
Antonio Paolillo

OSPERT’15

MangoGem

A New Configurable and Parallel Embedded
Real-time Micro-Kernel for Multi-core platforms

GOALS

Produce safe and reliable embedded
software systems

GOALS

Produce safe and reliable embedded
software systems

MEANS

R&D: experimental platform
 new kernel architecture

GOALS

Produce safe and reliable embedded
software systems

MEANS

R&D: experimental platform
 new kernel architecture

Research: validate good results experimentally

CONSTRAINTS

CONSTRAINTS

 Real-time

CONSTRAINTS

 Real-time

 Embedded

CONSTRAINTS

 Real-time

 Embedded

 Certifiable

Scheduler
Cores

Ready list

The symmetric approach

Our approach is asymmetric

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Master core

Slave core Slave core Slave core

Shared memory:
tasks to execute

K = Kernel mode

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Κ

Initialisation time
The master core dispatches
all ready processes

Κ

Initialisation time
The master core dispatches
all ready processes

Expected benefits

Easier design

Less contention improved scalability

Private code and data less cache issues

Remote system calls: exit()

System calls are remote
Every process shares
a mutex with the master kernel
to enqueue system call requests

Locking
mechanism

Locking
mechanism

Locking
mechanism

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

 = System call arguments

 = Core in user-mode busy loop

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

Κ

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

Κ

Exit system call
example of remote system call,
the task is done,
we must call the scheduler

Remote system calls: sleep(10)

Sleep system call
the task self-suspends
for 10 ms

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Sleep system call
the task self-suspends
for 10 ms

BLOCKED

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Κ

Sleep system call
the task self-suspends
for 10 ms

Inter Process Communication
mechanism: send() and recv()

IPC: message passing between processes

Implemented UDP-like API
(send(), recv(), port-based)

It affects process states
 must be based on remote system calls

IPC protocol: performance issues

Micro-kernel IPC requires high efficiency

Avoid to overload the master core

The challenge is many-to-one IPC in multicore

Sender

Shared buffer

Receiver

IPC with system calls
If a process state transition
occurs, call the master

Sender

Shared buffer

Receiver

IPC with system calls
If a process state transition
occurs, call the master

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

Κ

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

Κ

BLOCKED

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

Κ

BLOCKED

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

Κ

BLOCKED

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

BLOCKED

Receiver calls recv()
It can block the process

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKEDBLOCKED

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

Sender calls send()
It can release some processes
The copy is done locally

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

The master releases the receiver
The receiver can re-execute
the recv()

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

BLOCKED

Κ

The master releases the receiver
The receiver can re-execute
the recv()

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

Κ

The master releases the receiver
The receiver can re-execute
the recv()

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

Κ

The master releases the receiver
The receiver can re-execute
the recv()

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

The master releases the receiver
The receiver can re-execute
the recv()

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

The master releases the receiver
The receiver can re-execute
the recv()

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver
Κ

The master releases the receiver
The receiver can re-execute
the recv()

 = System call arguments

 = Message content

Sender

Shared buffer

Receiver

Sender

Shared buffer

Receiver

Access to the buffer requires
synchronisation
The implementation is hybrid
w.r.t. symmetric/assymmetric
approaches

 = System call arguments

 = Message content

FUTURE WORK

FUTURE WORK

Benchmark system calls and IPC scheme

FUTURE WORK

Benchmark system calls and IPC scheme

Analytically bound the protocol

FUTURE WORK

Benchmark system calls and IPC scheme

Analytically bound the protocol

Evaluate real-time schedulers

HIPPEROS = spin-off company of ULB
 = family of RTOS

 New kernel for Real Time Systems

Antonio Paolillo

MangoGem

antonio.paolillo@ulb.ac.be
http://antonio.paolillo.be/

