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Our approach is asymmetric
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Slave core Slave core Slave core

Shared memory: 
tasks to execute

K = Kernel mode
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Expected benefits

Easier design

Less contention        improved scalability

Private code and data        less cache issues



Remote system calls: exit()





System calls are remote
Every process shares
a mutex with the master kernel
to enqueue system call requests

Locking
mechanism

Locking
mechanism

Locking
mechanism
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Remote system calls: sleep(10)
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Inter Process Communication 
mechanism: send() and recv()



IPC: message passing between processes

Implemented UDP-like API
(send(), recv(), port-based)

It affects process states       
      must be based on remote system calls



IPC protocol: performance issues

Micro-kernel        IPC requires high efficiency

Avoid to overload the master core

The challenge is many-to-one IPC in multicore
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Sender

Shared buffer

Receiver

Access to the buffer requires 
synchronisation
The implementation is hybrid 
w.r.t. symmetric/assymmetric 
approaches

            = System call arguments

            = Message content
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FUTURE WORK

Benchmark system calls and IPC scheme

Analytically bound the protocol

Evaluate real-time schedulers



HIPPEROS = spin-off company of ULB
                 = family of RTOS

      New kernel for Real Time Systems
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