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Virtual memory: why bother?

Familiar, powerful, paradigm:
“The value of a computer system to its users is greatly enhanced if a user can, in a

simple and general way, build his work upon procedures developed by others. The

a�ainment of this essen�al generality requires that a computer system possess the

features of equipment-independent addressing, an e ec�vely in!nite virtual memory,

and provision for the dynamic linking of shared procedure and data objects.”

Virtual Memory, Processes and Sharing in Mul�cs (Daley, Dennis, MIT, 1968)

In real �me and NoCs:

–Dynamic paging not suitable for all use cases

–But should not have to run a full OS on every node – should

be able to share

27th July  2015
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The “Many-Core Age”

Shi= to “many core”:
Single fast chip designs no longer feasible, bus based designs

limited, so move is towards “many core” systems – Intel

demonstrated 256 core NoC in 2014, Tilera a 100 core NoC this

year

Problems:
– Familiar issue of “Amdahl's Law”

–Parallel Programming is Hard

– Imbalance between small amounts of fast local memory and

large amounts of slower global memory

37th July  2015
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Use x264 benchmark from

PARSEC to get full memory

trace across mul�ple threads –

then use this to model the

behaviour of a “NoC”:

assuming local memory is 1

cycle away, and global

memory is 100 cycles per 16

byte cache line away.

Even for OPT thrashing

characteris�c seen. 

47th July  2015

Many core + VM = thrashing
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57th July  2015

Closer look at thrashing
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67th July  2015

But it's not like “last �me”: issue is

not page replacement
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77th July  2015

Under the hood: alloca�on sizes
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• If we want eHcient VM in mul�core/NoCs we

cannot use tradi�onal paging algorithms

• But smaller pages are more eHcient for

memory starved systems

• Most alloca�ons are small – smaller even

than the smallest page size

87th July  2015

Lessons learned?



9

       

● Preserve the advantage of VM – shared

address space – but do not wait around

loading memory we never use.

● Pragma�c balance between smaller alloca�ons

and exis�ng technologies and well-understood

techniques.

● Test allowing for some increased processing

�me 
97th July  2015

Trying a par�al page
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107th July  2015

Results seem promising
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117th July  2015

Thrashing mi�gated
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127th July  2015

EHciency compared
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• A number of assump�ons in the model: about �me taken to

process “par�al” paging and memory availability in par�cular

• Need to test the validity of these on a system closer to the

real world – used OVPSim Microblaze: instruc�on accurate

simulator of a so=ware core that can execute one instruc�on

per cycle

• By changing the model we can simulate hardware innova�ons

(such as MMU suppor�ng par�al paging)

• But can only test on a single core – OVPSim cannot model

mul�ple asynchronous cores

137th July  2015

A more thorough test
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Using tradi�onal

paging, can see

smaller (1k versus

4k) pages perform

beKer on our

simple test load.

147th July  2015

Establishing the baseline
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There is no

immediate DMA

support available,

so pages have to be

loaded “by hand”:

though this is more

determinis�c it

adds to the cost of

4k pages.

157th July  2015

Factoring in instruc�on counts
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Lower instruc�on count at only very small

memory numbers...

167th July  2015

How does par�al paging do?

TLBs Instructions:
traditional
paging

Instructions:
partial paging

8 20.2 million 18.5 million

16 9.9 million 13.5 million

24 7.5 million 12.3 million

32 6.5 million 11.8 million
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Reading and tes�ng

bitmaps is

expensive, but if

we normalize for

�me taken to load

pages, par�al

paging performs

beKer.

177th July  2015

But when normalized for �me
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● Is 16 byte size too small? (Hard fault numbers

constant, but “small” faults decrease for larger

sizes, but by less than addi�onal instruc�on

cost)

● Using FIFO (no �me source) – could LRU do

beKer? (Not on simple system)

●  What about other loads? (Evidence suggests

locality a key factor in performance)

187th July  2015

Some further tests
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• Will it work for 256, 512 and 1024 cores?

• No considera�on of problems of consistency

and coherence in mul�core – an essen�al next

step.

• Is sub-cycle hardware for this task feasible?

Need to validate the approach.

196th July  2015

Further research


