision and
repetitive stress problems by showing how the recursive module
example from Figure 1 would be written and typechecked in RMC.

Figure 2 shows the RMC version of this example. The first thing
to notice is that we have not bothered to define the signatures of
A and B independently—they are written together as subspecifica-
tions of the forward declaration S. As a result, A’s and B’s signatures
need not include duplicate copies of each other’s type components.

ΣA = [[t : [[= α :T]], f : [[α→ β ×α]], . . .]]

ΣB = [[u : [[= β :T]], g : [[α→β ×α]], . . .]]

Σ = [[A : ΣA, B : ΣB]]

new α ↑T, β ↑T in
let AB = rec (X : Σ)
[A = set α := int in

[t = int, f = ..., ...] : ΣA,
B = set β := bool in

[u = bool, g = ..., ...] : ΣB]

in (* rest of program *)

Figure 3. RMC IL Translation of Figure 2

Secondly, within the recursive module definition, note that neither
of the two submodules is sealed with any explicit signature anno-
tation. Rather, as suggested in the introduction, we simply define A
and B using a new module expression of the form seal mod , with
the intention that each submodule be sealed with whatever signa-
ture has already been prescribed for it in the forward declaration
signature S of the (nearest) enclosing recursive module definition.
With these two changes, we have addressed the repetitive stress
problem by eliminating both sources of duplication—the duplica-
tion of type components due to fibration, and the duplication of
signature annotations due to the enforcement of data abstraction.

As for the double vision problem, the RMC solution is not vis-
ible in any changes to the code, but rather in how the recursive
module is typechecked (as indicated by the comments in Figure 2).
Within the definition of A, t is defined transparently to be int, and
thus the RMC typechecker ensures that X.A.t and int are con-
sidered equivalent throughout the typechecking of A. (Similarly,
X.B.u and bool are considered equivalent throughout the type-
checking of B.) Outside of A, the sealing of A ensures that A.t will
be treated as abstract, but it will still be considered equivalent to
X.A.t. The important thing is that at no point during the typecheck-
ing of AB is a type component in the module body viewed as distinct
from the corresponding component of the recursive variable X.

As this example illustrates, RMC’s approach to avoiding the
double vision problem requires an unusual form of typechecking in
which the information that is available about the identity of X’s type
components changes depending on context. In the next section, we
explain how this is achieved by RMC’s internal type system.

3. The RMC Internal Language
We begin in Section 3.1 with a high-level description of the ap-
proach to double vision taken by the RMC internal language (IL).
Then, in Sections 3.2 through 3.4, we describe the formal details of
the IL.

3.1 Separating Type Creation from Type Definition

In traditional accounts of data abstraction, including both existen-
tial types [16] and ML-style module systems, one can only create a
new abstract type name if one supplies a definition along with it. In
the context of recursive modules, this joining together of type cre-
ation and type definition engenders the double vision problem by
preventing one from providing a definition for a pre-existing type
name. The key idea of the RMC IL type system (derived directly
from our previous RTG type system [2]) is to separate the genera-
tion of the name for an abstract type from the definition of the type,
so that the type name may be created and referred to even if its
definition is not yet available.

This approach is best illustrated by example. Consider Figure 3,
which exhibits the RMC IL code that would result from elaborat-

3 2006/8/31

Type Var.’s α, β
Type Subst.’s δ ::= {α 7→A}
Kinds K, L ::= T | Tn →T

Constructors A, B, τ ::= α | b | λ(α).τ | A(τ)
Type Contexts ∆ ::= ∅ | ∆, α ↑K | ∆, α ↓K |

∆, α : K =A | ∆, α : K≈A
Base Types b ::= ∀[α]. τ1 ⇒ τ2 | . . .
Terms e ::= foldα | unfoldα | e1[A](e2) | . . .

↑(∆)
def

= {α | α ↑K ∈ ∆}

basis∆(A)
def

= FV(norm∆(A)) ∩ ↑(∆)

Figure 4. IL Core-Level Syntax

ing the example of Figure 2. First, note that the definitions of IL
signatures ΣA, ΣB, and Σ are merely meta-level shorthand—the IL
does not support signature bindings—given here to make the code
more legible. The important thing to observe about these IL signa-
tures is that they are transparent. The opaque type specifications
present in the source signature S have been replaced by transpar-
ent specifications that refer to the free type variables α and β. The
signature [[= α :T]] for the t component of ΣA indicates that t is
transparently equivalent to α, which has base kind T. The recur-
sive references to X.A.t and X.B.u in the types of the f and g
components have been replaced by references to α and β as well.

The reason for these changes is that, in the RMC IL, all sig-
natures are transparent. Unlike traditional module type systems,
abstract types may not be introduced as projections from module
variables (e.g., X.A.t). Rather, abstract types take the form of ex-
plicit type variables and are introduced via the new construct. The
first line of actual code in Figure 3 invokes this construct to create
the abstract type names α and β without defining them. (Undefined
type names are bound in the type context using an ↑.) The forward
declaration signature Σ then refers transparently to these names.

In the recursive module body, the sealed modules have been
replaced by the IL’s own sealing construct, called the set construct.
For A, what this set construct does is to provide the type name
α with the definition int, but to only make that definition visible
within the body of the set. Within A’s definition, α is considered
equivalent to int, and thus X.A.t is also considered equivalent
to int since X.A.t is transparently equal to α. This is the key
to solving the double vision problem. Upon leaving the scope of
A’s definition, however, the identity of α is returned to its abstract
state, and A is added to the context with signature ΣA. In addition,
so that no subsequent code may attempt to redefine α—a critical
condition for type soundness—the context binding for α is changed
from α ↑T to α ↓T. The typechecking of B proceeds similarly.

3.2 Syntax

Figures 4 and 5 show the syntax of the core and module levels of
the RMC IL, respectively.

Core Level As in ML, type constructors either have kind T (the
base kind of types) or are functions from n arguments of kind T to
a single result of kind T. Regarding notation, we use the overbar
syntax to denote a sequence of zero or more objects separated by
commas. For example, α represents α1, . . . , αn (n ≥ 0). Also, as
a convention, we will use τ to stand for type constructors of kind
T, and A and B to stand for type constructors of any kind.

As described in the previous section, type contexts ∆ may either
bind type variables α as defined (α ↓K) or undefined (α ↑K). Type
variables may also be bound as transparently equal to a type con-
structor (α : K =A), or as isomorphic to one (α : K≈A). The lat-

Structure Variables X,Y
Functor Variables F

Str. Sig’s Σ ::= [[= A : K]] | [[τ]] | [[` : Σ]]
Fun. Sig’s Φ ::= ∀(α1 ↓K1).Σ1 → ∃(α2 ↓K2).Σ2

Terms e ::= . . . | Val(M)
Structures M ::= X | [A] | [e] | [` . X =M] | M.` |

F [A](M)[α] | let F =F in M |
rec (X : Σ) M | new α ↑K in M |
set α := A in M : Σ | set α :≈A in M : Σ

Functors F ::= F | Λ(α1 ↓K1).λ(X : Σ1).Λ(α2 ↑K2).M
Contexts Γ ::= ∅ | Γ, X : Σ | Γ, F : Φ

let X =M1 in M2

def

= [1 . X=M1, 2 =M2].2

new α ↑K in M
def

= new α1 ↑K1 in . . .
new αn ↑Kn in M

set α := A in M : Σ
def

= set α1 := A1 in . . .
set αn := An in M : Σ . . . : Σ

Figure 5. IL Module-Level Syntax

ter binding is used to encode the functionality of ML datatype’s,
which are abstract but provide coercion functions that fold (and
unfold) values into (and out of) the abstract type. As far as type
equivalence is concerned, all bindings of α are considered abstract
except α : K =A. To avoid the complications of equi-recursive
types [1], we prohibit cycles among transparent type definitions.

This brings us to base types and terms. In the interest of isolat-
ing orthogonal concerns and focusing on the module system, the
language of base types and terms is utterly minimal. The only type
included here is the polymorphic coercion type, which is used to
classify the fold and unfold operations for datatype variables. For
every variable bound in the context as α : K≈A, there are coercion
values foldα and unfoldα associated with it. The typing of these
values is described below in Figure 6.

Figure 4 also defines two useful bits of syntax: ↑(∆) is the
subdomain of ∆ corresponding to its undefined variables, and
basis∆(A) is the subset of ↑(∆) that A depends on. The latter is
computed by βη-normalizing A, which involves expanding out the
definitions (from ∆) of any transparent variables that A refers to.
The basis function is useful when typechecking set expressions,
in order to make sure that the set does not introduce a transparent
type cycle into the context.

Module Level Modules are either structures and functors. For
simplicity, we follow Standard ML and restrict functors to be first-
order (they take structures as arguments and return structures as
results) and only definable at top level (they may not be components
of structures). Generalizing RMC to handle higher-order functors
should not be fundamentally difficult, but we leave it to future work.

Structure signatures are written Σ. There are two atomic sig-
natures: [[= A : K]], which describes a module containing a single
type component equal to A, and [[τ]], which describes a module
containing a single value component of type τ . Composite struc-
tures have record signature [[` : Σ]]. Unlike in traditional module
type systems, this record signature is not a dependent type. De-
pendent record types are only necessary when signatures contain
opaque type specifications.

The functor signature ∀(α1 ↓K1).Σ1 →∃(α2 ↓K2).Σ2 is sim-
ilar to the form that functor signatures take in the Definition of SML
and related formalisms such as Russo’s [24], in that the type vari-
able sequences α1 and α2—which represent the abstract type com-
ponents of the functor argument and result, respectively—are made

4 2006/8/31

Type Variable Sets ρ ::= {α}
Type Effects ϕ ::= α := A | α :≈A | ρ ↓

Well-formed type effects: ∆ ` ϕ ok Application of a type effect: ∆ @ ϕ

α ↑K ∈ ∆ ∆ ` A : K α 6∈ basis∆(A)

∆ ` α := A ok
(1)

α ↑K ∈ ∆ ∆ ` A : K

∆ ` α :≈A ok
(2)

ρ ⊆ ↑(∆)

∆ ` ρ ↓ ok
(3)

∆ @α := A
def

= ∆\{α ↑∆(α)} ∪ {α : ∆(α) = norm∆(A)}

∆ @α :≈A
def

= ∆\{α ↑∆(α)} ∪ {α : ∆(α)≈A}

∆ @ ρ ↓
def

= ∆\{α ↑∆(α) | α ∈ ρ} ∪ {α ↓∆(α) | α ∈ ρ}

Well-formed structures: ∆; Γ ` M : Σ with ρ ↓ We write ∆; Γ ` M : Σ as shorthand for ∆; Γ ` M : Σ with ∅ ↓.

X : Σ ∈ Γ
∆; Γ ` X : Σ

(4)
∆ ` A : K

∆; Γ ` [A] : [[= A : K]]
(5)

∆; Γ ` e : τ

∆; Γ ` [e] : [[τ]]
(6)

∆; Γ ` [] : [[]]
(7)

∆; Γ ` M1 : Σ1 with ρ1 ↓ ∆ @ ρ1 ↓; Γ, X1 : Σ1 ` [` . X= M] : [[` : Σ]] with ρ ↓

∆; Γ ` [`1 . X1 =M1, ` . X =M] : [[`1 : Σ1, ` : Σ]] with ρ1, ρ ↓
(8)

∆; Γ ` M : [[. . . , ` : Σ, . . .]] with ρ ↓

∆; Γ ` M.` : Σ with ρ ↓
(9)

∆; Γ ` F : ∀(α1 ↓K1).Σ1 → ∃(α2 ↓K2).Σ2 ∆ ` A ↓ K1 ∆; Γ ` M : {α1 7→A}Σ1 α ↑K2 ⊆ ∆

∆; Γ ` F [A](M)[α] : {α1 7→A}{α2 7→α}Σ2 with α ↓
(10)

∆; Γ ` F : Φ ∆; Γ, F : Φ ` M : Σ with ρ ↓

∆; Γ ` let F =F in M : Σ with ρ ↓
(11)

∆ ` Σ sig ∆; Γ, X : Σ ` M : Σ with ρ ↓

∆; Γ ` rec (X : Σ) M : Σ with ρ ↓
(12)

∆, α ↑K; Γ ` M : Σ with α, ρ ↓ α 6∈ FV(Σ)

∆; Γ ` new α ↑K in M : Σ with ρ ↓
(13)

∆ ` α :≈A ok ∆ @ α :≈A; Γ ` M : Σ with ρ ↓

∆; Γ ` (set α :≈A in M : Σ) : Σ with α, ρ ↓
(14)

∆ ` α := A ok ∆@ α := A; Γ ` M : Σ with ρ ↓ basis∆(A) ⊆ ρ

∆; Γ ` (set α := A in M : Σ) : Σ with α, ρ ↓
(15)

∆; Γ ` M : Σ′ with ρ ↓ ∆ ` Σ′ ≡ Σ

∆; Γ ` M : Σ with ρ ↓
(16)

Well-formed functors: ∆; Γ ` F : Φ

F : Φ ∈ Γ
∆; Γ ` F : Φ

(17)
∆, α1 ↓K1 ` Σ1 sig ∆, α1 ↓K1, α2 ↑K2; Γ, X : Σ1 ` M : Σ2 with α2 ↓

∆; Γ ` Λ(α1 ↓K1).λ(X : Σ1).Λ(α2 ↑K2).M : ∀(α1 ↓K1).Σ1 → ∃(α2 ↓K2).Σ2

(18)

Well-formed terms: ∆; Γ ` e : τ

∆; Γ ` M : [[τ]]

∆; Γ ` Val(M) : τ
(19)

α :T≈ τ ∈ ∆

∆; Γ ` foldα : ∀[]. τ ⇒α
(20)

α :T≈ τ ∈ ∆

∆; Γ ` unfoldα : ∀[]. α⇒ τ
(21)

α :Tn →T≈A ∈ ∆ β(= β1, . . . , βn) ∩ dom(∆) = ∅

∆; Γ ` foldα : ∀[β]. A(β)⇒α(β)
(22)

α :Tn →T≈A ∈ ∆ β(= β1, . . . , βn) ∩ dom(∆) = ∅

∆; Γ ` unfoldα : ∀[β]. α(β)⇒A(β)
(23)

∆; Γ ` e1 : ∀[α]. τ2 ⇒ τ ∆ ` A : T ∆; Γ ` e2 : {α 7→A}τ2

∆; Γ ` e1[A](e2) : {α 7→A}τ
(24)

∆; Γ ` e : τ ′ ∆ ` τ ′ ≡ τ : T

∆; Γ ` e : τ
(25)

Figure 6. IL Static Semantics

explicit. What is unusual is that a functor of this signature actually
expects three arguments. The first argument is a sequence of type
constructors A to be substituted for α1. The second argument is
a module of signature {α1 7→A}Σ1 . The third argument is a se-
quence of undefined type variables α that take the place of α2.

In other words, before calling the functor, the client of the
functor is charged with creating new names α corresponding to
the abstract types that the functor body is going to define. These
are passed to the functor, which then returns a module of signa-
ture {α1 7→A}{α2 7→α}Σ2 and defines α in the process. This
destination-passing style account of functors is useful in handling
functor applications that appear inside recursive modules, where

names for their abstract type components may already exist. (Imag-
ine the example of Figure 3 with A defined by a functor application
instead of a sealed structure.)

An important technical point: The ↓ notation on α1 indicates
that the first argument to the functor should consist of fully defined
types, i.e., types that do not depend on any undefined variables.
This condition is in place because the definitions of the abstract
result types may depend on the argument types, and we wish to
ensure that a transparent type cycle (such as defining α := α×α)
does not arise. For further discussion, we refer the reader to prior
work, in which this account of functors is studied in detail [2].

5 2006/8/31

Given the discussion so far, the module constructs in Figure 5
are fairly self-explanatory. In the record construct

[`1 . X1 =M1, . . . , `n . Xn = Mn],

the labels `i correspond to the external names of the structure
components, which may be projected out by the construct M.`. The
variables Xi correspond to the internal names of the components.
While the `i’s are immutable, each Xi is bound in the subsequent
Mj ’s and may be alpha-varied. The `i’s and Xi’s are all assumed
to be distinct. This follows the syntactic formulation of structures
set out by Harper and Lillibridge [6].

Lastly, the module level extends the term language with the con-
struct Val(M), which enables the value component to be projected
out of a module of atomic signature [[τ]]. Note that there is no cor-
responding construct for projecting the type component out of a
module of atomic signature [[= A : K]]. The reason is that a module
with this latter signature can only have one implementation modulo
type equivalence, namely [A]. At the level of the IL, therefore, there
is no need to complicate the type language when one can instead
write A directly.

3.3 Static Semantics

The typing judgment for structures is ∆; Γ ` M : Σ with ρ ↓.
Here, ρ represents the set of type variables that are undefined prior
to the evaluation of module M but that will become defined after
M has finished executing. In fact, ρ ↓ is one of three type effects ϕ,
whose syntax is given in Figure 6. The other two type effects are
α := A and α :≈A, which represent the setting of α to be equal
(resp. isomorphic) to A. We call them type effects because they
engender a modification to the type context during typechecking.

Figure 6 also defines ∆ @ ϕ—syntactic sugar for the result
of applying effect ϕ to the context ∆—and a typing judgment
∆ ` ϕ ok, which indicates when ∆ @ ϕ will be guaranteed to be
well-formed. In short, ϕ may only attempt to define variables that
are undefined in ∆, and the effect α := A is only valid if it does not
introduce a transparent type cycle, i.e., if A does not depend on α.

For the most part, the typing rules for the IL (Figure 6) straight-
forwardly formalize the informal descriptions of the IL constructs
given in the previous section. When a module has no type effects,
we leave off the “with ∅ ↓” from its typing judgment. In addition,
throughout these rules (and the rest of the paper), we adopt the
Barendregt convention that all bound variables are chosen to be
distinct. Contexts never bind the same variable twice, and commas
(when applied to contexts and other sets) denote disjoint union.

A few points of note: First, Rule 13 for new α ↑K inM requires
that α not appear in the signature Σ of M because new binds α.
Since modules have unique signatures in this language, deciding
whether such a Σ exists simply involves computing a signature for
M and normalizing it. Second, Rule 15 for set α := A in M : Σ
allows A to depend on undefined variables initially, but requires
that those variables be defined by the time M has finished evalu-
ating. This is necessary since, subsequent to the evaluation of the
set expression, α will be considered a defined variable.

3.4 Dynamic Semantics and Type Soundness

For space reasons, we omit presentation of the IL’s dynamic se-
mantics and type soundness theorem. Full details are given in Ap-
pendix B, but they are generally very similar to those of the RTG
calculus (the journal version [2]). One point worth noting is that
recursive modules are evaluated according to a Scheme-style back-
patching semantics. In particular, to evaluate rec (X : Σ) M, X is
mapped to a fresh location in the store whose contents are unde-
fined. M is evaluated to a value V, which is then stored at the loca-
tion represented by X. If the evaluation of M attempts to evaluate
X, an exception is raised at run time.

Label Seq’s `s ::= ε | `.`s
Paths P ::= X.`s
Type Con’s con ::= P | α | λ(α).con | con1(con) | . . .
Terms exp ::= P | . . .

Sig. Var’s S
Signatures sig ::= S | [[K]] | [[con]] | [[≈ con : K]] |

[[` . X : sig]] | rec (X) sig |
sig where type `s= con

Modules mod ::= P | [con] | [exp] | [` . X=mod] |
let X=mod1 in mod2 | F(X) |
rec (X : sig)mod | canonical |
seal mod | coerce mod

Top-Level top ::= signature S= sig |
structure X=mod |
functor F(X : sig)=mod

Programs prog ::= top

[[= con : K]]
def

= [[K]] where type ε = con

F(mod)
def

= let X =mod in F(X)

mod :> sig
def

= rec (: sig) seal mod

mod : sig
def

= rec (: sig) coerce mod

Figure 7. External Language Syntax

4. The RMC External Language
4.1 Syntax

Figure 7 gives the syntax of the RMC external language (EL).
The EL is intended to be representative of a Standard ML-like
module language, but it does not directly support all features of
SML (or this paper would be quite a bit longer!). We focus instead
on supporting the most semantically interesting features, and leave
formalization of a full-fledged ML extension to future work.

In the spirit of keeping the core language as underdetermined
as possible, the only interesting type- and term-level constructs
considered here are paths P, which are sequences of projections
from module variables. As a matter of notation, we will typically
drop the trailing “.ε” from a path P or label sequence `s.

Unlike IL signatures, EL signatures may contain both abstract
and transparent type specifications. [[K]] denotes the atomic signa-
ture of a module containing a single type component of kind K.
While there is no primitive transparent type signature [[= con : K]],
we do support ML’s where type construct, and Figure 7 shows
how to define transparent type specifications as a derived form.
(This is how the Definition of SML defines them as well.) Since
EL signatures contain abstract type components, EL record signa-
tures [[` . X : sig]] are dependently-typed, with each internal name
Xi bound in the subsequent sigj’s. Note that in SML there is no
label/variable distinction. The distinction is maintained here to sim-
plify the concerns of elaboration.

The signature [[≈ con : K]] represents an SML datatype spec-
ification in a manner following the interpretation of Harper and
Stone. A module of this signature is viewed as having an abstract
type constructor t of kind K, together with a constructor in and de-
structor out that fold/unfold values of (polymorphic instantiations
of) con into/out of (polymorphic instantiations of) t. To be able to
use such a datatype, the term language needs a mechanism for
data constructor application. For space reasons, we omit this fea-
ture, as the details would closely follow Harper and Stone [9].

Of course, one of the key features of SML datatype specifica-
tions is that they may be recursive. In the RMC EL, the recursive
aspect of datatype’s is encodable by placing [[≈ con : K]] inside

6 2006/8/31

Well-formed signature denotations: ∆ ` S ok ∆ ` (L; Σ) ok

dom(L) = {α} ∆, α ↑K ` (L; Σ) ok

∆ ` ∃(α ↑K).(L; Σ) ok
(26)

∆ ` Σ sig ∀α ∈ dom(L). ∆; X : Σ ` X.L(α) : [[= α : ∆(α)]]

∆ ` (L; Σ) ok
(27)

Type constructor elaboration: ∆; Γ ` con ; A : K

∆ ` α : T
∆; Γ ` α ; α : T

(28)
∆; Γ ` P : [[= A : K]]

∆; Γ ` P ; A : K
(29)

∆, α ↑T; Γ ` con ; τ : T α = α1, . . . , αn

∆; Γ ` λ(α).con ; λ(α).τ : Tn →T
(30)

∆; Γ ` con ′
; A : Tn →T ∆; Γ ` con ; τ : T τ = τ1, . . . , τn

∆; Γ ` con ′(con) ; A(τ) : T
(31)

Signature elaboration: ∆; Γ ` sig ; S

S=S ∈ Γ
∆; Γ ` S ; S

(32)
∆; Γ ` [[K]] ; ∃(α ↑K).({α 7→ ε}; [[= α : K]])

(33)
∆; Γ ` con ; τ : T

∆; Γ ` [[con]] ; ∃().(∅; [[τ]])
(34)

∆; Γ ` con ; τ : T

∆; Γ ` [[≈ con :T]] ; ∃(α ↑T).({α 7→ t}; [[t : [[= α :T]], in : [[∀[]. τ ⇒α]], out : [[∀[]. α⇒ τ]]]])
(35)

K = T
n →T ∆; Γ ` con ; A : K β = β1, . . . , βn {α, β} ∩ FV(A) = ∅

∆; Γ ` [[≈ con : K]] ; ∃(α ↑K).({α 7→ t}; [[t : [[= α : K]], in : [[∀[β]. A(β)⇒α(β)]], out : [[∀[β]. α(β)⇒A(β)]]]])
(36)

∆; Γ ` [[]] ; ∃().(∅; [[]])
(37)

∆; Γ ` sig1 ; ∃(α1 ↑K1).(L1; Σ1)
∆, α1 ↑K1; Γ, X1 : Σ1 ` [[` . X : sig]] ; ∃(α ↑K).(L; [[` : Σ]])

∆; Γ ` [[`1 . X1 : sig
1
, ` . X : sig]] ; ∃(α1 ↑K1, α ↑K).(`1.L1,L; [[`1 : Σ1, ` : Σ]])

(38)

∆; Γ ` Shal(sig) ; ∃(α0 ↑K0).(L0; Σ0) ∆, α0 ↑K0; Γ, X : Σ0 ` sig ; ∃(α ↑K).(L; Σ) ∆, α0 ↑K0, α ↑K ` solve L0 by Σ ; δ

∆; Γ ` rec (X) sig ; ∃(α ↑K).(L; δΣ)
(39)

∆; Γ ` sig ; ∃(α ↑K).(L; Σ) β 7→ `s ∈ L α ↑K = α1 ↑K1, β : K, α2 ↑K2 ∆; Γ ` con ; B : K

∆; Γ ` sig where type `s= con ; ∃(α1 ↑K1, α2 ↑K2).(L\{β 7→ `s}; {β 7→B}Σ)
(40)

Shallow version of an EL signature: Shal(sig)

Shal(S)
def

= S

Shal([[K]])
def

= [[K]]

Shal([[con]])
def

= [[]]

Shal([[≈ con : K]])
def

= [[t : [[K]]]]

Shal([[` . X : sig]])
def

= [[` : Shal(sig)]]

Shal(rec (X) sig)
def

= Shal(sig)

Shal(sig where type . . .)
def

= Shal(sig)

Figure 8. Signature Elaboration

a recursively dependent signature (rec (X) sig). For example, the
datatype specification for the list type constructor

datatype α list = Nil | Cons of α × α list

would be encoded as:

rec (X) [[≈ λ(α). unit + α × X.t(α) : T → T]]

Mutually recursive datatype specifications are encodable via an
rds with multiple submodules of signature [[≈ con : K]].

Turning to modules, let us consider the differences from the IL.
The functor application construct F(X) only mentions the module
argument X. The other (type) arguments required by IL functor
application are inferred by the elaborator. In addition, note that the
module argument is restricted to be a variable purely for simplicity.
Figure 7 shows how to encode F(mod) using module-level let.

The recursive module construct, rec (X : sig)mod , is similar
syntactically to its IL analogue, but different semantically. In the
IL, rec (X : Σ) M has signature Σ (Rule 12). In the EL, the sig-

nature sig is used internally by mod in the manner described in
Section 2.3, and mod is required to be coercible to sig , but the sig-
nature of the whole recursive module is the (principal) signature
of mod . In essence, the forward declaration signature is just a for-
ward declaration—it need not specify all the components exported
from the module, only those that need to be referred to recursively.
This approach is very similar to the one taken by Russo’s recursive
module extension to Moscow ML [17].

The remaining three constructs only make sense when used
inside a recursive module, as they all rely on the existence of
an external forward declaration. As described in the introduc-
tion, canonical computes the canonical implementation of what-
ever signature has been declared for it. Such an implementa-
tion only exists if the signature in question is some composition
of transparent type specifications and datatype specifications. In
fact, canonical is the only mechanism by which one can actu-
ally create a datatype definition. To create a datatype defini-
tion according to a spec [[≈ con : K]] that has not already been

7 2006/8/31

Abstract Type Locators L ::= {α 7→ `s}
Signature Denotations S ::= ∃(α ↑K).(L; Σ)
Elaboration Contexts Γ ::= . . . | Γ, S =S | Γ, F : ∀(α1 ↓K1).(L; Σ1)→ ∃(α2 ↓K2).Σ2

Partially Elaborated Modules pemod ::= P | [A] | [exp] | [` . X = pemod] | let X= pemod
1
in pemod

2
| F[A](X)[α] |

rec (X : Σ) pemod | canonical(L; Σ) | seal mod : (L; Σ) | coerce pemod : Σ

`.L
def

= {α 7→ `.`s | α ∈ dom(L) ∧ L(α) = `s}

L.`
def

= {α 7→ `s | α ∈ dom(L) ∧ L(α) = `.`s}
Σ.`

def

=



Σ′ if Σ = [[. . . , ` : Σ′, . . .]]
[[]] otherwise

Figure 9. Elaborator-Level Syntax

forward-declared, one can write the forward declaration in place:
rec (: [[≈ con : K]]) canonical.

The construct “seal mod” seals mod opaquely with whatever
signature has been declared for it, and “coerce mod” seals mod
transparently. The latter is included in order to model SML’s trans-
parent signature ascription. Although the traditional SML signature
ascriptions are not included in the syntax of RMC, Figure 7 shows
how to encode them directly in terms of rec, seal, and coerce.

Finally, a program is a sequence of top-level bindings of signa-
tures/structures/functors to signature/structure/functor variables.

4.2 Elaboration

Signatures EL signatures are elaborated into signature denota-
tions S of the form ∃(α ↑K).(L; Σ). Here, α ↑K represent the ab-
stract type components of the signature, and Σ represents the sig-
nature itself (with transparent references to α). The abstract type
locator L is a mapping from each of the variables in α to a la-
bel sequence `s that indicates which type component of Σ was the
“source” of that abstract type in the original EL signature. For ex-
ample, the signature S from Figure 2 elaborates to

∃(α ↑T, β ↑T).({α 7→ A.t, β 7→ B.u}; Σ)

where Σ is as defined in Figure 3. (Note that α and β are bound by
the denotation.) This approach to signature elaboration is modeled
closely after that of the Definition of SML. The main novelty is
the presence of the abstract type locator L; we include L because
it makes the definition of signature matching (see below) more
deterministic by telling the elaborator explicitly where to look to
fill in the abstract type components of a signature.

The elaboration rules for signatures are given in Figure 8.
They are straightforward with the exception of Rule 39 for rds’s.
To compute the denotation of rec (X) sig , we need to come up
with some signature to bind X to when typechecking sig . To
do this, the first premise computes a shallow denotation of sig ,
∃(α0 ↑K0).(L0; Σ0), in which its type components are treated as
having opaque specifications and its value components are ignored.
Given this signature for X, the second premise computes the ac-
tual denotation of sig : ∃(α ↑K).(L; Σ). These two premises set
up a system of equations between the “temporary” variables α0,
which were created to represent the type components of X, and
their definitions, which appear in Σ.

To solve this system of equations, the third premise uses the
solve judgment defined in Figure 11. The solve judgment uses the
abstract type locator L0 to look up the definitions of the α0 in Σ
and return a (non-recursive) type substitution δ that solves for them.
If there is a type cycle among the definitions, the solve will fail. For
example, rec (X) [[t : [[= X.t :T]]]] will fail to elaborate because t
is defined transparently in terms of itself. In contrast, the signature
S from the original version of our running example in Figure 1 will
elaborate successfully—even though it contains references to the
recursive variable X in the specifications of A.u and B.t—because
those recursive references are fundamentally acyclic.

Figure 8 also defines judgments for well-formedness of signa-
ture denotations that are used in some of the module elaboration
rules. Rules 26 and 27 say that ∃(α ↑K).(L; Σ) is well-formed if
(1) L is a locator for precisely the variables α, (2) Σ is well-formed,
and (3) if L maps α to `s, then the `s component of Σ is indeed
equal to α. The signature elaboration judgment guarantees that all
denotations it returns are well-formed according to this definition.

Modules The handling of EL modules is the most novel and
complex aspect of RMC elaboration because it involves a form of
bidirectional typechecking, together with a transformation into an
IL where the creation and definition of abstract type names is more
explicit than in ML. The high-level picture is as follows.

An EL module mod is elaborated in two phases. The first phase
is a prepass over mod that handles the bidirectional aspect of type-
checking by rewriting mod into the form of a partially elaborated
module, denoted pemod , whose syntax is given in Figure 9. A
pemod is essentially an EL module that has explicit signature anno-
tations on its canonical, seal, and coerce subexpressions, and
is thus amenable to more standard elaboration techniques. The sec-
ond phase translates pemod ’s to IL modules.

The first phase of elaboration is represented by the judgment

∆; Γ; (L0; Σ0) ` mod ; ∃(α ↑K).(Σ; pemod)

This judgment looks a bit scary because it performs several inter-
dependent functions at once, but each of the individual functions is
in fact straightforward. Let us consider them each in turn.

The first function of the judgment is to produce a list of abstract
type names α (of kinds K) that mod wants to define. These are
assumed to be fresh variables that are not bound in ∆. In elaborat-
ing the module from Figure 2, this judgment would produce two
variables, say α and β, corresponding to AB.A.t and AB.B.u.

The second function of the judgment is to drive signature in-
formation from forward declarations down to the context-sensitive
module expressions within mod that are dependent on such in-
formation in order to make sense. The input (L0; Σ0) represents
the signature information for mod that was written down in mod’s
nearest enclosing forward declaration. The output pemod is essen-
tially the original mod with the information from (L0; Σ0) propa-
gated to its canonical, seal, and coerce subexpressions.

For example, phase-1 elaboration of the module from Figure 2
would produce the following pemod :

rec (X : Σ)
[A = seal modA : (LA; ΣA),
B = seal modB : (LB; ΣB)]

where LA = {α 7→ t}, LB = {β 7→ u}, and Σ, ΣA, and ΣB are
as defined in Figure 3. Note that the bodies of A’s and B’s seal
expressions are the original EL mod ’s, not pemod ’s. For reasons
explained below, phase-1 elaboration does not proceed underneath
abstraction boundaries.

The third function of the phase-1 judgment is to generate a shal-
low IL signature Σ containing IL translations of all the type com-

8 2006/8/31

Elaboration of EL modules to PE modules (Phase 1): ∆; Γ; (L0; Σ0) ` mod ; ∃(α ↑K).(Σ; pemod)

∆; Γ ` P : Σ

∆; Γ; (L0; Σ0) ` P ; ∃().(Σ; P)
(41)

∆; Γ ` con ; A : K

∆; Γ; (L0; Σ0) ` [con] ; ∃().([[= A : K]]; [A])
(42)

∆; Γ; (L0; Σ0) ` [exp] ; ∃().([]; [exp])
(43)

∆; Γ; (L0; Σ0) ` [] ; ∃().([[]]; [])
(44)

∆; Γ; (L0.`1; Σ0.`1) ` mod1 ; ∃(α1 ↑K1).(Σ1; pemod1)

∆, α1 ↑K1; Γ, X1 : Σ1; (L0; Σ0) ` [` . X =mod] ; ∃(α ↑K).([[` : Σ]]; [` . X = pemod])

∆; Γ; (L0; Σ0) ` [`1 . X1 =mod1, ` . X =mod] ; ∃(α1 ↑K1, α ↑K).([[`1 : Σ1, ` : Σ]]; [`1 . X1 = pemod 1, ` . X= pemod])
(45)

∆; Γ; (∅; [[]]) ` mod1 ; ∃(α1 ↑K1).(Σ1; pemod
1
) ∆, α1 ↑K1; Γ, X : Σ1; (L0; Σ0) ` mod2 ; ∃(α2 ↑K2).(Σ2; pemod

2
)

∆; Γ; (L0; Σ0) ` let X=mod1 in mod2 ; ∃(α1 ↑K1, α2 ↑K2).(Σ2; let X = pemod
1
in pemod

2
)

(46)

F : ∀(α1 ↓K1).(L; Σ1)→ ∃(α2 ↓K2).Σ2 ∈ Γ X : Σ ∈ Γ ∆, α1 ↑K1 ` solve L by Σ ; δ

∆; Γ; (L0; Σ0) ` F(X) ; ∃(α2 ↑K2).(δΣ2; F[δα1](X)[α2])
(47)

∆; Γ ` sig ; ∃(α1 ↑K1).(L; Σ1)

∆, α1 ↑K1; Γ, X : Σ1; (L; Σ1) ` mod ; ∃(α ↑K).(Σ; pemod) ∆, α1 ↑K1, α ↑K ` solve L by Σ ; δ

∆; Γ; (L0; Σ0) ` rec (X : sig)mod ; ∃(α ↑K).(δΣ; rec (X : δΣ1) δpemod)
(48)

L0 = {α 7→ `s} α ↑K ⊆ ∆ β ∩ dom(∆) = ∅ L = {β 7→ `s} Σ = {α 7→ β}Σ0

∆; Γ; (L0; Σ0) ` canonical ; ∃(β ↑K).(Σ; canonical(L; Σ))
(49)

L0 = {α 7→ `s} α ↑K ⊆ ∆ β ∩ dom(∆) = ∅ L = {β 7→ `s} Σ = {α 7→ β}Σ0

∆; Γ; (L0; Σ0) ` seal mod ; ∃(β ↑K).(Σ; seal mod : (L; Σ))
(50)

∆; Γ; (L0; Σ0) ` mod ; ∃(α ↑K).(Σ; pemod) ∆, α ↑K ` solve L0 by Σ ; δ

∆; Γ; (L0; Σ0) ` coerce mod ; ∃(α ↑K).(δΣ0; coerce pemod : δΣ0)
(51)

Elaboration of PE modules to IL modules (Phase 2): ∆; Γ ` pemod ; M : Σ with ρ ↓

∆; Γ ` P : Σ

∆; Γ ` P ; P : Σ
(52)

∆ ` A : K
∆; Γ ` [A] ; [A] : [[= A : K]]

(53)
∆; Γ ` exp ; e : τ

∆; Γ ` [exp] ; [e] : [[τ]]
(54)

∆; Γ ` [] ; [] : []
(55)

∆; Γ ` pemod 1 ; M1 : Σ1 with ρ1 ↓ ∆ @ ρ1 ↓; Γ, X1 : Σ1 ` [` . X= pemod] ; [` . X =M] : [[` : Σ]] with ρ ↓

∆; Γ ` [`1 . X1 = pemod1, ` . X= pemod] ; [`1 . X1 = M1, ` . X= M] : [[`1 : Σ1, ` : Σ]] with ρ1, ρ ↓
(56)

∆; Γ ` pemod
1

; M1 : Σ1 with ρ1 ↓ ∆ @ ρ1 ↓; Γ, X : Σ1 ` pemod
2

; M2 : Σ2 with ρ2 ↓

∆; Γ ` let X= pemod
1
in pemod

2
; let X=M1 in M2 : Σ2 with ρ1, ρ2 ↓

(57)

F : ∀(α1 ↓K1).(L; Σ1)→ ∃(α2 ↓K2).Σ2 ∈ Γ ∆ ` A ↓ K1 ∆; Γ ` X � {α1 7→A}Σ1 ; M α ↑K2 ⊆ ∆

∆; Γ ` F[A](X)[α] ; F[A](M)[α] : {α1 7→A}{α2 7→α}Σ2 with α ↓
(58)

∆ ` Σi sig ∆; Γ, Xi : Σi ` pemod ; Me : Σe with ρ ↓ ∆ @ ρ ↓; Γ, Xe : Σe ` Xe � Σi ; Mi

Σ = [[ext : Σe, int : Σi]] M = [ext . Xe = {Xi 7→X.int}Me, int=Mi]

∆; Γ ` rec (Xi : Σi) pemod ; (rec (X : Σ) M).ext : Σe with ρ ↓
(59)

dom(L) = {α} ⊆ ↑(∆) ∆ ` (L; Σ) ok c̀an (L; Σ) ; M

∆; Γ ` canonical(L; Σ) ; M : Σ with α ↓
(60)

dom(L0) = {α} ⊆ ↑(∆) ∆ ` (L0; Σ0) ok ∆; Γ; (L0; Σ0) ` mod ; ∃(β ↑L).(Σ1; pemod)

∆, β ↑L ` solve L0 by Σ1 ; δ (∆, β ↑L) @ α := δα; Γ ` pemod ; M : Σ with β ↓

(∆, β ↓L) @α := δα; Γ, X : Σ ` X � Σ0 ; M0 ∀α ∈ {α}. basis
∆,β ↑L

(δα) ⊆ {β}

∆; Γ ` seal mod : (L0; Σ0) ; (new β ↑L in set α := δα in let X =M in M0 : Σ0) : Σ0 with α ↓
(61)

∆; Γ ` pemod ; M : Σ with ρ ↓ ∆@ ρ ↓; Γ, X : Σ ` X � Σ0 ; M0

∆; Γ ` coerce pemod : Σ0 ; let X= M in M0 : Σ0 with ρ ↓
(62)

Figure 10. Module Elaboration

9 2006/8/31

Abstract type lookup and equation solver: ∆ ` solve L by Σ ; δ

dom(L) = {α1, . . . , αn} ∀i ∈ 1..n : ∆; X : Σ ` X.L(αi) : [[= Ai : ∆(αi)]] FV(norm∆(Ai)) ∩ dom(L) ⊆ {α1, . . . , αi−1}
δ0 = id ∀i ∈ 1..n : δi = δi−1, αi 7→ δi−1(norm∆(Ai))

∆ ` solve L by Σ ; δn

(63)

Canonical module generation: c̀an (L; Σ) ; M

c̀an (∅; [[= A : K]]) ; [A]
(64)

Σ = [[t : [[= α :T]], in : [[∀[]. τ ⇒α]], out : [[∀[]. α⇒ τ]]]]

c̀an ({α 7→ t}; Σ) ; set α :≈ τ in [t=[α], in= [foldα], out= [unfoldα]] : Σ
(65)

Σ = [[t : [[= α :Tn →T]], in : [[∀[β]. A(β)⇒α(β)]], out : [[∀[β]. α(β)⇒A(β)]]]]

c̀an ({α 7→ t}; Σ) ; set α :≈A in [t= [α], in= [foldα], out= [unfoldα]] : Σ
(66)

c̀an (L.`; Σ) ; M

c̀an (L; [[` : Σ]]) ; [` = M]
(67)

Signature coercions: ∆; Γ ` P � Σ ; M Core term elaboration: ∆; Γ ` exp ; e : τ

∆; Γ ` P : Σ

∆; Γ ` P � Σ ; P
(68)

∆; Γ ` P.` � Σ ; M

∆; Γ ` P � [[` : Σ]] ; [` =M]
(69)

∆; Γ ` P : [[τ]]

∆; Γ ` P ; Val(P) : τ
(70)

Program elaboration: ∆; Γ ` prog ; M

∆; Γ ` ∅ ; []
(71)

∆; Γ ` sig ; S ∆; Γ, S=S ` prog ; M0

∆; Γ ` signature S = sig , prog ; M0

(72)

∆; Γ; (∅; [[]]) ` mod ; ∃(α ↑K).(; pemod) ∆, α ↑K; Γ ` pemod ; M : Σ with α ↓ ∆, α ↓K; Γ, X : Σ ` prog ; M0

∆; Γ ` structure X=mod , prog ; new α ↑K in let X= M in M0

(73)

∆; Γ ` sig ; ∃(α1 ↑K1).(L; Σ1) ∆, α1 ↓K1; Γ, X : Σ1; (∅; [[]]) ` mod ; ∃(α2 ↑K2).(; pemod)
∆, α1 ↓K1, α2 ↑K2; Γ, X : Σ1 ` pemod ; M : Σ2 with α2 ↓ ∆; Γ, F : ∀(α1 ↓K1).(L; Σ1)→ ∃(α2 ↓K2).Σ2 ` prog ; M0

∆; Γ ` functor F(X : sig) =mod , prog ; let F =Λ(α1 ↓K1).λ(X : Σ1).Λ(α2 ↑K2).M in M0

(74)

Figure 11. Program Elaboration and Other Judgments

ponents of mod but ignoring its value components. This shallow
signature is used at several places in the elaborator. One critical
place is the (phase-2) elaboration for seal expressions (Rule 61 in
Figure 10). For instance, consider the elaboration of seal modA,
the definition of A in the example pemod shown above. In order
to avoid the double vision problem when typechecking modA, it is
necessary to determine first that the definition of t in modA is int
and to install this knowledge in the context by setting α := int. The
knowledge that t is defined as int comes precisely from examining
the shallow signature that is returned from the phase-1 elaboration
of modA. We discuss Rule 61 in more detail below.

The second phase of elaboration is represented by the judgment

∆; Γ ` pemod ; M : Σ with ρ ↓

As one might expect, it translates a pemod into an IL module M
with signature Σ and type effect ρ ↓. The type variables in ρ, i.e., the
variables that M defines, are precisely the same α that the module
requested to be created in the first phase of elaboration.

The rules for both module elaboration judgments are given in
Figure 10. We now step through some of the more interesting ones.

Beginning with phase 1 of elaboration: Rule 45 for records
is fairly self-explanatory. However, note that in the first premise,
which elaborates the first component of the record (`1), the input
forward declaration is pared down from (L0; Σ0) to (L0.`1; Σ0.`1).
The latter, which relies on meta-level macros defined in Figure 9,
represents the forward declaration corresponding to the `1 compo-
nent of the original forward declaration, if one exists. If one does
not exist, (L0.`1; Σ0.`1) will be the empty signature (∅; [[]]).

Rule 46 for module-level let is similar, but observe that the in-
put forward declaration is only applied to the body of the let. The
let-bound variable X does not have an associated label (external
name), so there can be no forward declaration for it.

Rule 47 for functor applications F(X) infers the first type argu-
ment to F by using the solve judgment to look up the appropriate
type components in the signature of X. In order to do this, we need
an abstract type locator L for the argument signature of the functor.
We therefore instrument functor bindings in elaboration contexts so
as to include such an L (see the extended syntax of Γ in Figure 9).

Rule 48 for rec (X : sig)mod is strikingly similar to the elab-
oration rule for rds’s (Rule 39). In particular, α1, the abstract type
components of sig , serve as temporary representatives of the ac-
tual type components of mod . The latter are then computed by the
phase-1 elaboration of mod , which is performed using sig as the
forward declaration. Finally, the solve judgment is used to solve the
system of type equations between α1 and their definitions.

This rule has the effect of making the forward declaration of the
output recursive module transparent (possibly with respect to some
fresh abstract type variables). In particular, if a type component t is
specified abstractly in the original sig , but is defined transparently
as τ in mod , then the new forward declaration (δΣ1 in Rule 48)
will fill in t’s specification so that it is transparently equal to τ .
This is important for avoiding double vision—if t is transparently
equal to int in mod , then X.t should equal int as well.

Rules 49 and 50 for canonical and sealmod are cutoff points
for phase-1 elaboration. There is no need to proceed further for
these constructs because their signatures are determined completely

10 2006/8/31

from context. Thus, in both rules, a fresh set of type variables (β)
is created by which to rename the abstract type components of the
given forward declaration signature, and the construct is turned into
a pemod by annotating it with said signature.

In contrast, Rule 51 for coerce mod is not a cutoff point be-
cause the signature of coerce mod may depend on type informa-
tion in mod that is not in the forward declaration (L0; Σ0). The
first premise collects that type information in the signature Σ. The
second premise then uses the solve judgment to fill in the abstract
type components of Σ0 with their definitions in Σ. The resulting
signature δΣ0 thus allows the identity of mod ’s type components
to leak through the opaque type specs in the forward declaration.

Continuing on to phase 2 of elaboration: Rule 58 for functor
applications F[A](X)[α] checks that the type arguments A are
fully defined (have basis ∅), and employs the signature coercion
judgment to coerce X to the (instantiated) argument signature of F.
The signature coercion judgment is defined in Figure 11; it copies
components from a module path (in this case, the variable X) in
order to match a given transparent target signature, and checks that
the module it returns is well-formed with that signature.

Rule 59 implements the semantics for EL recursive modules
that we described informally in Section 4.1. In particular, the sig-
nature of the resulting IL module exports all the components in
the body of the recursive module, not just those that were forward-
declared.

Rule 60 computes the canonical module of the given signature
by invoking the canonical module generation judgment defined in
Figure 11. The rules defining this judgment are straightforward.

Rule 61 for seal mod : (L0; Σ0) is a veritable melting pot
of judgments. The first premise checks that the externally-created
variables α that the module is supposed to define are in fact cur-
rently undefined. (This is a redundant check; we include it simply
to make the proof of soundness completely obvious.) Similarly, the
second premise checks the validity of the forward declaration that
has been supplied for mod . The third premise performs phase-1
elaboration on mod , returning fresh abstract variables β that mod
wants to define, the annotated pemod , and Σ1, which specifies
mod ’s type components.

The fourth premise then uses Σ1 to solve for the α that the seal
is supposed to define. (In our running example, this step in the elab-
oration of seal modA would return the substitution {α 7→ int}.)
After applying the definitions for α to the type context, the fifth
premise proceeds to phase-2 elaborate pemod , producing IL mod-
ule M with signature Σ. Coherence of the two phases of elabora-
tion ensures that M will always define the variables β that mod re-
quested to be created. Finally, we coerce M to the sealing signature
and check that the definitions for α are fully defined at the point of
sealing, as demanded by the IL typing rule for sealing (Rule 15).

Lastly, Rule 62 for coerce pemod : Σ0 is much simpler than
the previous rule because it does not enforce any data abstraction.
It simply elaborates pemod and coerces the result to the transparent
target signature Σ0.

Programs Figure 11 shows the rules for elaboration of programs,
which consist of a sequence of top-level bindings. The program
elaboration judgment has the form ∆; Γ ` prog ; M, where the
output M is always a module of unit signature [[]].

Rule 73 handles the binding structure X =mod by first
phase-1 elaborating mod to pemod , then creating the variables
α that mod requested, and finally phase-2 elaborating pemod to
M. Note that the first phase of elaboration is not given any forward
declaration because mod is at top level and does not have one.

Rule 74 handles the binding functor F(X : sig)=mod . It is
similar to the previous rule, except that instead of creating fresh
abstract types for mod using new, it follows destination-passing
style and asks the client of the functor to provide them.

Soundness Proving soundness of elaboration—i.e., that if elabo-
ration of a program prog succeeds and outputs an IL module M,
then M is well-formed—is completely straightforward. We have
specified most invariants of elaboration informally in the above dis-
cussion; for space reasons, we omit any further reiteration of them.
Full formal details are given in Appendix C.

5. Related Work
Flatt and Felleisen [5] describe a language of units, recursive mod-
ules for Scheme. They show how to extend them with type compo-
nents, and their solution successfully avoids the double vision prob-
lem, but the unit constructs are syntactically heavyweight and awk-
ward to use. In more recent work, Owens and Flatt [20] invest the
unit language with features of ML modules (e.g., translucent sig-
natures), introduce a distinction between first-class recursive units
and second-class hierarchical modules, and show how to encode
a subset of the ML module system in their revised unit language.
Their units remain verbose, however, and they do not provide any
concrete proposal for extending ML with recursive modules.

Crary, Harper and Puri [1] give a foundational type theory
for recursive modules, in which they observe the double vision
problem and set forth several important concepts, including the
idea of a recursively dependent signature. However, their language,
which is based on Harper, Mitchell and Moggi’s phase-distinction
calculus [7], does not support data abstraction via sealing, nor is
typechecking for it clearly decidable. Their solution to the double
vision problem is to require forward declarations to be transparent.

Russo [23] defines a recursive module extension to Standard
ML, which he has implemented in the Moscow ML compiler [17].
As discussed in Section 4.1, we follow Russo in allowing (EL)
recursive modules to export components that are not forward-
declared. (This is a feature not shared by other recursive mod-
ule proposals, such as Leroy’s [13] or the author’s own previous
proposal [3], discussed below.) Russo formalizes his extension in
the style of his thesis [24], which is itself in the tradition of the
Definition of SML. While Russo’s formalism is very concise, his
Definition-style framework is not amenable to standard syntactic
techniques for proving type soundness. Russo describes the diffi-
culties in proving soundness, but leaves the proof to future work.

Although Russo does not explicitly require forward declarations
to be transparent, other restrictions of his system implicitly do. In
particular, his typing rule for rec (X : sig)mod demands that, if a
type component t is forward-declared abstractly in sig , then mod
must define t to be X.t, thus clearly avoiding double vision. In
the case that t is specified by a datatype specification, this means
that t must be defined in mod by SML’s datatype copying con-
struct. (Thus, Russo’s recursive modules offer a different solution
to the datatype replication problem than the one provided by our
canonical construct.) However, if t is specified in sig by an ordi-
nary opaque specification (type t), then the only way to define it
in mod is to write type t = X.t, in which case t never gets de-
fined. As a result, one can never forward-declare a type component
and also hold its definition abstract within the recursive module. In
particular, our running example is not encodable in Moscow ML.

Leroy [13] presents informally a recursive module extension
that he implemented for OCaml [12]. Unlike Russo’s extension,
Leroy’s uses the forward declaration as the signature with which
the whole module is sealed. To permit opaque type specifications
in said signature, he describes a typechecking algorithm that is su-
perficially similar to the approach to avoiding double vision taken
by RMC elaboration. However, his algorithm only attempts to
avoid double vision for type components that are defined (under-
neath the sealing) as datatype’s. His avoidance of double vision
does not extend to types defined by transparent bindings (such as
type t = int) or types that arise from nested uses of sealing.

11 2006/8/31

The author’s Ph.D. thesis [3] presents a recursive module ex-
tension to SML in the style of Harper and Stone [9] that is im-
plemented in the TILT compiler [25]. The extension is similar to
Leroy’s in treating the forward declaration signature as a sealing
signature. Concerning double vision, elaboration attempts to cir-
cumvent it through an extremely complex typechecking algorithm.
The algorithm constructs a “meta-signature” representing the type
information known at different points in the body of the recursive
module, and then switches between public and private versions of
this meta-signature as the typechecker crosses abstraction bound-
aries. We believe this algorithm fully avoids double vision, but it
is difficult to know for sure. In contrast, RMC elaboration is much
simpler to follow. Moreover, in RMC, the IL translation of an EL
recursive module preserves uses of abstraction within it, whereas
the elaboration of recursive modules in the author’s thesis throws
away all uses of sealing after typechecking. The RMC elaborator
thus provides a more faithful interpretation of the source program,
as evidenced by the IL code of Figure 3. Lastly, the TILT extension
does not address the repetitive stress problem.

Nakata and Garrigue [18] propose a recursive module extension
to ML, called Traviata, that is significantly different from other
proposals in that it does not require recursive modules to have
any forward declaration at all. Instead, the typechecker for Travi-
ata performs two passes: a “reconstruction” pass, followed by a
“type-correctness” check. The former traverses the whole program,
collecting type information about all program identifiers, and ap-
parently (we believe) giving globally unique names to all bound
variables. Given this information about the program, the latter pass
does relatively ordinary typechecking. In order for the first pass of
their algorithm to collect type information about terms before they
have been typechecked, terms are explicitly annotated with their
types. The authors briefly sketch a type inference algorithm they
have implemented to avoid requiring explicitly-typed core terms in
practice, but it cannot succeed in all cases due to the undecidability
of inference in the presence of polymorphic recursion [10].

One of the main reasons other proposals, including ours, employ
forward declarations is to avoid imposing any demands on type
inference for the core language. Nakata and Garrigue claim that the
absence of forward declarations makes recursive modules easier
to use because it provides a clear solution to the repetitive stress
problem. We believe that forward declarations are helpful, though,
in making recursive module code more readable.

As for the double vision problem, Nakata and Garrigue’s type-
checker does not solve it. They sketch a workaround involving type
coercions that coerce between “double visions” of the same type
(e.g., between X.A.t and int in our running example). They admit
that such type coercions are not a completely satisfactory solution.

The lack of expressiveness in Traviata that is engendered by
the double vision problem is counterbalanced by an increase in ex-
pressiveness with respect to recursive type definitions. In particu-
lar, type definitions in their recursive modules are permitted to be
cyclic, as long as the cycle is broken by an abstraction boundary.
For example, consider the recursive module rec (X) (mod :> sig).
In Traviata, if sig specifies t abstractly, then a definition in mod
such as type t = X.t * X.t would be considered legal.

Nakata and Garrigue’s ability to express such recursive type
definitions is intricately tied to their failure to solve double vision.
If they were to avoid the double vision problem, then X.t in the
above example would be transparently equal to X.t * X.t, and
Traviata treats such a transparent type cycle as illegal. In contrast,
we cure the double vision problem but do not permit any potential
cycles in type definitions, even if they are hidden by abstraction.

One consequence of this is that the typechecking of certain
constructs in RMC is somewhat conservative. For instance, inside
a recursive module, we only permit functor applications where

the type components of the argument module are fully defined.
As demonstrated in [2], our approach is sufficient to typecheck
common uses of functors in recursive modules (e.g., Okasaki’s
bootstrapped heap example [19]), but is not as liberal as possible.
Finding a unifying compromise between our approach and Nakata
and Garrigue’s is a worthwhile avenue for future work.

References
[1] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive

module? In PLDI ’99.
[2] Derek Dreyer. Recursive type generativity. To appear in Journal of

Functional Programming. Original version appeared in ICFP ’05.
Draft of journal version available from the author’s website.

[3] Derek Dreyer. Understanding and Evolving the ML Module System.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 2005.

[4] Martin Elsman. Program Modules, Separate Compilation, and
Intermodule Optimisation. PhD thesis, University of Copenhagen,
1999.

[5] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. In PLDI ’98.

[6] Robert Harper and Mark Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In POPL ’94.

[7] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order
modules and the phase distinction. In POPL ’90.

[8] Robert Harper and Benjamin C. Pierce. Design considerations for
ml-style module systems. In Benjamin C. Pierce, editor, Advanced
Topics in Types and Programming Languages. MIT Press, 2005.

[9] Robert Harper and Chris Stone. A type-theoretic interpretation of
Standard ML. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,
Language, and Interaction: Essays in Honor of Robin Milner. MIT
Press, 2000.

[10] Fritz Henglein. Type inference with polymorphic recursion.
TOPLAS, 15(2):253–289, 1993.

[11] Xavier Leroy. Manifest types, modules, and separate compilation. In
POPL ’94.

[12] Xavier Leroy. The Objective Caml system: Documentation and user’s
manual. http://caml.inria.fr/ocaml/htmlman/.

[13] Xavier Leroy. A proposal for recursive modules in Objective Caml,
May 2003. Available from the author’s website.

[14] David MacQueen. Modules for Standard ML. In LFP ’84.
[15] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.

The Definition of Standard ML (Revised). MIT Press, 1997.
[16] John C. Mitchell and Gordon D. Plotkin. Abstract types have

existential type. TOPLAS, 10(3):470–502, 1988.
[17] Moscow ML. http://www.dina.dk/~sestoft/mosml.html.
[18] Keiko Nakata and Jacques Garrigue. Recursive modules for

programming. In ICFP ’06.
[19] Chris Okasaki. Purely Functional Data Structures. Cambridge

University Press, 1998.
[20] Scott Owens and Matthew Flatt. From structures and functors to

modules and units. In ICFP ’06.
[21] Benjamin C. Pierce and David N. Turner. Local type inference.

TOPLAS, 22(1):1–44, 2000.
[22] François Pottier and Yann-Régis Gianas. Stratified type inference for

generalized algebraic data types. In POPL ’06.
[23] Claudio V. Russo. Recursive structures for Standard ML. In

ICFP ’01.
[24] Claudio V. Russo. Types for Modules. PhD thesis, University of

Edinburgh, 1998.
[25] The TILT Compiler for SML. http://www.tilt.cs.cmu.edu.
[26] Mads Tofte. Operational Semantics and Polymorphic Type Inference.

PhD thesis, University of Edinburgh, 1988.

12 2006/8/31

A. IL Meta-Theory
For the purpose of proving type soundness, we extend the syntax of
type contexts with a binding of the form α : K, which indicates that
α has kind K but its definedness is unknown. Although we have no
use for this binding in our IL, the meta-theory of the RTG calculus
(on which the IL’s meta-theory is closely based) makes use of it at
certain points (e.g., the “use it or lose it” lemma in [2]).

The new binding requires two minor changes to the static se-
mantics of the IL. First, the definition of basis∆(A) becomes

basis∆(A)
def

= FV(norm∆(A)) ∩ {α | α ↑K ∈ ∆ ∨ α : K ∈ ∆}

Second, for technical reasons explained in [2], it is necessary to
rewrite Rule 1 as follows:

α ↑K ∈ ∆ ∆ ` A : K basis∆(A) ⊆ ↑(∆)\{α}

∆ ` α := A ok
(1)

These changes do not affect the well-formedness of programs writ-
ten in the IL absent the α : K binding. That is, IL programs that
typecheck under the static semantics described in the main body of
this paper will continue to typecheck under the new definition of
basis∆(A) and Rule 1 given here.

The meta-theory of the IL follows the meta-theory of the RTG
calculus described in [2] very closely. The major difference is that
the IL has a module level and a term level, whereas the RTG calcu-
lus only has one (term) level. This is a largely superficial difference,
however, since the complexity of the type system derives from the
treatment of abstract types via type effects, which is essentially the
same in both languages. We therefore restrict attention to the few
minor differences between the meta-theory of the two languages,
and refer the reader to [2] for further details.

First, in the body of this paper, we refer to two signature judg-
ments: a well-formedness judgment, ∆ ` Σ sig, and an equiv-
alence judgment, ∆ ` Σ1 ≡ Σ2. These are both defined in the
obvious way: Σ is well-formed in ∆ if all its constituent type con-
structor parts are well-formed (with the appropriate kinds) in ∆,
and two signatures are equivalent if they have the same structure
and their constituent type constructors are all equivalent. Although
we did not refer to it in the IL typing rules, there is also a notion
of well-formedness for functor signatures, ∆ ` Φ sig, defined as
follows:

∆, α1 ↓K1 ` Σ1 sig ∆, α1 ↓K1, α2 ↓K2 ` Σ2 sig

∆ ` ∀(α1 ↓K1).Σ1 → ∃(α2 ↓K2).Σ2 sig

Second, we write ∆ ` Γ ok to mean that (1) ` ∆ ok, (2) for
all X : Σ ∈ Γ, ∆ ` Σ sig, and (3) for all F : Φ ∈ Γ, ∆ ` Φ sig.
(The definition of ` ∆ ok, which is given formally in [2], ensures
that there are no cyclic dependencies between the definitions of
transparent type variables, although cycles are permitted between
the definitions of datatype variables.) In the sequel, we will write
“∆
 J ” to mean ` ∆ ok and ∆ ` J , and “∆; Γ
 J ” to mean
∆ ` Γ ok and ∆; Γ ` J .

Third, in RTG, variables are treated as values. In the IL, we
make no such assumption, so there is no need to restrict substitu-
tions for module variables to be value substitutions. Otherwise, the
definition of well-formedness for module substitutions is similar to
the one for value substitutions in RTG:

Definition A.1 (Well-Formed Module Substitutions)
We say that a module substitution γ maps Γ to Γ′ under ∆, written
∆; Γ′ ` γ : Γ, if:

1. dom(γ) ⊆ dom(Γ)

2. ∆ ` Γ ok and ∆ ` Γ′ ok

3. ∀X : Σ ∈ Γ. ∆; Γ′ ` γX : Σ

4. ∀F : Φ ∈ Γ. ∆; Γ′ ` γF : Φ

The important point here is that the modules in the substitution
must have the same type effects as the variables for which they
are being substituted. Thus, since variables do not have any effects
(Rule 4), the modules in the substitution may not either.

Finally, the meta-theory of RTG includes various lemmas con-
cerning judgments of the form ∆; Γ ` e : τ with ρ ↓. Since the
IL has structures, functors and terms, all such lemmas are effec-
tively divided into three parts, concerning judgments of the form
∆; Γ ` M : Σ with ρ ↓, ∆; Γ ` F : Φ, and ∆; Γ ` e : τ , re-
spectively. (For the latter two judgment forms, ρ = ∅.) The proofs
of all these lemmas are completely analogous to the proofs of the
corresponding lemmas in [2].

B. IL Dynamic Semantics and Type Soundness
Figure 12 gives the dynamic semantics of the IL in the style of an
abstract machine. Machine states consist of a type context ∆ (con-
taining the information about type names that have been created),
a value store ω (containing the potentially-undefined values of re-
cursive module variables), a continuation stack C, and lastly either
a term e or module M representing the entity currently being eval-
uated. We write ω @ X := V to represent the store resulting from
replacing X 7→ ? in ω with X 7→V.

The structure of the type soundness proof is very similar to
the one given in [2]. Figure 13 defines well-formedness judgments
for the various entities in the dynamic semantics, based on the
corresponding judgments formalized in [2]. The relevant theorems
and lemmas are as follows.

Theorem B.1 (Preservation)
If ` Ω ok and Ω� Ω′, then ` Ω′ ok.

Definition B.2 (Terminal States)
A machine state Ω is terminal if it is of the form BlackHole or
(∆; ω; •; V) or (∆; ω; •; v).

Definition B.3 (Stuck States)
A machine state Ω is stuck if it is not terminal and there is no state
Ω′ such that Ω� Ω′.

Lemma B.4 (Canonical Forms)
Suppose ∆; Γ
 v : τ and ∆; Γ
 V : Σ.

1. If τ = ∀[α]. τ1 ⇒ τ2, then v is of the form foldβ or
unfoldβ .

2. If τ = α or τ = α(A), where α : K≈A′ ∈ ∆, then v is of
the form foldβ[B](v′).

3. If Σ = [[= A : K]], then V is of the form [B].
4. If Σ = [[τ ′]], then V is of the form [v′].

5. If Σ = [[` : Σ′]], then V is of the form [` =V′].

Theorem B.5 (Progress)
If ` Ω ok, then Ω is not stuck.

Corollary B.6 (Type Soundness)
If ∅; ∅ ` M : Σ, then for all Ω, (∅; ∅; •; M)�∗ Ω implies that Ω
is not stuck.

C. EL Soundness
Elaboration contexts Γ (as defined in Figure 9) extend IL con-
texts with two new bindings, so we must extend the context well-
formedness judgment ∆ ` Γ ok accordingly. If Γ is an elabora-
tion context, then ∆ ` Γ ok iff (1) ` ∆ ok, (2) all IL bindings
in Γ are well-formed according to the definition in Appendix A,

13 2006/8/31

Core Values v ::= foldα | unfoldα | foldα[A](v)
Module Values V ::= [A] | [v] | [` = V]
Machine States Ω ::= (∆; ω; C; e) | (∆; ω; C; M) | BlackHole
Machine Stores ω ::= ∅ | ω,X 7→V | ω, X 7→ ?
Continuations C ::= • | C ◦ F

Continuation Frames F ::= •[A](e) | v[A](•) | Val(•) |
[•] | [`1 =V1, ` . X = •, `2 . X2 = M2] | •.` | F [A](•)[α] | rec (X : Σ) •

Machine state transitions: Ω� Ω′

e = e1[A](e2) e not a value

(∆; ω; C; e)� (∆; ω; C ◦ •[A](e2); e1) (∆; ω; C ◦ •[A](e); v)� (∆; ω; C ◦ v[A](•); e)

(∆; ω; C ◦ foldα[A](•); v)� (∆; ω; C; foldα[A](v)) (∆; ω; C ◦ unfoldα[A](•); foldβ [B](v)))� (∆; ω; C; v)

(∆; ω; C; Val(M))� (∆; ω; C ◦ Val(•); M) (∆; ω; C ◦ Val(•); [v])� (∆; ω; C; v)

X 7→V ∈ ω

(∆; ω; C; X)� (∆; ω; C; V)

X 7→ ? ∈ ω

(∆; ω; C; X)� BlackHole

e not a value
(∆; ω; C; [e])� (∆; ω; C ◦ [•]; e)

(∆; ω; C ◦ [•]; v)� (∆; ω; C; [v])

M = [`1 . X1 =M1, `2 . X2 =M2] M not a value

(∆; ω; C; M)� (∆; ω; C ◦ [`1 . X1 = •, `2 . X2 = M2]; M1)

(∆; ω; C ◦ [`1 =V1, `2 . X2 = •, `3 . X3 = M3, `4 . X4 = M4]; V2)�

(∆; ω; C ◦ [`1 =V1, `2 =V2, `3 . X3 = •, `4 . X4 = {X2 7→V2}M4]; {X2 7→V2}M3)

(∆; ω; C ◦ [`1 =V1, `2 = •]; V2)� (∆; ω; C; [`1 =V1, `2 =V2]) (∆; ω; C; M.`)� (∆; ω; C ◦ •.`; M)

V = [. . . , ` =V`, . . .]

(∆; ω; C ◦ •.`; V)� (∆; ω; C; V`) (∆; ω; C; F [A](M)[α])� (∆; ω; C ◦ F [A](•)[α]; M)

F = Λ(α1 ↓K1).λ(X : Σ1).Λ(α2 ↑K2).M

(∆; ω; C ◦ F [A](•)[α]; V)� (∆; ω; C; {α1 7→A}{X 7→V}{α2 7→α}M)

X 6∈ dom(ω)

(∆; ω; C; rec (X : Σ) M)� (∆; ω, X 7→ ?; C ◦ rec (X : Σ) •; M)

X ∈ dom(ω)

(∆; ω; C ◦ rec (X : Σ) •; V)� (∆; ω @X := V; C; V)

(∆; ω; C; let F =F in M)� (∆; ω; C; {F 7→F}M)

α 6∈ dom(∆)

(∆; ω; C; new α ↑K in M)� (∆, α ↑K; ω; C; M)

α ∈ ↑(∆)

(∆; ω; C; set α := A in M : Σ)� (∆ @α :=A; ω; C; M)

α ∈ ↑(∆)

(∆; ω; C; set α :≈A in M : Σ)� (∆ @α :≈A; ω; C; M)

Figure 12. IL Dynamic Semantics

(3) for all signature bindings S =S in Γ, ∆ ` S ok, and (4)
for all functor bindings F : ∀(α1 ↓K1).(L; Σ1)→ ∃(α2 ↓K2).Σ2

in Γ, we have ∆ ` ∀(α1 ↓K1).Σ1 → ∃(α2 ↓K2).Σ2 sig and
∆ ` ∃(α1 ↑K1).(L; Σ1) ok.

The inference rules defining elaboration (Section 4.2) implicitly
erase elaboration contexts into IL contexts whenever they refer
to IL judgments in their premises. The erasure is defined in the
obvious way: all signature definitions are dropped, and all functor
bindings have their abstract type locators L erased. It is easy to see
that valid elaboration contexts erase to valid IL contexts.

Proposition C.1 (Correctness of Equation Solver)
Suppose ` ∆ ok and ∆ ` solve L by Σ ; δ and ∆ ` Σ sig.
Then:

1. {α} = dom(δ) = dom(L) ⊆ dom(∆).
2. ∀α ∈ {α}. ∆ ` δα : ∆(α).

3. ∀α ∈ {α}. (FV(δα) ∪ basis∆(δα)) ∩ {α} = ∅.

4. If {α} ⊆ ↑(∆), then ` ∆ @α := δα ok and
∆ @α := δα ` (L; Σ) ok.

Regarding Proposition C.1: Part 1 says that the output substitu-
tion δ solves precisely for the abstract types in the domain of L.
Part 2 says that the resulting solutions are well-formed in ∆. Part 3
says that the solutions in δ do not refer to or depend on any of the
α in dom(L). In other words, the judgment returns a non-recursive
solution. Part 4 says that if the α are undefined in ∆, then patching
∆ with the solutions for α found in δ results in a valid context, and
one in which the definitions of α match up with their definitions
in Σ (as located by L). The proof of Proposition C.1 is completely
straightforward.

14 2006/8/31

Well-formed machine states: ` Ω ok

` BlackHole ok

∆ ` ω : Γ ∆; Γ ` e : τ ∆; Γ ` C : τ cont

` (∆; ω; C; e) ok

∆ ` ω : Γ ∆; Γ ` M : Σ with ρ ↓ ∆ @ ρ ↓; Γ ` C : Σ cont

` (∆; ω; C; M) ok

Well-formed machine stores: ∆ ` ω : Γ

∆ ` Γ ok dom(ω) = dom(Γ) ∀X : Σ ∈ Γ. either ω(X) = ? or ∆; Γ ` ω(X) : Σ

∆ ` ω : Γ

Well-formed continuations: ∆; Γ ` C : τ/Σ cont

∆ ` τ : T/∆ ` Σ sig

∆; Γ ` • : τ/Σ cont

∆; Γ ` F : τ1/Σ1 τ2/Σ2 with ρ ↓ ∆ @ ρ ↓; Γ ` C : τ2/Σ2 cont

∆; Γ ` C ◦ F : τ1/Σ1 cont

∆; Γ ` C : τ ′/Σ′ cont ∆ ` τ ′ ≡ τ : T/∆ ` Σ′ ≡ Σ

∆; Γ ` C : τ/Σ cont

Well-formed continuation frames: ∆; Γ ` F : τ1/Σ1 τ2/Σ2 with ρ ↓

∆ ` A : T ∆; Γ ` e : {α 7→A}τ1 ∆, α :T ` τ2 : T

∆; Γ ` •[A](e) : (∀[α]. τ1 ⇒ τ2) {α 7→A}τ2

∆ ` A : T ∆; Γ ` v : ∀[α]. τ1 ⇒ τ2

∆; Γ ` v[A](•) : {α 7→A}τ1 {α 7→A}τ2

∆ ` τ : T
∆; Γ ` Val(•) : [[τ]] τ

∆ ` τ : T
∆; Γ ` [•] : τ [[τ]]

∆; Γ ` V1 : Σ1 ∆ ` Σ sig ∆; Γ, X : Σ ` [`2 . X2 =M2] : [[`2 : Σ2]] with ρ ↓

∆; Γ ` [`1 = V1, ` . X= •, `2 . X2 =M2] : Σ [[`1 : Σ1, ` : Σ, `2 : Σ2]] with ρ ↓

∆ ` Σ sig Σ = [[. . . , ` : Σ`, . . .]]

∆; Γ ` •.` : Σ Σ`

∆; Γ ` F : ∀(α1 ↓K1).Σ1 → ∃(α2 ↓K2).Σ2 ∆ ` A : K1 α ↑K2 ⊆ ∆

∆; Γ ` F [A](•)[α] : {α1 7→A}Σ1 {α1 7→A}{α2 7→α}Σ2 with α ↓

∆; Γ ` X : Σ

∆; Γ ` rec (X : Σ) • : Σ Σ

Figure 13. Typing Judgments for Machine States, Machine Stores, and Continuations

Theorem C.2 (Properties of Elaboration Judgments)
Suppose ∆ ` Γ ok. Then:

1. If ∆; Γ ` con ; A : K, then ∆ ` A : K.
2. If ∆; Γ ` exp ; e : τ , then ∆; Γ ` e : τ .
3. If ∆; Γ ` sig ; S , then ∆ ` S ok.
4. If ∆; Γ; (L0; Σ0) ` mod ; ∃(α ↑K).(Σ; pemod)

and ∆ ` (L0; Σ0) ok, then ∆, α ↑K ` Σ sig.
5. If ∆; Γ ` pemod ; M : Σ with ρ ↓,

then ∆; Γ ` M : Σ with ρ ↓.
6. If c̀an (L; Σ) ; M and dom(L) ⊆ ↑(∆)

and ∆ ` (L; Σ) ok, then ∆; Γ ` M : Σ with dom(L) ↓.
7. If ∆; Γ ` P � Σ ; M, then ∆; Γ ` M : Σ.
8. If ∆; Γ ` prog ; M, then ∆; Γ ` M : [[]].

Proof: By straightforward induction on elaboration. �

Soundness of the external language follows from Part 8 of
Theorem C.2, together with type soundness of the IL.

15 2006/8/31

