THE UNIVERSITYW_

Partial Paging for Real-Time NoC Systems

Adrian McMenamin, Professor Neil Audsley
Real Time Systems Group,
Department of Computer Science, University of York

THE UNIVERSITY@C%?}((

Virtual memory: why bother?

Familiar, powerful, paradigm:

“The value of a computer system to its users is greatly enhanced if a user can, in a
simple and general way, build his work upon procedures developed by others. The
attainment of this essential generality requires that a computer system possess the
features of equipment-independent addressing, an effectively infinite virtual memory,
and provision for the dynamic linking of shared procedure and data objects.”

Virtual Memory, Processes and Sharing in Multics (Daley, Dennis, MIT, 1968)

In real time and NoCs:
—Dynamic paging not suitable for all use cases
— But should not have to run a full OS on every node - should

be able to share

The “Many-Core Age”

Shift to “many core”:
Single fast chip designs no longer feasible, bus based designs
limited, so move is towards “many core” systems - Intel

demonstrated 256 core NoC in 2014, Tilera a 100 core NoC this
year

Problems:
—Familiar issue of “Amdahl's Law”
— Parallel Programming is Hard

—|Imbalance between small amounts of fast local memory and
large amounts of slower global memory

Many core + VM = thrashing

Use x264 benchmark from Partial execution of benchmark
PARSEC to get full memory |
trace across multiple threads -
then use this to model the .
behaviour of a “NoC”:
assuming local memory is 1
cycle away, and global
memory is 100 cycles per 16
byte cache line away. 1 7

3.0e+09
|

2.0e+09
|
"

Lines processed
"

1.0e+09

Even for OPT thraShing 008400 50e+09 1.0e+10 15e+10 2.0e+10
CharaCteriSﬁC Seen' red fﬂrDF'T=greeiirfly:lﬂeféﬁﬁellﬂw for 2k LRU

0.0e+00

THE UNIVERSITY(Q‘%?J’(_

Closer look at thrashing

Partial execution of benchmark

3.0e+09
|

2.0e+09
[

Lines processed

1.0e+09

0.0e+00
|

| | |
0.0e+00 5.0e+08 1.0e+10 1.52+10

Simulated ticks
Green for 4k OPT, red vertical, processor joins, blue vertical, processor leaves

THE UNIVERSITY@‘%?}’(_

But it's not like “last time”: issue is
not page replacement

OPT and LRU compared

e
& -
3] .
.
e . 3
by . +08 §
& * <
o Be+07
3 -~
RN T S S A R,
-
[=2]
3 4e+0
&
(T4
8
% + N 0e+00
= 500000 1000000 1500000

dle/Pages

OPT in red, LRU in yellow

THE UNIVERSITY@‘%?{(_

Under the hood: allocation sizes

Size of memory allocations

21)
n
-
% 2 ”[ﬁ tlﬂ J
@ W, 1“[|‘ H
M W‘*‘IWW\WH |
g A I\

ize of allocation
ite memory

Size
Instructions a

THE UNIVERSITY@C%?}((

Lessons learned?

If we want efficient VM in multicore/NoCs we
cannot use traditional paging algorithms

But smaller pages are more efficient for
memory starved systems

Most allocations are small - smaller even
than the smallest page size

Trying a partial page

* Preserve the advantage of VM - shared
address space - but do not wait around
loading memory we never use.

* Pragmatic balance between smaller allocations
and existing technologies and well-understood
techniques.

* Test allowing for some increased processing
time

THE UNIVERSITY@‘%?}’(_

Results seem promising

Partial execution of benchmark

He+09
]
T

4e+09
|

Lines processed
Je+09
|
™,

2e+09
]
%,

1e+09
_
N,
AN

Oe+00
|

| | | | |
0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10

Simulated ticks
red for OPT, green for 4k LRU, yellow for 2k LEU, blue for new approach

THE UNIVERSITY@‘%?}’(_

Thrashing mitigated

Thrashing or not?

Lines processed
Je+09 4e+09 5e+08
| | |

2e+09
i

1e+09
.

f/,/

L

4

Oe+00
|

| | | | I | |
Oe+00 1e+09 2e+09 3e+09 4e+09 5e+09 Ge+0D

Simulated ticks
Red for joining cores, green for leaving

THE UNIVERSITY@‘%?{(_

Efficiency compared

Efficiency of execution

1.3
|
9

1.0
q

Lines per Tick

0.2

0.0
|

Threads running

THE UNIVERSITY@C%?}((

A more thorough test

A number of assumptions in the model: about time taken to
process “partial” paging and memory availability in particular

Need to test the validity of these on a system closer to the
real world - used OVPSim Microblaze: instruction accurate

simulator of a software core that can execute one instruction
per cycle

By changing the model we can simulate hardware innovations
(such as MMU supporting partial paging)

But can only test on a single core - OVPSim cannot model
multiple asynchronous cores

Establishing the baseline

Using traditional
paging, can see 11\
smaller (1k versus |
4k) pages perform
better on our _ oy o
simple test load.

50000
|

10000 20000

Faults
5000
v

.__X

800 1000 2000
|]

o 10 20 40 40 &0 G0

Physical memory for page frames (KB)
Blue 4K, red 1K

THE UNIVERSITYW_

Factoring in instruction counts
Th e re iS n O 4K and 1K pages compared for instruction count
iImmediate DMA
support available,
so pages have to be

1e+0B Ze+0B

loaded “by hand”:
though this is more
deterministic it
adds to the cost of
4k pages.

Instructions

Se+06

S5e+07
|

1e+07 2e+07
|

Physical memaory for page frames (KB)
Blue 4K, red 1K

THE UNIVERSITYW.

How does partial paging do?

Lower instruction count at only very small
memory humbers...

TLBs Instructions: Instructions:
traditional partial paging
paging

8 20.2 million 18.5 million

16 9.9 million 13.5 million

24 7.5 million 12.3 million

32 6.5 million 11.8 million

THE UNIVERSITYW_

But when normalized for time
Reading and testing
bitmaps is
expensive, but if
we normalize for
time taken to load
pages, partial
paging performs
better.

1e+0B 2e+08

5e+07

Total cvele count

2e+07

1e+07

TLEs in use
Blue for traditional, red for alternative

THE UNIVERSITY@C%?}((

Some further tests

* |s 16 byte size too small? (Hard fault numbers
constant, but “small” faults decrease for larger
sizes, but by less than additional instruction
cost)

* Using FIFO (no time source) - could LRU do
better? (Not on simple system)

* What about other loads? (Evidence suggests
locality a key factor in performance)

THE UNIVERSITY@C%?}((

Further research
Will it work for 256, 512 and 1024 cores?
No consideration of problems of consistency
and coherence in multicore - an essential next

step.

Is sub-cycle hardware for this task feasible?
Need to validate the approach.

