
1

Par�al Paging for Real-Time NoC Systems

Adrian McMenamin, Professor Neil Audsley

Real Time Systems Group,

Department of Computer Science, University of York

17th July 2015

2

Virtual memory: why bother?

Familiar, powerful, paradigm:
“The value of a computer system to its users is greatly enhanced if a user can, in a

simple and general way, build his work upon procedures developed by others. The

a�ainment of this essen�al generality requires that a computer system possess the

features of equipment-independent addressing, an e ec�vely in!nite virtual memory,

and provision for the dynamic linking of shared procedure and data objects.”

Virtual Memory, Processes and Sharing in Mul�cs (Daley, Dennis, MIT, 1968)

In real �me and NoCs:

–Dynamic paging not suitable for all use cases

–But should not have to run a full OS on every node – should

be able to share

27th July 2015

3

The “Many-Core Age”

Shi= to “many core”:
Single fast chip designs no longer feasible, bus based designs

limited, so move is towards “many core” systems – Intel

demonstrated 256 core NoC in 2014, Tilera a 100 core NoC this

year

Problems:
– Familiar issue of “Amdahl's Law”

–Parallel Programming is Hard

– Imbalance between small amounts of fast local memory and

large amounts of slower global memory

37th July 2015

4

Use x264 benchmark from

PARSEC to get full memory

trace across mul�ple threads –

then use this to model the

behaviour of a “NoC”:

assuming local memory is 1

cycle away, and global

memory is 100 cycles per 16

byte cache line away.

Even for OPT thrashing

characteris�c seen.

47th July 2015

Many core + VM = thrashing

5

57th July 2015

Closer look at thrashing

6

67th July 2015

But it's not like “last �me”: issue is

not page replacement

7

77th July 2015

Under the hood: alloca�on sizes

8

• If we want eHcient VM in mul�core/NoCs we

cannot use tradi�onal paging algorithms

• But smaller pages are more eHcient for

memory starved systems

• Most alloca�ons are small – smaller even

than the smallest page size

87th July 2015

Lessons learned?

9

● Preserve the advantage of VM – shared

address space – but do not wait around

loading memory we never use.

● Pragma�c balance between smaller alloca�ons

and exis�ng technologies and well-understood

techniques.

● Test allowing for some increased processing

�me
97th July 2015

Trying a par�al page

10

107th July 2015

Results seem promising

11

117th July 2015

Thrashing mi�gated

12

127th July 2015

EHciency compared

13

• A number of assump�ons in the model: about �me taken to

process “par�al” paging and memory availability in par�cular

• Need to test the validity of these on a system closer to the

real world – used OVPSim Microblaze: instruc�on accurate

simulator of a so=ware core that can execute one instruc�on

per cycle

• By changing the model we can simulate hardware innova�ons

(such as MMU suppor�ng par�al paging)

• But can only test on a single core – OVPSim cannot model

mul�ple asynchronous cores

137th July 2015

A more thorough test

14

Using tradi�onal

paging, can see

smaller (1k versus

4k) pages perform

beKer on our

simple test load.

147th July 2015

Establishing the baseline

15

There is no

immediate DMA

support available,

so pages have to be

loaded “by hand”:

though this is more

determinis�c it

adds to the cost of

4k pages.

157th July 2015

Factoring in instruc�on counts

16

Lower instruc�on count at only very small

memory numbers...

167th July 2015

How does par�al paging do?

TLBs Instructions:
traditional
paging

Instructions:
partial paging

8 20.2 million 18.5 million

16 9.9 million 13.5 million

24 7.5 million 12.3 million

32 6.5 million 11.8 million

17

Reading and tes�ng

bitmaps is

expensive, but if

we normalize for

�me taken to load

pages, par�al

paging performs

beKer.

177th July 2015

But when normalized for �me

18

● Is 16 byte size too small? (Hard fault numbers

constant, but “small” faults decrease for larger

sizes, but by less than addi�onal instruc�on

cost)

● Using FIFO (no �me source) – could LRU do

beKer? (Not on simple system)

● What about other loads? (Evidence suggests

locality a key factor in performance)

187th July 2015

Some further tests

19

• Will it work for 256, 512 and 1024 cores?

• No considera�on of problems of consistency

and coherence in mul�core – an essen�al next

step.

• Is sub-cycle hardware for this task feasible?

Need to validate the approach.

196th July 2015

Further research

