
Austin College

Adaptive Clustered EDF in
LITMUSRT

Aaron Block, Austin College. Sherman, Texas
William Kelley, BAE Systems. Ft. Worth, Texas

Austin College

Adaptable System: Whisper

2

•Whisper is a motion tracking system
‣Speakers are placed on users hands and feet
‣Microphones are placed in the room
‣Speed of sound computations can calculate relative position of

each speaker.
•Location a speaker takes more work if
‣The room is noisy
‣The microphone is far from the speaker

•It needs
‣A real-time system
‣A multiprocessor system
‣Needs to be able to adapt to changing workload.

Austin College

•Worst case execution time (WCET).

•Actual execution time, the actual execution of a job.

‣Upper Bounded by WCET
‣May be different for each job of a task

•Period, which defines the
‣Relative Deadline of each job (aka, period)
‣Minimum Separation between each job (≥ relative deadline)

•Weight of a task: the WCET divided by the period
‣Represents the utilization required by the task to meet all deadlines.

•Actual Weight of a job: Actual execution time divided by the period.

Classical Sporadic Task Model

WCET Seperation

{ {

{Deadline

Austin College

Adaptable Model

4

•Each task is comprised of several Service Levels. Each of which has:
‣A period
‣A code segment

- Changing the code changes the execution time.
‣A Quality of Service (QoS)

- This represents the value to system the task running at this service level
- Higher QoS = Better

•The goal of an adaptable task system is to maximize the total QoS of all tasks
without "over utilizing" the system.

Austin College

Running Time/Weight Translation Function

5

•The running time for each code segment is variable
‣For example, in Whisper the same code segment may need to

perform additional computations if the room is noisy
•We assume that there is a relationship between the running
time of the code segments at different service levels
‣For example, in Whisper, even if we change the code segment, the

room is still noisy
•We assume that the developer of the task system provides a
Weight Translation Function that given the weight of a task at
one service level, produces an estimate weight at another
level.

Austin College

Soft Real Time System

6

•In our model, we assume that tasks can miss deadlines by a bounded amount.
‣This model allows us to fully measure the actual execution time for job upon

competition.
•Other soft real-time models are possible to use
‣We can discuss this off-line if y'all want

Austin College

Prior Work: Adaptable GEDF

7

•In our prior work, we produced an adaptive Global Earliest Deadline First
scheduling algorithm. Which consisted of the following components
‣A Feedback Predictor

- Uses the previous actual weight of jobs and a Predictor-Integral (PI) controller to predict
the actual weight of the next job.

‣An optimizer
- Uses the estimated weight of all jobs to determine the "Best" service level for each task

‣Reweighting rules
- Enacts the service level changes dictated by the optimizer

‣A GEDF scheduler
- Schedules the system using a Global Multiprocessor Earliest Deadline First Scheduling

algorithm.

Austin College

Prior Work: When we adapt

8

•If the system or a task is over utilizing the resources.
•After a user-defined interval of time since the last reweighting event.
•We do not change service levels under the following conditions
‣During the first few seconds

- so that the feedback predictors can determine an initial estimated weight.
‣During a user-defined duration of time after a reweighting event,

- so that the feedback predictors can determine an new estimated weight

Austin College

Prior Work: How we optimize

9

•Using the value, QoS-to-Weight ratio, rank all tasks from highest-to-lowest
•In order, assign each task its highest possible service level that does NOT
violate the following conditions
‣No task has a weight greater than one processor
‣The system is not over utilized
‣Every task is at least assigned its lowest service level.

Austin College

Global EDF Limitations

10

•Scheduling costs can be very high because all tasks need to be scheduled
•At scheduling time, all tasks are synchronized on a single processor.
•So, as the processors counts get higher, Global EDF becomes worse.

Austin College

Clustered EDF

11

•Alternative, don't schedule all tasks from a
SINGLE priority queue
•Instead group processors in to "clusters" that
share a common cache
•Then schedule each cluster independently using
an Earliest Deadline First Algorithm.
•This is Clustered EDF (CEDF).

Processor 1
Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

L3 C
ache

Processor 2
Core 7

Core 8

Core 9

Core 10

Core 11

Core 12

L3 C
ache

Austin College

CEDF

12

•CEDF Pros
‣Each cluster is independent. So, scheduling costs and synchronization issues are

much lower.
•CEDF Cons
‣ In theory, cannot fully utilize the system with bounded deadline misses
‣ In reality, few situations where we cannot fully utilize.

•Prior work by Bastoni et al. suggests that CEDF may be superior to GEDF if we
have more than six cores.

Austin College

Adaptable Clustered

13

•In this work, we made an adaptable clustered EDF scheduling algorithm.
•At a high level the changes from GEDF to CEDF are relatively simple.
‣ Introduce a repartitioner to reassign tasks to clustered when the clustered become

"imbalanced"

A Feedback Predictor
An optimizer
Reweighting rules
A GEDF scheduler

A Feedback Predictor
An optimizer
Reweighting rules
A CEDF scheduler
A Repartitioner

Adaptive GEDF
Adaptive CEDF

Austin College

Reality…

14

•In reality, moving from a globally scheduled system to a clustered introduces a
host of other questions
‣How do we determine if two clustered are "imbalanced"?
‣How and when do we enact a repartitioning?
‣How do we migrate a single task between two clusters?

Austin College

Imbalanced

15

•We state a Clustered EDF system is Imbalanced if the total QoS in two different
clusters differs by a user-defined threshold.
‣We use QoS instead of weight, because the weight of tasks is constantly changing

whereas the QoS determines how well the system is performing.
•When that threshold is passed, the system is repartitioned.

Austin College

Enacting a repartition

16

•When do we enact a repartitioning?
‣All at once?
‣Gradually move tasks one at a time.

•If we enact it all at once then partially executed tasks will either be…
‣be abandoned
‣ restarted,
‣or could miss their deadline by an unbounded amount.

•If we move tasks to their new processor upon completion of the current job, the
process is slower but that's the only downside.
•Therefore, we move tasks gradually.

Austin College

Moving a Task

17

•How do we move a task between two processors?
•Each cluster is protected by a spin lock, but migrating
between clustered requires acquiring both
simultaneously.
•To prevent deadlock, we use the following process:
‣We introduced a new spin lock (called secondary) for each

cluster.
‣Then we created a global order for all secondary spin

locks.
‣When a cluster makes a scheduling decision it acquires

both its primary and secondary spin locks (and releases
them when done)
‣When a cluster moves a task from cluster A to cluster B it

runs the following locking code.

Additionally, it is worth noting that since repartitioning
occurs because of QoS imbalances, the quicker the repartition
is enacted, the better it is for the overal QoS for the system.
Yet, quickly enacting a repartitioning is not crucial for the
functioning of the system. Thus, while gradually migrating
tasks between clusters will reduce the QoS of the system, we
believe this tradeoff is worth the cost to preventing unbounded
tardiness from occurring.

C. Challenge: Migrating a Task

In the typical implementation of CEDF, each cluster has its
own spin lock for protecting the priority queue containing all
active jobs. This prevents a race condition in which multiple
cores on the same cluster attempt to change the priority queue
at the same time. Moreover, under CEDF tasks never migrate
between clusters. This is not the case in A-CEDF.

To enable A-CEDF to migrate a task from Cluster A to
Cluster B, we need two layers of synchronization: (1) one
layer to prevent any core on Cluster B from corrupting Cluster
B’s priority queue and (2) one layer to prevent any core on
Cluster A that is migrating a task to Cluster B from corrupting
Cluster B’s priority queue. Moreover, Cluster A cannot simply
acquire Cluster B’s spin lock or a deadlock could occur (e.g.,
if Cluster B attempted to migrate a task to Cluster A at
approximately the same time that Cluster A is attempting to
migrate a task to Cluster B). To enable task migration, we
need a more sophisticated approach to synchronization. We
do so by employing the following method:

• Each cluster has a unique ID number.
• Each cluster has a prime and second spinlock.
• When entering into any critical section, a core first

acquires its cluster’s prime lock, then its second lock.
• When a task that is flagged for migration from Cluster A

to Cluster B, it executes the pseudo-code given in Fig. 1.
There are three keys to this synchronization technique. First,
the prime lock on each cluster protects the priority queue
from corruption by all cores in the same cluster. Second, the
second lock provides a means to protect a cluster’s priority
queue from external corruption (i.e., Cluster A must acquire
Cluster B’s second before migrating the task). Third, by
releasing and reacquiring second locks in a globally estab-
lished order (i.e., the code in Fig. 1), we prevent the circular
chain of dependencies that is a prerequisite for deadlock.
Notice that this ordering heuristic is similar to the double-lock
used by Linux for its native run queues.

D. Cost of Implementation

To measure the cost of an implemented A-CEDF, we ran
a simulated virtual reality human tracking system (called
Whisper [12]) on a Mac Pro with two 2.66 Ghz 6-core Intel
Xeon processors (12 cores total). Each core has 512KB of
L2 cache and each processor has 12 MB of fully shared L3
cache. Our clustered implementation of A-CEDF had two
clusters, one for each processor. Our simulated human tracking
system had 96 tasks each of which had both gradual and
sudden changes in weight. We found that the introduction of

Migrate task from Cluster A to B
1: Release Cluster A’s second lock
2: if Cluster A’s ID is less than Cluster B’s ID then
3: Acquire Cluster A’s second lock
4: Acquire Cluster B’s second lock
5: else
6: Acquire Cluster B’s second lock
7: Acquire Cluster A’s second lock
8: fi
9: Actually move task from cluster A to B
10: Release Cluster B’s second lock

Fig. 1. Pseudo-code defining task migration

adaptive techniques slightly increased the average scheduling
cost compared to a non-adaptive variant. Specifically, A-CEDF
took on average 5.8µs per scheduling decision while CEDF
took on average 4.3µs per scheduling decision. The increased
running time was primarily becasuse our implementation of
the of the optimizer and repartitioner involves sorting a large
number of tasks. It is possible to reduce the running time of
A-CEDF by using a faster, but less accurate implementation
of these two components. It is worth noting that neither
the feedback predictor nor the double-locking mechanism
appreciably increased the scheduling time.

V. CONCLUSIONS AND FUTURE WORK

In this work, we designed and implemented A-CEDF as a
LITMUSRT plugin. In the process of implementing A-CEDF,
we came across multiple issues with implementing any type
of adaptive clustered real-time scheduling algorithm. We also
established that adaptive behavior can be enabled in clustered
soft-real time systems with only a small additional scheduling
cost. In future work, we plan to compare the performance of
A-CEDF to A-GEDF at maximizing the QoS for a system.

REFERENCES

[1] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In RTSS. ’02.

[2] A. Bastoni, B. Brandenburg, and J. Anderson. An Empirical Comparison
of Global, Partitioned, and Clustered Multiprocessor Real-Time Sched-
ulers. RTSS, ’10.

[3] B. Brandenburg Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis, UNC, ’11.

[4] A. Block, J. Anderson, and G. Bishop. Fine-grained task reweighting
on multiprocessors. Journal of Embed Comp, ’11.

[5] A. Block, Adaptive Multiprocessor Real-Time Systems. PhD thesis,
UNC, ’08,

[6] A. Block, J. Anderson, and U. Devi. Task reweighting under global
scheduling on multiprocessors. Real-Time Sys., ’08.

[7] A. Block, B. Brandenburg, J. Anderson, and S. Quint. An Adaptive
Framework for Multiprocessor Real-Time Systems. ECRTS, ’08.

[8] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In RTSS, ’06.

[9] U. Devi and J. Anderson. Tardiness bounds under global EDF schedul-
ing on a multiprocessor. Real-Time Sys., ’08

[10] N. Khalilzad, F. Kong, X. Liu, M. Behnam, and T. Nolte. A feedback
Scheduling Framework for Component-Based Soft Real-Time Systems.
RTAS., ’15

[11] C. Lu, J. Stankovic, S. Son, and G. Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Sys., ’02.

[12] N. Vallidis Whisper: A Spread Spectrum Approach to Occlusion in
Acoustic Tracking. PhD thesis, UNC, ’02.

Implementation Details

Austin College

LITMUSRT Framework

19

•We implementing our Adaptive CEDF scheduling using LITMUSRT

‣ LITMUSRT, (LInux Testbed for MUltiprocessor Scheduling in Real-Time Systems)is

an open source framework allows for researchers to create their own "plugin"
scheduling algorithms and evaluating them.

- Created by the research group at UNC-Chapel Hill

- Currently maintained (and primary developed) by Björn Brandenburg

•More about LITMUSRT can be found here: http://www.litmus-rt.org

Austin College

LITMUSRT plugin

20

•Generally, implementing scheduling plugin is fairly "simple"
‣ You create the code that should be executed during scheduling events (releases,

job completions, etc.)

‣ You let LITMUSRT know about your plugin

‣ Recompile/reboot

‣ RUN!

Austin College

Adding Service Levels to LITMUSRT

21

•The adaptive algorithms that we are implementing have more interplay between user
space and kernel space
‣Specifically, when we change the service level of a task, the code segment also needs to

change
•To enable this we had to modify the LITMUSRT Framework prior to implementing our
plugin.
‣Specifically, LITMUSRT, has a per-task data structure, struct control_page, defined in
rt_param.h, that is shared between user space and kernel.
‣We extended this data structure to include the current service level number.
‣When the scheduling algorithm changes the service level of a task, this number is also changed.
‣Each time a job begins a new job it reads this number, which lets the job know which

code segment it should execute.
‣While a task may change its code segment with each execution of a job. Jobs DO NOT change

their code segment once they have begun.

Austin College

Additional LITMUSRT modifications

22

•Additionally, to enable adaptive behavior a few additional modifications had to
be made to LITMUSRT as well
‣ In rt_param.h, the struct rt_task, (which contains the information about the

execution time, deadline, and assigned CPU/Cluster of a task) had to be
extended to include
- An array of service levels
- A variable (called target_cpu for historic reasons) that indicates which cluster the task

should migrate to.
- A target_service_level that is used to store the service level that the task should

be operating at (and will be changed to shortly).
‣ In jobs.c, the function setup_release() was modified to allow for tasks

changing their period at every job release.

Austin College

Changes to Clustered EDF

23

•Our implementation of Adaptive CEDF is a modification of default CEDF plugin
•The primary changes we had to make were were upon a job completion the
following actions occurred
‣Use the feedback predictor to estimate the execution time of the tasks's next job.
‣Update task's position in a per-cluster list sorted by QoS/Estimated Weight
‣Determine if tasks on a cluster should have their service level "optimized."
‣ If the tasks should change service levels, then do so now.
‣Determine if the clusters are imbalanced

- If so, "repartition" the tasks onto clusters.
‣ If a task should change clusters, then migrate that task

Austin College

Feedback Predictor Code

24

•The code for predicting the weight of a task is relatively simple
‣alpha and beta are determined by the developer based on the desired characteristics

of the feedback predictor (i.e., stead state error, instantaneous response, etc.)

void cacluate_Estimated_execution_time(struct task *t, double alpha, double beta){
t->cumulative_estimated_actual_difference += t->current_difference
t->current_difference = t->current_actual - t->current_estimated
t->current estimated = alpha * t->cumulative_estimated_actual_difference +

 beta * t->current_difference
}

Austin College

Optimizer

25

•The optimizer consists of Four distinct phases
1. Go through the cluster's list of tasks sorted by QoS-to-Estimated weight ratio
2. In order, increase the service level of all tasks as high as possible until the cluster is

fully utilized (or set a lower threshold)
3. Mark each task in the cluster as having a new target_service_level.
‣For some, the target_service_level will be the same as their
current_service_level.
‣For others, their current_service_level will change at their next job competition.

4. The system is now marked as "stable" and cannot be re-optimized for a developer-
specified duration of time.

Austin College

Repartitioner

26

•The repartitioner both determines which tasks should be assigned to which
cluster and optimizes the service level of each task
•As a result, it is similar to the optimizer, and as such consists of the following
phases
‣Merge each cluster's list of sorted tasks into a single list
‣Go through the master list, assigning tasks to clusters based on which cluster has the

largest capacity available. Use the estimated minimum service level to determine the
amount of capacity available
‣For each cluster, optimize the service levels assigned to it
‣For each task that changed service level and/or cluster, change the associated target

service level and/or target cluster
‣The system is now marked as "stable" and cannot be re-partitioned for a developer-

specified duration of time.

Austin College

Running Time

27

•Aside from the optimizer and the repartitioner, the running time of adaptive CEDF
is incrementally more than the running time of non-adaptive CEDF.
‣The running time of the optimizer is O(C) where C is the number of tasks assigned to

the cluster
‣The running time of the repartitioner is O(N), where N is the number of tasks in the

system
•Both of these times stem from having to go through all of the tasks in the
cluster/system
•Repartitioning is also costly because clusters involved are "paused" while the
repartitioning is occurring.
•It is possible on systems with many clusters, to devise an improved repartitioner
that only attempts to repartition 2 or 3 clusters at a time.
‣This would substantially reduce the overhead of repartitioning the system.

Austin College

Future Work

28

•In the future, we plan to the following
‣Produce a full comparison of adaptive CEDF and GEDF
‣Deliver the adaptable GEDF and adaptable CEDF plugins and LitmusRT modifications

as an open source project.
‣ Integrate synchronization protocols into CEDF and GEDF.

