
PROCEEDINGS OF

OSPERT 2015
the 11th Annual Workshop on

Operating Systems Platforms for
Embedded Real-Time Applications

July 7th, 2015 in Lund, Sweden

in conjunction with

the 27th Euromicro Conference on Real-Time Systems
July 8–10, 2015, Lund, Sweden

Editors:
Björn B. Brandenburg

Robert Kaiser

Contents

Message from the Chairs 3

Program Committee 3

Keynote Talk 5

Session 1: RTOS Design Principles 7
Back to the Roots: Implementing the RTOS as a Specialized State Machine

Christian Dietrich, Martin Hoffmann, Daniel Lohmann . 7
Partial Paging for Real-Time NoC Systems

Adrian McMenamin, Neil Audsley . 13
Transactional IPC in Fiasco.OC - Can we get the multicore case verified for free?

Till Smejkal, Adam Lackorzynski, Benjamin Engel, Marcus Völp 19

Session 2: Short Papers 25
A New Configurable and Parallel Embedded Real-time Micro-Kernel for Multi-core platforms

Antonio Paolillo, Olivier Desenfans, Vladimir Svoboda, Joël Goossens, Ben Rodriguez 25
Adaptive Resource Sharing in Multicores

Kai Lampka, Jonas Flodin, Yi Wang, Adam Lackorzynski . 29
Implementing Adaptive Clustered Scheduling in LITMUSRT

Aaron Block, William Kelley . 33
Preliminary design and validation of a modular framework for predictable composition of medical

imaging applications
Martijn M.H.P. van den Heuvel, Sorin C. Crǎcanǎ, Hrishikesh L. Salunkhe, Johan J. Lukkien,
Alok Lele, Dominique Segers . 37

Increasing the Predictability of Modern COTS Hardware through Cache-Aware OS-Design
Hendrik Borghorst, Olaf Spinczyk . 41

Session 3: Isolation, Integration, and Scheduling 45
Evaluating the Isolation Effect of Cache Partitioning on COTS Multicore Platforms

Heechul Yun, Prathap Kumar Valsan . 45
An experience report on the integration of ECU software using an HSF-enabled real-time kernel

Martijn M.H.P. van den Heuvel, Erik J. Luit, Reinder J. Bril, Johan J. Lukkien, Richard Verhoeven,
Mike Holenderski . 51

Evolving Scheduling Strategies for Multi-Processor Real-Time Systems
Frank Feinbube, Max Plauth, Christian Kieschnick, Andreas Polze 57

Program 64

© Copyright 2015 Max Planck Institute for Software Systems (MPI-SWS).
All rights reserved. The copyright of this collection is with MPI-SWS. The copyright of the individual articles
remains with their authors.

Message from the Chairs

Welcome to Lund in Skåne Län, Sweden and welcome to OSPERT’15, the 11th annual workshop on Operating
Systems Platforms for Embedded Real-Time Applications. As we are entering the second decade of this unique
venue, we invite you to join us in participating in a workshop of lively discussions, exchanging ideas about
systems issues related to real-time and embedded systems.

The workshop will open with a keynote by Robert Leibinger, Solution Manager Innovations at Elektrobit
Automotive GmbH, Germany. He will present his views on software architectures for advanced driver assistance
systems. We are delighted that Robert volunteered to share his experience and perspective, as a healthy mix of
academics and industry experts among its participants has always been one of OSPERT’s key strengths.

In addition to the traditional full workshop paper format, OSPERT’15 also solicited short papers this time.
The workshop received a total of fourteen submissions, five of which were in the short-paper format. All papers
were peer-reviewed and eleven papers were finally accepted. Each paper received at least three individual
reviews.

The papers will be presented in three sessions. The first session includes three compelling papers that explore
unconventional approaches to real-time systems design. The short papers, which cover a diverse and interesting
range of current topics, will be presented in Session 2. Last but not least, the day will close with an interesting
session on integration, isolation, and scheduling issues in the context of shared (multicore) platforms.

OSPERT’15 would not have been possible without the support of many people. The first thanks are due to
Gerhard Fohler, Rob Davis and the ECRTS steering committee for entrusting us with organizing OSPERT’15,
and for their continued support of the workshop. We would also like to thank the chairs of prior editions of the
workshop who shaped OSPERT and let it grow into the successful event that it is today.

Our special thanks go to the program committee, a team of eleven experts from four different continents, for
volunteering their time and effort to provide useful feedback to the authors, and of course to all the authors for
their contributions and hard work.

Last, but not least, we thank you, the audience, for your participation. Through your stimulating questions
and lively interest you help to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Björn B. Brandenburg Robert Kaiser
Max Planck Institute for Software Systems RheinMain University of Applied Sciences
Kaiserslautern, Germany Wiesbaden, Germany

Program Committee

Kevin Elphinstone, University of New South Wales, Australia
Michael Engel, Leeds Beckett University, UK
Paolo Gai, Evidence Srl, Italy
Shinya Honda, Nagoya University, Japan
Daniel Lohmann, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Wolfgang Mauerer, Siemens AG, Germany
Chanik Park, Pohang University of Science and Technology, South Korea
Martijn van den Heuvel, Technische Universiteit Eindhoven, Netherlands
Marcus Völp, Technische Universität Dresden, Germany
Rich West, Boston University, USA
Heechul Yun, University of Kansas, USA

3

OSPERT 2015 Keynote Talk

Software Architectures for Advanced Driver Assistance Systems (ADAS)

Robert Leibinger
Elektrobit Automotive GmbH

In recent years, the demand for electronic control units (ECUs) has been rapidly growing along with the
number and complexity of functions these ECUs help to realize. The criticality of functions from a functional
safety point of view is also increasing, which has lead to a demand for standards for safety-critical systems such
as IEC 61508 or ISO 26262. At the same time, the underlying software architecture has also been standardized
by committees such as AUTOSAR.

Traditionally, most automotive systems have been constructed as fail-safe systems, i.e., the failure of a system
is detected with high confidence and the system degrades or is simply shut down. Every driver is nowadays
aware of such diagnostic functions in the form of yellow or red warning signs telling them to visit the garage or
even to stop the car immediately.

However, with the advent of supported, assisted, or even autonomous driving, the focus shifts from fail-safe
systems to fail-operational systems. Such systems need to detect an error or even the fault leading to an error
before the error leads to the failure of the system. Such systems are well established in other domains such as
nuclear, where failure is not an option, or avionics, where many systems simply can’t be shut down during flight
operation.

As the automotive market is cost sensitive, different patterns need to be applied depending on the functionality,
criticality, and reliability requirements of the system. To identify which pattern needs to be implemented, error
scenarios as well as their effect on the reliability of the system need to be analyzed.

Reliability engineering shows that these solutions must use some form of redundancy, e.g., a degraded
function on a different core of a multi-core processor or a different ECU or even a fully redundant function on a
different ECU. Real-time requirements of the system as well as network latency and bandwidth are important
factors for the selection of the optimal pattern. Such constraints often have a large impact on the implementation
and can even influence the selection of algorithms that are used in advanced driver assistance systems, e.g.,
object recognition.

The keynote will show with examples how established concepts can be integrated into the automotive
domain using both well-known approaches such as AUTOSAR or standard diagnostic functions, as well as new
approaches such as service-oriented architectures based on automotive Ethernet.

Robert Leibinger studied Communication Electronics at Georg Simon Ohm University of Applied Sciences
in Nuremberg, Germany. After graduating as Diplom-Ingenieur he started at 3SOFT (now Elektrobit, EB) in
2001 as Software Engineer for medical systems. In 2002, he switched to the automotive team, working on the
OSEK operating system introduction at Daimler and serving as a consultant for several tier-1 suppliers regarding
OSEK software architectures.

Starting in 2007, Robert became team leader of the AUTOSAR MCAL driver integration team and main
contact to the microcontroller vendors. In 2011, he took over as the Product Manager responsible for the EB
Safety Products and Operating Systems. Since 2014, he is part of the Solution Manager Team. The team defines
and manages OEM-specific solutions using EB products and services. Robert is responsible for Daimler, JLR,
and Functional Safety Solutions from Elektrobit.

5

Back to the Roots: Implementing
the RTOS as a Specialized State Machine

Christian Dietrich, Martin Hoffmann, Daniel Lohmann
Department of Computer Science 4 - Distributed Systems and Operating Systems

Friedrich-Alexander University Erlangen-Nuremberg
{dietrich,hoffmann,lohmann}@cs.fau.de

Abstract— Real-time control systems, originally arisen from
simple, state-machine–based discrete elements, nowadays com-
prise sophisticated and manifold software-based algorithms con-
solidated with different applications on single, yet powerful
microcontrollers. Real-time operating systems were introduced to
handle this complexity by providing APIs to describe the desired
system behavior, however, at the cost of losing the clarity and
explicitness of state-machine–based representations.
This paper presents an approach to bring the RTOS back to the
roots of a hardware-implementable finite state machine. The con-
cept is based on a detailed static analysis of the application–kernel
interaction to distill the real-time operating system behavior and
find a FSM-based representation of the expected OS states and
transitions. We apply our idea to a realistic control application
based on an OSEK operating system, which results in a feasibly
sized programmable logic array implementation. Having such a
representation at hand might further leverage thorough system
verification and validation based on existing and mature FSM
analysis tools.

I. INTRODUCTION

Up to twenty-five years ago, embedded real-time control
systems were typically designed by electrical engineers as
finite state machines (FSMs) out of discrete elements. With
the advent of cheap 4-bit and 8-bit microcontrollers, software
has begun to take over the role of wiring discrete elements,
but the paradigm of implementing control systems as FSMs
remained. In comparison, the employment of a full-blown
real-time operating system (RTOS) as underlying system
software is a relatively young trend, triggered by the increasing
complexity of control applications and the necessity of hardware
consolidation. This is not always warmly welcomed by control-
system engineers [18, 15], which is understandable, as the
simple FSM paradigm has had some clear advantages: It is well
understood (especially by certification authorities) and there is a
large body of formal methods, heuristics, and tools available for
optimization and validation, which leads to highly specialized,
efficient implementations with low hardware requirements. On
the other hand, employing an RTOS and its concepts (e.g.,
tasks, events, resources) can significantly ease the development
of more complex control applications.

In this paper, we explore the possibility to get the best
of both worlds: The idea is, to keep the RTOS interface for
application development, but implement the RTOS itself (or
more precisely: its concrete instance) as a FSM. Thereby, it
becomes possible to use existing FSM-based analysis and
validation tools (also) on the RTOS – or to push the RTOS
completely “back into hardware” for perfect isolation.

This work was partly supported by the German Research Foundation (DFG)
under grants no. LO 1719/1-3 (SPP 1500) and SCHR 603/9-1

A: running
B: not ready

A: running
B: ready

pri(A) > pri(B)

A: ready
B: running

pri(A) < pri(B)

ActivateTask(B)

ActivateTask(B)
Fig. 1: The operating system’s state determines its behavior.
On system-call events, the OS changes this internal state.

A. Our Idea in a Nutshell

In theory, every computing system could be modelled as a
FSM. This also holds for the RTOS: Every syscall, triggered
synchronously by the application or asynchronously by an
interrupt, can be considered as a transition on the OS-internal
state (such as the ready list). The problem, however, is state
explosion, caused by complex states and indeterminism in the
control flow: Every syscall is a potential point of rescheduling
at which, depending on the dynamic state of the ready list,
some other task may be selected to continue execution.

The core idea of our approach is to reduce such indeter-
minism as far as possible at compile time: We exploit static
knowledge about the RTOS configuration and its semantics in
combination with a whole-system analysis across all control
flows of the application to figure how the RTOS is actually used.
Thereby, we derive a model on how the concrete application
interacts with the kernel. We replace parts of the traditional OS
implementation by an implementation of the derived model and
(partially) specialize each syscall in the application at caller
side to interact with the model.

The possible transitions on the kernel’s state (such as the
outcome of a scheduling decision) can thereby be greatly
reduced at compile time, in many cases even to exactly one: If
for instance, some task A triggers another task B for execution
(ActivateTask(B)), this is a potential point of rescheduling.
In a strictly priority-based system, however, the result can be
reduced (by considering the scheduler semantics) to exactly two
possible follow-up states: Depending on the relative priorities
of A and B, either A is running and B is set ready (as shown
in Figure 1) or vice versa. If we can further determine their
priorities by static analysis, the effective result of this concrete
syscall invocation can be reduced to exactly one follow-up
state.

7

ISR (priority: ∞) Task: T1 (priority: 1)

Task: Idle (priority: 0)

irq_enter(); Ê

computation() Ë

ActivateTask(T1); Ì

iret(); Í

computation(); Î

TerminateTask(); Ï

idle(); Ð

Application
Logic

System
Configuration

OSEK
Specification

S
pe

ci
fic

pe
rA

pp
lic

at
io

n ISR: –
T1: –
Idle: –

A

Initial State

ISR: –
T1: –

Idle: Ð
B

ISR: Ê

T1: –
Idle: Ð

C

ISR: Ë

T1: –
Idle: Ð

D

ISR: Ì

T1: –
Idle: Ð

E

ISR: Í

T1: Î

Idle: Ð
F

ISR: –
T1: Î

Idle: Ð
G

ISR: –
T1: Ï

Idle: Ð
H

ISR: Ê

T1: Î

Idle: Ð
I

ISR: Ë

T1: Î

Idle: Ð
J

ISR: Ì

T1: Î

Idle: Ð
K

ISR: Í

T1: –
Idle: Ð

L

IRQ E

IRQ E

State
Transition

Graph A
N

D
A

rr
ay

O
R

A
rr

ay

System Call Old State (State, Task)⊕ =

Hardware
Implementation

1
–A

2
Idle

B C

3
ISR

D E L

4
ISR

F
J
K

5
T1

H G I

StartOS() irq_enter()

iret()

A
ctivateTask()

iret()

ActivateTask()

Te
rm

in
at

eT
as

k(
)

irq_enter()

Symbolic
FSM

001
–

110
10

010
00

000
00

011
01

010 011

001 111

001

111

00
0

011

Encoded
FSM

(2
)O

bs
er

va
bl

e

K
er

ne
lS

ta
te

s

(2) FSM Minimization

(3) State Assignment

(3
)L

og
ic

M
in

im
iz

at
io

n

(1
)S

ys
te

m
S

ta
te

E
nu

m
er

at
io

n

Fig. 2: Methodic Overview. From the general OSEK specification, and one concrete application, we generate a specialized OS
implementation in several steps.

ISR (priority: ∞) Task: T1 (priority: 1)

Task: Idle (priority: 0)

irq_enter(); Ê

computation() Ë

ActivateTask(T1); Ì

iret(); Í

computation(); Î

TerminateTask(); Ï

idle(); Ð

CFG Computation System Call

Fig. 3: Application Logic of a small (complete) OSEK System

Of course, in real-world systems, not all kernel interactions
can be reduced that easily – especially interrupt-based alarms
are a significant source of indeterminism. Nevertheless, our
results show that the resulting state reduction makes it still
feasible to generate the RTOS instance as a simple FSM.

B. Structure of the Paper

We apply our idea to the OSEK [13] / AUTOSAR [1]
standards employed in the automotive industry. The RTOS
included in these standards is an event-triggered, priority-driven,
preemptive kernel. Its static configuration includes the number
of tasks, their priority, the events they can wait for, and the
resources they synchronize on using a static stack-based priority
ceiling protocol. Without loss of generality, we choose OSEK
as the running example throughout the paper.

In Figure 3, an example OSEK application is shown. It
consists of one ISR, one normal task, and the idle loop. On
an interrupt request (IRQ), the ISR may or may not activate
the task. After the task finished its execution, it terminates
and the OS executes the idle loop until the next IRQ occurs.
Based on this example, the following Section II presents the
static analysis and FSM construction. Finally, we provide
first preliminary results on applying our concept to a realistic
application scenario, and discuss further possible use cases.

' FSM
State

ISR: –
T1: –
Idle: –

A

Initial State

ISR: –
T1: –

Idle: Ð
B

ISR: Ê

T1: –
Idle: Ð

C

ISR: Ë

T1: –
Idle: Ð

D

ISR: Ì

T1: –
Idle: Ð

E

ISR: Í

T1: Î

Idle: Ð
F

ISR: –
T1: Î

Idle: Ð
G

ISR: –
T1: Ï

Idle: Ð
H

ISR: Ê

T1: Î

Idle: Ð
I

ISR: Ë

T1: Î

Idle: Ð
J

ISR: Ì

T1: Î

Idle: Ð
K

ISR: Í

T1: –
Idle: Ð

L

IRQ E

IRQ E

State Transition Abstract System State (System Call)

Abstract System State (Computational)〈Current Running Task〉

Fig. 4: State-Transition Graph for Figure 3. Each node is an
abstract representation of the system at a one point in time.

II. IMPLEMENTATION

We divide our approach into three distinguishable parts:
(1) The extraction of fine-grained interaction knowledge from
the application. (2) The transformation to an executable model
of the operating system. (3) The concrete implementation
of the executable model. Figure 2 depicts the information
flow of all three stages. With the system-state enumeration
(SSE), we extract the interaction as a state-transition graph
(STG) that enumerates all possible system states and their
execution sequences. We identify all visible kernel states and
construct a (minimized) FSM. As one possible implementation,
we assign binary vectors for inputs, states, and outputs of the
FSM and encode the minimized truth table as programmable
logic array (PLA) simulation in software. In the following, we
will investigate these steps in a greater detail.

8

A. System-State Enumeration

In the first step, we statically analyze the interaction of a
given application with an abstract OSEK operating system. We
already described this extraction step in previous work [5].
Therefore, we outline the system-state enumeration (SSE)
mechanism only briefly and focus on the extracted fine-grained
interaction knowledge, which is expressed as a STG.

The system-state enumeration combines three different
sources of information in a forward simulation of the system:
First, the system semantics, as defined by the OSEK specifi-
cation [13]. Second, the system configuration, as declared in
a domain-specific configuration language (OIL). And, third,
the application logic, which is extracted from the control-flow
graphs of the compiled application. The configuration already
contains coarse-grained information about the system, like
the set of tasks and their priorities. Together with the system
semantics, we calculate fine-grained knowledge to predict the
operating system’s decisions in presence of the given application
logic.

The SSE discriminates two block archetypes in the ap-
plication: computation and system-call blocks. In computation
blocks, the application does not issue system calls and therefore
the OS state cannot be changed synchronously. Nevertheless,
IRQs can only occur in computation blocks, and are modeled
as asynchronous activation of ISR proxy tasks. The other block
archetype contains system calls, which interact with the kernel
synchronously and modify its state.

The central data structure for the SSE is the abstract system
state (AbSS), which captures information about a system at a
given point in time. For each task, an AbSS includes the ready
flag, the current priority, and which block should be executed
next in a task’s context. Except the initial state, each AbSS
has one task marked as the currently running task. In Figure 4,
each node represents a simplified AbSS for the example system
from Figure 3. For each task (interrupt-service routines and
idle task included), the node contains the blocks to be executed
next, while the currently active task is highlighted.

The SSE discovers all possible AbSSs for the given
application, by repeated application of a systemSemantic()

function on already discovered states until no new states appear.
This transition function evaluates the block of the currently
running task, calculates the block’s influence on the current
system state, and emits one or more follow-up states. For
example, in Figure 4 only AbSS H executes block Ï next.
Since block Ï contains a TerminateTask() system call, the
transition function emits one follow-up state B with T1 marked
as not-ready. Furthermore, the transition function applies the
OSEK scheduling rules and marks the idle task as running. All
discovered AbSSs and their follow-up states are connected in
the state-transition graph (STG).

interrupt-service routines (ISRs) are modeled with proxy
tasks, which are assigned the highest possible priority and are
executed under interrupt blockade. They are activated by the
transition function within computation blocks. In Figure 4, the
idle state B has two follow-up states: first, a self loop, since it
is its own CFG successor. Secondly, the idle state can proceed
to state C . This transition is the result of a virtual IRQ and
the ISR entry block Ê will be executed next.

The STG contains all possible state–state transitions for
the given application. Depending on the application and its
structure, it can become very large, but remains always finite.
It is important to note, that each AbSS in the graph represents
the system immediately before a block is executed. For a more
detailed discussion on the SSE and mechanisms to ease the
state explosion we refer to our previous work [5].

B. Kernel-Visible System States

As desired, the STG subsumes the application’s control
flow, as well as the kernel’s scheduling decisions. We aim
to implement only the OS’ behavior. Therefore, we have to
separate state transitions into application transitions and OS
transitions. The application transitions are implemented by the
application itself, in terms of branches, loops, and function calls.
They are executed directly by the processor. Our specialized
kernel should only implement the OS transitions, since only
those are dictated by the OSEK specification.

As already said, each state represents the system right before
a certain block is executed. Some states execute a computation
block next, some a system-call block. Only the latter ones,
system-call states, will ever be visible to an OS implementation.
Therefore we partition all AbSSs in the STG into regions of
states which are indistinguishable from the kernel’s perspective.
These regions are connected subgraphs within the STG; system-
call states can only occur as leaf nodes in a region. In Figure 4,
the states G , H , and I form such an region. This region
cannot be extended to AbSS F , since F is a system-call state
and must, therefore, be a leaf node in a different region.

These regions are constructed by repeated merging of initial
minimal regions: Initially, each AbSS is located in its own
region. For each state in a region, we merge the successor
regions into the region, if the originating state is computational.
Furthermore, we merge a predecessor region, if the preceeding
state is a computational state. This process is repeated until no
further changes happen.

With this construction, all states with a successor outside
their region are system-call states. Since the OS state is only
modified at the region’s border, all inner states, which are
computational, have the same task marked as running.

From these regions, we construct the initial finite state
machine (FSM) for the kernel: Each region corresponds to a
state in the FSM. An FSM transition from state A to state B
is present, if a system-call state in region A can proceed to
region B. The input event for this transition is the execution of
the system-call block. Each FSM state exposes the currently
running task as an output. It is noteworthy, that each system-
call block results in a different FSM input signal, even if they
invoke the same system service.

Figure 5 shows the resulting state machine with the AbSS
regions drawn next to each FSM state. The constructed FSM
matches the observation that an OS is a FSM with system calls
as inputs and the currently scheduled task as output. In our
construction, the resulting FSM is a Moore machine.

C. State-Machine Minimization

The resulting FSM already exhibits the required kernel
transitions when triggered by external events and system calls.

9

1
–A

2
Idle

B C

3
ISR

D E L

4
ISR

F
J
K

5
T1

H G I

StartOS() irq_enter()

iret()

A
ctivateTask()

iret()

ActivateTask()

Te
rm

in
at

eT
as

k(
)

irq_enter()

Fig. 5: Symbolic Finite State Machine with abstract system
state next to each state.

Nevertheless, the number of states and transition edges is
not minimal yet. Minimization of state machines is a well
covered and long standing topic [12, 8]. Therefore, we will
only investigate on the specifics for our operating-system FSM.

For the minimization of FSMs, states are grouped into
equivalence classes (ECs), where each state within exposes the
same observable behavior. From each equivalence class, a new
state in the minimized FSM is generated, and transitions are
added accordingly to the EC connections.

Our FSM is not an acceptor for a formal language.
Furthermore, we are allowed to remove triggers from the system
by wiping out system-call sites. We only have to ensure that
the scheduling sequence remains the same. Therefore, we adapt
the EC construction to fit these requirements.

First, we demand that each state in an EC results in the
same current running task. Furthermore, the set of possible
follow-up ECs must be equal for all states within an EC. The
follow-up ECs of an state are those ECs which are reachable in
the FSM when following the transitions. We used an adapted
Moore algorithm [12] to find the most coarse EC partition of
the FSM which fits both requirements.

In the minimized FSM, many transitions are self loops. If all
transitions that are triggered by one system-call block are self
loops, we wipe out the system-call site. The specific system-call
signal never transfers the system into an observable different
state; it is useless for our implementation. In the example (see
Figure 5), the FSM is already minimal after its construction,
but in general the size of FSM decreases significantly. With
the FSM minimization, we have completed the construction of
the executable model.

D. State Assignment and Logic Minimization

The last step is the implementation of the executable
model and its linking to the application. The possibilities to
implement the calculated FSM are endless. We chose to present
an approach directed towards an OS implementation that fully
resides in hardware. This would result in a specialized OSEK
implemented as a processor extension.

However, while this is still a topic of further research, we
currently provide a software simulated programmable logic
array implementation of the generated FSM. While dispatching,

001
–

110
10

010
00

000
00

011
01

010 011

001 111

001

111

00
0

011

Fig. 6: Finite State Machine with Assigned Binary Vectors for
Inputs, Outputs, and State Encodings

A
N

D
A

rr
ay

O
R

A
rr

ay

System Call Old State (State, Task)⊕ =

Fig. 7: Implementation as Programmable Logic Array

interrupt handling, and timer control is still implemented
traditionally, the OS logic is already suited for a hardware
implementation.

One main challenge of implementing a FSM in hardware
is the selection of bit vectors for inputs, states, and output
signals. This encoding largely influences the minimal required
complexity of the hardware implementation. Luckily, many
methods were already proposed to solve this problem for
different hardware designs [17, 4, 16].

We decided to use the NOVA program [17] to choose the
encoding of our FSMs. The driving factor of this decision
was the availability of the NOVA source code. NOVA targets
optimal encoding for two-level logic implementations. NOVA
chooses input and state encoding for our FSM, while we choose
the output encoding arbitrarily. The result of the assignment
process is shown in Figure 6.

From the FSM and the encoding of inputs, states, and
outputs, we generate a truth table with one line for each
transition. Each line consists of the input word, the current
state, the next state, and the desired output. To achieve an
efficient implementation of this truth table in hardware, we use
the ESPRESSO [2] heuristic logic minimizer.

From the minimization result, a PLA implementation can
be derived in hardware. Figure 7 shows the final OS execution
model for our running example. The resulting component takes
the current system-call–block number and the saved system
state as inputs. Each line in the AND array checks a certain

10

disable_interrupts();

OS_state, task = fsm_step(0b000, OS_state);

switch_to(task);

// Never returns, IRQ enable in next task

Í
TerminateTask() called from T1

Fig. 8: TerminateTask() implementation called from T1.

TABLE I: Size of graphs, machines, and implementation after
each step for the I4Copter task setup (11 tasks, 3 alarms, 1
ISR, 1 Resource).

Step w/o Ann. w/ Ann.

State-Transition Graph [S(T)] 1,563,169 (2,098,236) 20,063 (23,876)
Symbolic FSM [S(T)] 407,530 (942,597) 6,242 (10,055)
Minimized FSM [S(T)] 2,938 (8,822) 667 (1,212)

Two-Level Logic [AND Terms] 5,144 728
Software PLA Table [Bytes] 35,798 4,566

bit pattern and emits a logic 1, if the pattern matches. The OR
array decides which outputs of the AND array will enable a
bit in the output word. In our case, the output word consists
of a new FSM state and the currently running task.

In our current implementation, we simulate this PLA in
software by iterating over all lines in the ESPRESSO output.
We use the task output word as an input for the dispatcher.

We replace every system-call site with a specialized code
fragment that calls the FSM. Figure 8 exemplifies the imple-
mentation of the system-call block Í. The fsm_step() function
contains the PLA simulation, while the bitstring 000 identifies
the call location exactly.

III. PRELIMINARY RESULTS

Currently, we do not produce hardware components from
the execution model, but use a (slow) PLA software simulation.
Therefore, we will only show some preliminary results for a
realistic scenario to give an impression of the general feasibility.

We implemented the presented approach for the dOSEK [7]
system generator1. As evaluation scenario, we use a realistic
real-time workload. We revive a setup, already presented
in previous work [6], resembling a real-world safety-critical
embedded system in terms of a quadrotor helicopter control ap-
plication. The scenario consists of 11 tasks, which are activated
either periodically or sporadically by an interrupt. In total, 4
asynchronous events can trigger within computation blocks.
Inter-task synchronization is done with OSEK resources and a
watchdog task observes the remote control communication.

In the first column of Table I, the sizes of the system at
different steps is given. While the STG has more than 1.5
million states and 2 million transitions, the (unminimized)
FSM already reduces the size significantly. The minimization
of the FSM removes 99.28 percent of the internal states.
The state assignment and the logic minimization achieve a
implementation of the execution model with 5,144 AND
terms (rows in the PLA). In our software implementation,

1Code is released as free software at https://github.com/danceos/dosek

the minimized truth table occupies 35,798 bytes of read-only
memory, while the implemented FSM requires 4 bytes of
volatile memory for storing the current state.

In the second column of Table I, we show the results for
the same system, but with additional annotations for the SSE
analysis. We declared four task groups. Each group handles a
different job in the system, which is released through an external
signal (alarm or IRQ). The annotation forbids the retrigger of
the signal while not all tasks of a group have finished their
execution. This annotation is a qualitative statement that the
deadline of the job is smaller than its period. This qualitative
statement, which has to be supplied by the real-time developer,
was already described in previous work [5].

With the annotation, the system has a 98.72 percent smaller
STG, which, of course, was the intention of the annotation in the
first place. Surprisingly, the state count of the minimized FSM
shrinks only by 77.3 percent with annotations. This smaller
decrease factor indicates an unnecessary edge redundancy in
the STG without annotations.

IV. DISCUSSION

In this paper, we derive an OS instance specifically tailored
towards a given application. We used the OSEK API as a
markup language to annotate the desired task orchestration
and interaction. When we perceive the system configuration
and placement of system calls as the abstract intentions of
the real-time engineer, we can switch our focus from the
traditional way of implementing the specification, to realizing
only the developer’s intended behavior. Encoding the minimized
FSM in hardware is only one of many possible options. More
importantly, this demonstrates the expressive power of the
STG and the various FSMs as immediate representations of
the system. Furthermore, pushing the OS logic fully into the
hardware, we achieve perfect isolation. Not a single instruction
would be needed for the OS execution. Only special opcodes
would be reserved for giving inputs to the hard-coded FSM.

Apart from that, a FSM representation is not only useful
for implementing the desired OS logic, but can also be used
as watchdog for an off-the-shelf OSEK system. Fed with the
same inputs, the actual OS must expose the same behavior.
Combined with a WCET-based intrusion detection [19], an
effective security scheme could be derived from static analysis
of the system behavior.

Besides implementing the system behavior, the immediate
representations make the actual kernel behavior accessible to
other tools: The minimized FSM representation can be used to
test whether the behavior of one real-time system is equivalent
to or partially embedded in another system.

Our immediate representations may also assist the ver-
ification of tailored OS implementations: If we prove the
equivalence of STG (or FSMs) to the OSEK standard for
a certain application, and furthermore show the equivalence
of the actual implementation to the STG, we get an OSEK
implementation that is verified for a certain application; even
in the presence of extensive system tailoring.

V. RELATED WORK

The RTSC [14] that significantly inspired this work also uses
the OSEK API as markup language to annotate the desired real-

11

time behavior. It translates the system from an event-triggered
to a table-driven, time-triggered system. Unlike our approach,
their immediate representation is flow insensitive.

Chen and Aoki [3] use a formal model of OSEK and model
checking techniques to automatically generate test cases for
OSEK/OS. Their approach does not incorporate information
about the configuration or the inner structure of a specific
application, but emits whole applications as test-cases. Our
application specific FSM could be used to generate application-
specific event sequences to test the application, as well as the
kernel.

In the sensor-network community, state machines are
recognized as mean to compactly implement application and
control logic. Kim and Hong [9] proposed state machines as
well-suited paradigm for sensor nodes. Their SenOS kernel is
an executor for transition tables, where each task comes with
its own table. In contrast to our approach, the tables are not
derived automatically.

Kothari, Millstein, and Govindan [10] proposed an auto-
matic derivation of FSMs from TinyOS applications through
symbolic execution. They derived “user-readable FSMs” in
order to make the application logic more comprehensible to
developers. As they state, their interrupt semantic is incomplete.
Additionally, TinyOS has a simpler execution model than OSEK,
since tasks have no wait states and only execute in a run-to-
completion manner. Also, all their inferred FSMs do not exceed
16 states.

There are many projects implementing parts of the (or the
whole) operating system in hardware. As one example, the
ReconOS project [11] extends the multithreaded programming
model across the hardware/software boundary. ReconOS pro-
vides a unified synchronization and communication API for
hardware, which is executed on an FPGA, and software threads.
Nevertheless, ReconOS is not tailored explicitly to fine-grained
application logic, but mimics a generic, POSIX-like, interface.

VI. CONCLUSION

Many years of embedded real-time control engineering
piled more and more abstraction layers on top of each other to
ease the development process at the cost of complex software
stacks and operating systems. In this paper, we presented an
approach to descend these layers from an abstract RTOS-based
control application back to the roots of an FSM-based PLA.
Preliminary results already show the feasibility of our approach
on the example of a realistic real-time application. Distilling the
RTOS behavior not only allows to push it back into hardware,
but might also leverage profound verification and validation of
the system as a whole.

REFERENCES

[1] AUTOSAR. Specification of Operating System (Version 5.0.0). Tech. rep.
Automotive Open System Architecture GbR, Nov. 2011.

[2] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T.
McMullen, and Gary D. Hachtel. Logic Minimization Algorithms for
VLSI Synthesis. Norwell, MA, USA: Kluwer Academic Publishers, 1984.
ISBN: 0898381649.

[3] Jiang Chen and Toshiaki Aoki. “Conformance Testing for OSEK/VDX
Operating System Using Model Checking”. In: 18th Asia-Pacific
Software Engineering Conference (APSEC 2011). (Ho Chi Minh). Los
Alamitos, CA, USA: IEEE, Dec. 2011, pp. 274 –281. ISBN: 978-1-
4577-2199-1. DOI: 10.1109/APSEC.2011.26.

[4] S. Devadas, Hi-Keung Ma, A.R. Newton, and A. Sangiovanni-
Vincentelli. “MUSTANG: state assignment of finite state machines
targeting multilevel logic implementations”. In: Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 7.12 (Dec.
1988), pp. 1290–1300. ISSN: 0278-0070. DOI: 10.1109/43.16807.

[5] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. “Cross-
Kernel Control-Flow-Graph Analysis for Event-Driven Real-Time
Systems”. In: 2015 ACM SIGPLAN/SIGBED Conf. on Languages,
Compilers and Tools for Embedded Systems (LCTES ’15). (Portland,
Oregon, USA). New York, NY, USA: ACM, June 2015. DOI: 10.1145/
2670529.2754963.

[6] Martin Hoffmann, Christoph Borchert, Christian Dietrich, Horst
Schirmeier, Rüdiger Kapitza, Olaf Spinczyk, and Daniel Lohmann.
“Effectiveness of Fault Detection Mechanisms in Static and Dynamic
Operating System Designs”. In: 17th IEEE Int. Symp. on OO Real-Time
Distributed Computing (ISORC ’14). (Reno, Nevada, USA). IEEE, 2014,
pp. 230–237. DOI: 10.1109/ISORC.2014.26.

[7] Martin Hoffmann, Florian Lukas, Christian Dietrich, and Daniel
Lohmann. “dOSEK: The Design and Implementation of a Dependability-
Oriented Static Embedded Kernel”. In: 21st IEEE Int. Symp. on
Real-Time and Embedded Technology and Applications (RTAS ’15).
Washington, DC, USA: IEEE, 2015.

[8] John Hopcroft. An n logn algorithm for minimizing states in a finite
automaton. Tech. rep. Computer Science Department, University of
California, 1971.

[9] Tae-Hyung Kim and Seongsoo Hong. “State Machine Based Operating
System Architecture for Wireless Sensor Networks”. In: Parallel and
Distributed Computing: Applications and Technologies. Ed. by Kim-
Meow Liew, Hong Shen, Simon See, Wentong Cai, Pingzhi Fan, and
Susumu Horiguchi. Vol. 3320. LNCS. Springer Berlin Heidelberg, 2005,
pp. 803–806. ISBN: 978-3-540-24013-6. DOI: 10.1007/978- 3- 540-
30501-9_158.

[10] Nupur Kothari, Todd Millstein, and Ramesh Govindan. “Deriving State
Machines from TinyOS Programs Using Symbolic Execution”. In: IPSN

’08: 7th Int. Conf. on Information Processing in Sensor Networks.
Washington, DC, USA: IEEE, 2008, pp. 271–282. ISBN: 978-0-7695-
3157-1. DOI: 10.1109/IPSN.2008.62.

[11] Enno Lübbers and Marco Platzner. “ReconOS: Multithreaded Program-
ming for Reconfigurable Computers”. In: ACM Trans. on Embedded
Computing Systems (TECS) 9.1 (Oct. 2009), 8:1–8:33. ISSN: 1539-9087.
DOI: 10.1145/1596532.1596540.

[12] Edward F. Moore. “Gedanken-experiments on sequential machines”.
In: Automata studies. Annals of mathematics studies, no. 34. Princeton
University Press, Princeton, N. J., 1956, pp. 129–153.

[13] OSEK/VDX Group. Operating System Specification 2.2.3. Tech. rep.
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf, visited 2014-09-29.
OSEK/VDX Group, Feb. 2005.

[14] Fabian Scheler and Wolfgang Schröder-Preikschat. “The RTSC: Lever-
aging the Migration from Event-Triggered to Time-Triggered Systems”.
In: 13th IEEE Int. Symp. on OO Real-Time Distributed Computing
(ISORC ’10). (Carmona, Spain). Washington, DC, USA: IEEE, May
2010, pp. 34–41. ISBN: 978-0-7695-4037-5. DOI: 10.1109/ISORC.2010.
11.

[15] Jim Turley. “Operating Systems on the Rise”. In: embedded.com (June
2006). http://www.eetimes.com/author.asp?section_id=36&doc_id=
1287524. URL: http://www.eetimes.com/author.asp?section_id=36\
&doc_id=1287524.

[16] D. Varma and E.A. Trachtenberg. “A fast algorithm for the optimal state
assignment of large finite state machines”. In: Computer-Aided Design,
1988. ICCAD-88. Digest of Technical Papers., IEEE International
Conference on. Nov. 1988, pp. 152–155. DOI: 10.1109/ICCAD.1988.
122483.

[17] T. Villa and A. Sangiovanni-Vincentelli. “NOVA: State Assignment of
Finite State Machines for Optimal Two-level Logic Implementations”.
In: 26th ACM/IEEE Design Automation Conference. (Las Vegas, Nevada,
USA). DAC ’89. New York, NY, USA: ACM, 1989, pp. 327–332. ISBN:
0-89791-310-8. DOI: 10.1145/74382.74437.

[18] Collin Walls. The Perfect RTOS. Keynote at embedded world ’04,
Nuremberg, Germany. 2004.

[19] Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, and Sibin
Mohan. “Time-based Intrusion Detection in Cyber-physical Systems”.
In: 1st ACM/IEEEInt. Conf. on Cyber-Physical Systems. ICCPS ’10.
Stockholm, Sweden: ACM, 2010, pp. 109–118. ISBN: 978-1-4503-0066-
7. DOI: 10.1145/1795194.1795210.

12

1

Partial Paging for Real-Time NoC Systems
Adrian McMenamin and Neil C. Audsley

Department of Computer Science, University of York, UK
email: [acm538,neil.audsley]@york.ac.uk

Abstract—In multiprocessor Network-on-Chip (NoC) architec-
tures it is common that CPU local memory space is limited,
with external memory accessed across the NoC infrastructure.
Clearly it is imperative for real-time performance that local
memory is used effectively, with code and data moved from
external memory when required. One common approach is for
the local memory to be comprised of two levels, ie. cache and
memory. Software mechanisms are used to move code and data
between local memory and external memory, eg. scratchpad
mechanisms. In this paper we explore the issue of using paging to
supplement this approach, ie. a hardware mechanism to automate
movement of code and data between external memory and per-
CPU local memory within the NoC. This has wide-ranging
potential benefits in from efficiency and real-time performance,
through application programmability (ie. potential support of
logical address spaces). However, the limited amounts of local
memory raise the problem of thrashing. Therefore, we examine
the effect of limiting thrashing effects by only loading the parts
of pages that are referenced (rather than the entire page).
The approach is assessed against a real-time video application,
considering different page replacement policies.

I. INTRODUCTION

Both transistor scaling [1] and power density limitations [2]
have motivated the move towards multiprocessor architec-
tures. However, it is often not possible to provide the many
CPUs within a chip large local memories. In multiprocessor
Network-on-Chip (NoC) architectures it is common that CPU
local memory space is limited, with external memory accessed
across the NoC infrastructure - eg. Tilera [3], Intel SCC [4]
and Epiphany [5].

The management of this hierarchical memory architecture
efficiently so that real-time performance can be maintained
is challenging. We note that this is a historic problem –
CPUs speeds have generally increased faster than memory
(and bus) speeds, forming a memory bottleneck as systems
had to wait excessive times for new code and data to be loaded
from slower layers in the memory hierarchy. If management
of the memory hierarchy is not sufficient, then the overall
architecture will spend more time moving code and data
between local and external memory than actually computing
– the phenomenon of “thrashing” [6].

The most efficient way of populating this local, faster,
memory uses the optimal paging algorithm (OPT) – pages
with the longest reuse distance are discarded [7]. OPT is
“clairvoyant” as it relies on knowledge of future events. While
occasionally this knowledge is available to programmers of
embedded devices, a more general solution to the problem
of thrashing was demonstrated by Denning’s “working set”
method, which, relying on the strong tendency of computer
programs to show locality of reference in the short-term,

stipulates that the most effective practical paging policy will
be that which retains in memory those pages referenced in the
past within a pre-defined time, called the working set window
[8]. In fact, Denning’s algorithm has proved to be difficult or
impractical to implement, but most general computing devices
and operating systems use an approximation, typically some
form of “least recently used” (LRU) algorithm.

This paper explores the issue of using paging within NoC
architectures. CPUs within the NoC typically have a cache and
a small bank of SRAM. Large DRAM banks and permanent
storage are available externally, accessed via the NoC mesh
[3], [4]. Memory resources on the chip are limited — but time
to access external memory is much higher than local memory
(partly due to contention over the shared NoC mesh). As a
consequence the problem of thrashing reappears. Therefore
we examine the effect of limiting thrashing effects by only
loading the parts of pages that are referenced (rather than the
entire page). The approach is assessed against a real-time video
application, considering different page replacement policies.

In section 2 we review relevant related work. In section 3
we model the performance of conventional paging systems.
Sections 4 and 5 introduce a new approach where only part of
a page is loaded. Section 6 offers a discussion and conclusions.

II. RELATED WORK

The wide variety of parallel programming frameworks is
perhaps a testimony to the essential difficulty of programming
parallel systems. The problems, such as the limitation imposed
by the need for at least some code to be serial - “Amdahl’s
Law” [9] - as well as the difficulties of maintaining coherence
and efficiency across a large number of centres of execution
are familiar. They are joined by the need to master a novel
technology when considering NoC systems. As the authors
of [10] state, it has been difficult to “make it easy to write
programs that execute efficiently on highly parallel computing
systems.” Perhaps this is one reason why research has tended
to concentrate on the use of NoCs as specialist accelerators
[11]. This is also true of researchers’ discussions of virtual
memory use on NoCs. For instance, in [12] the authors discuss
an efficient caching scheme to accelerate sorting.

Other researchers have examined how memory management
for GPUs, which, while being “single instruction, multiple
data” devices unlike the “multiple instruction, multiple data”
devices we are considering, have much in common with NoCs.
In [13] it is noted that OPT is not, in fact, optimal when
the size of the working set of the data is much greater than
the available local memory capacity. In [14] a method of
improving cache performance by dynamically altering memory
reuse distance is discussed.

13

2

Recent research into paging systems has concentrated on
large memory systems. While, in [15], it was shown that
smaller page sizes could reduce the fault count, more recent re-
search, such as [16], has emphasised that, with large quantities
of physical memory (relatively) cheaply available, minimising
the cost of translation between virtual and physical addresses
larger page sizes are better options to speed up computing in
common use domains.

In [17] alternatives to traditional hardware designs to sup-
port virtual memory are explored and a model proposed that
saves power and adds flexibility to operating system design.

III. MODELLING THE PERFORMANCE OF PAGING
SYSTEMS

Standard paging approaches move whole pages of code and
data en bloc the memory hierarchy. This allows a logical
address space to be presented to the application programmer –
the familiar abstraction of a single and unified address space.
However, this is not common within real-time systems (and
largely unsupported on existing NoCs). The remainder of this
section considers a standard real-time application and assesses
its performance with respect to paging.

The x264 program from the PARSEC benchmark suite [18]
was used. It was configured to run with a maximum of 16
threads (as we proposed to model a system with 16 cores) –
note 18 threads in total were created, though simulations run
no more than 16 at once.

Running the benchmark under a modified version of the
Valgrind Lackey program [19], we could separate the memory
references of each thread of execution and classify every such
reference as one of the following:

• instruction – like a load sees a memory location is
accessed but not modified;

• store – where a memory location is written to;
• modify – a location is first accessed and then written to

in a single interaction.
Whilst every instruction has an initial impact similar to that
of a load (in that the address of the instruction itself must
be accessed), an instruction may also cause consequent loads,
stores or modifies. Additionally, the point at which each new
thread was released was marked.

The modified Lackey program produced an XML stream
recording every memory access by every thread in time order.
This is then used to model different models of on- and off-chip
memory interaction and storage. The XML stream recorded
the order in which memory addresses were accessed by each
thread but contained no specific timing information and thus
did not record any delays for thread synchronisation - so
by its nature any processing of the XML could only be an
approximation of how different paging policies would behave.

The modelled hardware system has 16 cores, each with
32KB of local memory (forming a 512KB pool of on-chip
memory), this was loosely based on the Tilera example [11].
We assumed that all on-chip memory was immediately (i.e.,
in one “tick”) available to all cores (i.e., we ignored both the
issues of on-chip synchronisation and on-chip communication
delays) and assumed that a standard cache line of external

Figure 1. OPT and LRU compared

memory (128 bits, or 16 bytes) was available after a delay
of 100 cycles/ticks. So, for instance, a 4KB page would take
25,600 ticks to load. The experiment does not model caching
behaviour or the costs of writing-back modified pages as these
aspects do affect the broad behaviour of the NoC model when
using paged memory.

Our central finding was that FIFO, LRU (including LRU 2Q
varieties) and even OPT replacement policies all showed the
characteristics of thrashing as the system became memory I/O
bound. Additional CPUs did not speed the system up, rather
slowing each individual CPU as they were constrained by the
small overall pool of memory1.

Figure 1 shows the simulated performance of OPT and LRU
for 4KB pages and also the performance of an LRU algorithm
with 2KB page sizes2. The number of lines processed indicates
progress in completing the benchmark, while the simulated
ticks is an analogue for time. It will be seen that although
using 2KB page sizes increases performance (despite resource
restraints), all the lines, including that for OPT, display a
common characteristic - that the rate of progress becomes
constant. As Figure 2 shows, applying more CPUs to the
task does not speed up its execution: the lines processed
per simulated tick remaining constant even as more threads
are being executed and more processors are being used. The
graph shows that the simulated system is memory I/O bound:
additional CPUs cannot squeeze any more computing power
from the system as they simply fight each other for access to
the limited memory pool.

1The model employed barrier synchronisation and if two threads both
requested the same page both would gain access to it when it loaded on
the earliest request. Threads simply blocked when waiting.

2To compensate for the additional size and cost of page tables that 2KB
pages would require we allocated 30KB per core and increased the access
time to 2 ticks for a present page.

14

3

Figure 2. OPT algorithm: more processors do not speed execution

Figure 3. Logarithmic plot of the frequency of different sizes of contiguous
memory allocations

IV. PARTIAL PAGING APPROACH

Figure 3 shows small (16 bytes or fewer) contiguous
memory allocations were orders of magnitude more likely than
larger allocations. Since pages were being pushed out quickly,
we tested the proposition that a partial paging allocation
policy – pages are populated one cache line (ie.16 bytes) at a
time – could improve performance.

In this case we used 2KB pages and 30KB per core, with
a cost of four ticks to access a present memory block and we
tracked whether a given 16 byte block was present through a
bitmap. The result, seen in Figure 4, was improved perform-
ance: as more threads are executed and additional CPUs used,
the processing rate increases – mitigating thrashing.

Figure 4. Partial paging: additional processors speed execution

A. Testing the Partial Paging Approach

The partial paging approach was tested using the OVPSim
instruction accurate simulator [20] with MicroBlaze soft CPU
[21] which delivers one instruction per cycle, enabling instruc-
tion count to be a good approximate to cycle counting.

1) Unmodified Microblaze: Each thread’s XML output
from the modified Valgrind Lackey was converted into Micro-
Blaze memory load and write instructions and was executed
using simple page tables. In an unmodified MicroBlaze such
code will continue to run (assuming no other problems) so
long as a translation lookaside buffer (TLB) is able to translate
the virtual address being accessed into a physical address.
If address was not translatable by a TLB then an exception
would be raised – ie. when the memory being accessed is not
available “locally” (as though in the on-chip pool) and so must
be copied from a “remote” address.

Three TLB entries were “pinned” (ie. made permanent
and unchangeable), so ensuring the code providing basic VM
services and the generated code, the page tables and the page
frames would always have appropriate translations.

The system was configurable, eg. to have more page frames
of physical memory than TLB entries. However within this
paper we focus on the case where the number of page frames
of physical memory was the same as the number of TLB
entries (up to the maximum supported 64 TLB entries). In
this case every TLB miss corresponds to a “hard fault” – ie. it
requires a new page to be loaded into physical memory and,
in all cases after the system has used all available physical
memory, the eviction of a currently present page3.

The demand paging FIFO page replacement system was
tested to determine the fault count of 4KB and 1KB pages
(the two smallest sizes supported on the MicroBlaze). As can

3The MicroBlaze has no timing device within OVPSim with so eviction
policies followed a “first-in, first-out” (FIFO) policy as opposed to the more
efficient CLOCK-type LRU approach

15

4

Figure 5. Fault count for traditional paging approach for different page sizes

Figure 6. Instructions required to complete task

be seen in Figures 5 and 6, for a fixed amount of local memory,
the 1KB pages delivered a lower fault count and required many
fewer instructions to be executed to complete the task.

On each page fault that led to an eviction, as well as
executing code to manage the page tables, the system was
required to write back an evicted page as well as copy the
incoming page into memory designated as holding a “local”
page frame - no DMA functions were available on this simple
model and so this was all carried out in assembly loops that
copied memory from one address to another. As can be seen
in Figure 6, this made the 1KB page model substantially
more efficient than even the lower fault count along might
suggest: there were fewer faults and each cost less to handle.
At this point we made no allowance for the cost of transferring

TLBs Instructions: traditional paging Instructions: alternative paging
4 157,493,205 n/a
8 20,219,450 18,545,020

12 12,651,719 14,717,082
16 9,930,702 13,457,998
20 8,215,518 12,614,663
24 7,457,021 12,270,902
28 6,844,912 12,079,901
32 6,468,068 11,834,218
36 6,140,900 11,717,928
40 5,329,413 11,558,408
44 4,226,715 10,619,623
48 3,897,005 10,453,064
52 3,651,137 10,315,069
56 3,322,324 10,092,510
60 3,296,123 10,076,433
64 2,991,081 9,910,243

Table I
INSTRUCTION COUNTS FOR “TRADITIONAL” AND “ALTERNATIVE” 1KB

PAGING SYSTEMS

memory from a “remote” to a “local” address, merely counting
the number of instructions required to execute the copy.

2) Microblaze with Partial Paging: The OVPSim Micro-
blaze code was modified to include partial paging – ie. pages
loaded in 16 byte blocks. Now, while a TLB miss exception
would be thrown in the normal way if an address translation
was not available, each reference to an address mapped to
“local” memory would raise an interrupt. The interrupt handler
then would check a bitmap to see if the addressed 16 byte
block has been loaded from remote memory to local memory.
If it has no further action was taken and the interrupt handler
returns, if it has not then a “small fault” is raised and the
appropriate 16 byte line loaded, bitmap updated, and the
interrupt handler returns. This means a substantial code block
was executed on every memory reference, though the code
executed when the fragment being accessed was present was
significantly shorter than when it was missing. Hard faults still
occur and in most cases (after the initial period when empty
physical pages are being written to) require a page write-back
(again, we did this for all pages) as well as a low cost bitmap
reinitialisation. In such cases, only those 16 byte lines marked
as present are written back. On a hard fault only the initially
requested 16 byte block was loaded.

As Table I4,5 shows, comparisons show higher instruction
counts for all but the smallest amounts of available local
memory. However instruction counts do not provide a full
comparison between the two systems. Although partial paging
generally executes more instructions to complete the task,
it also loads smaller amounts of memory. Each fault on a
1KB traditional system requires a minimum of a 1KB page
load - typically costing somewhere between 4800 cycles (if
global memory is 75 cycles “away”) and 8000 cycles (if global
memory is 125 cycles per 16 byte cache line away).In contrast
the alternative system only needs to load those lines it requires.

Partial paging shows superior performance when the timing

4For the traditional system three TLBs are pinned so, for instance 16 TLBs
leaves 13KB for physical pages, for the alternative system four TLBs are
pinned and 16 TLBs leaves 12KB for physical pages

5The bitmaps were pinned in memory, so losing a further TLB entry and
so the alternative system needs a minimum of 5KB or 5 TLBs

16

5

Figure 7. Estimated total cycles required by different paging algorithms: in
each case the top line is for global memory 125 cycles away and the bottom
75 cycles away

TLBs in use (Hard) Faults Instructions
8 88,875 249,531,853

16 71,404 222,944,264
24 63,276 205,776,575
32 56,527 194,463,472
48 47,217 180,191,027
64 40,905 171,472,116

Table II
FAULT AND INSTRUCTION COUNT RESULTS FOR ILLUSTRATIVE LOW

LOCALITY LOAD (TRADITIONAL PAGING)

is normalised. Figure 7 illustrates: the estimated total cycles
required if global memory access cost is 75, 100 and 125
cycles per 16 byte cache line is compared for the two al-
gorithms. Here partial paging requires fewer cycles (for this
memory access pattern) when local memory is around 32KB
or less. The flat performance profile of partial paging suggests
this is dominated by the interrupt handler code rather than the
number of faults (completing the task requires a set number
of memory accesses and so the handler is run a set number
of times regardless of the number of TLB entries in use).
Improving the performance of this part of the process, such
as making the checking of the bitmap a sub-cycle task in
hardware could dramatically increase the advantage of the
alternative approach.

TLBs in use Hard and small faults Instructions
8 113,150 108,389,860

16 112,668 108,556,316
24 112,134 109,586,781
32 111,594 110,708,748
48 110,261 114,716,046
64 108,769 118,125,334

Table III
FAULT AND INSTRUCTION COUNT RESULTS FOR ILLUSTRATIVE LOW

LOCALITY LOAD (PARTIAL PAGING)

It should be further noted that, as we did not differentiate
between page types6, we did not account for the cost of
writing back pages in this comparison, beyond the instructions
required to be executed: such a count would certainly increase
the advantage of partial paging. For instance, with 32 TLB
entries, the average page has 144 bytes loaded on eviction and
so only nine 16 byte blocks would need to be written back.
The use of instruction count for comparison does account for
the relative complexity of the two situations: in the case of the
alternative approach the bitmap must be read to decide which
blocks are to be written back.

We further tested the partial approach with a semi-
randomised7 selection of pages and, unsurprisingly, the partial
paging approached showed a very strongly enhanced perform-
ance, as illustrated in Tables II and III.

V. POTENTIAL ADDITIONAL ADAPTATIONS

We were able to consider some additional adaptions to the
partial paging algorithm.

A. Testing other loading sizes

Partial paging was tested with 32 byte and 64 byte loads.
Such larger loads reduce the number of small faults and Table
IV summarises the results. The marginal efficiency of the
larger loads increases with the amount of TLB entries in use
- for 8 TLB entries there are 2.9 more small faults with a 16
byte load size than for a 64 byte load size, while for 32 TLB
entries the ratio is 3.1:1 and for 64 it is 3.2:1, but the gains are
not dramatic and, given that the number of interrupts raised is
the same regardless of the load size used then it is plain that,
without hardware adaption, there is no benefit to using larger
load sizes.

TLBs Hard Small: Small: Small:
in use faults 16 bytes 32 bytes 64 bytes

8 8357 21122 12612 7375
12 4526 18858 10953 6249
16 3301 17209 9988 5702
20 2543 15822 9105 5203
24 2184 15144 8651 4936
28 1956 14688 8377 4763
32 1741 13893 7876 4472
36 1609 13400 7557 4272
40 1469 12866 7230 4079
44 1027 10623 5983 3367
48 919 10183 5733 3219
64 626 8513 4764 2649

Table IV
FAULT COUNTS FOR DIFFERENT LOAD SIZES COMPARED

B. Moving from FIFO to LRU

The presence of an interrupt on every memory access does
allow experimentation with an LRU page replacement policy
– noting additional costs of management of page lists etc.

6We could have assumed that no instruction pages were to be written back
but for the sake of simplicity we treated all pages in the same way, so write-
back code is executed for all pages

7Pages were selected from the same range of addresses and with approx-
imately the same frequency and with allocation sizes modelled on the results
shown in Figure 3, but with no stronger bound of locality.

17

6

We tested two forms of LRU: a partial policy where the page
order was updated only on a hard or small fault, and a full
LRU where the page list order was updated on every access.
The results are summarised in Table V – both approaches
significantly lower the total fault count compared to FIFO.
For a 32 TLB system (ie. with 28KB of local memory), there
are 9% fewer faults with the partial approach and 25% fewer
with the full LRU policy. These would save 142,500 cycles
and 388,100 cycles respectively in load time from global
memory 100 cycles away. However, the cost of implementing
the LRU policies in additional instructions greatly outweigh
these, as shown in Table VI. The high cost of manipulating the
ordered list decisively counts against the full LRU approach
in particular.

TLBs FIFO Partial LRU Full LRU
16 20510 18847 16492
32 15634 14209 11753
48 11102 10337 8355
64 9139 8762 7455

Table V
FAULT COUNTS- HARD AND SMALL COMBINED - FOR DIFFERENT PAGE

REPLACEMENT ALGORITHMS

VI. CONCLUSIONS

Virtual memory has been part of the standard programming
toolkit for around half a century. In recent years much re-
search focus has been on how to improve the performance of
machines with large amounts of memory, yet, at the same time,
a problem from the dawn of virtual memory - thrashing - has
also reappeared, especially in devices that might be otherwise
expected to run highly parallel real time computing tasks,
such as video processing, at speed. Our simulations suggest
that such systems, if using virtual memory, could improve
performance by both using smaller page sizes (and so travel
in the opposite direction of systems processing “big data”)
and adopt a new sub-paging approach of loading in memory
in cache line size blocks. However, our initial research also
suggests that significant speed improvements will only come
if we can match the bitmaps that record which parts of a page
have already been populated to accessed addresses in hardware
and thus sub-cycle.

We propose that such hardware adaptions would be pos-
sible: hardware memory management units (MMU) have long
supported address translation and lookup on a sub-cycle basis.
We have adopted a bitmap as an efficient method with which
to map internal memory allocations in software, but it may
be that other methods are more hardware efficient. In [22] a
hardware bitmap-based memory allocator is discussed, while
[23] discusses an MMU designed specifically for system-on-
chip hardware.Further work includes investigation to see if a
suitable hardware modification can be made (using an FPGA

TLBs FIFO Partial LRU Full LRU
16 13,457,998 15,448,631 31,501,330
32 11,834,218 14,951,934 43,505,073
48 10,453,064 13,852,267 55,552,516
64 9,910,243 13,728,863 68,390,135

Table VI
INSTRUCTIONS EXECUTED FOR EACH PAGE REPLACEMENT ALGORITHM

based software). This can then be used within an existing NoC
architecture to evaluate the approach fully.

REFERENCES

[1] Ethan Mollick, “Establishing Moore’s Law”, IEEE Ann. Hist. Comput.,
vol. 28, no. 3, pp. 62–75, 2006, 1158837.

[2] M. Bohr, “A 30 year retrospective on Dennard’s MOSFET scaling
paper”, Solid-State Circuits, IEEE, vol. 12, no. 1, pp. 11–13, 2007.

[3] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, Liewei Bao, J. Brown, M. Mattina, Chyi-Chang
Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook, “TILE64 - Processor:
A 64-Core SoC with Mesh Interconnect”, in Solid-State Circuits
Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE
International, feb. 2008, pp. 88–598.

[4] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the Intel SCC many-core
processor”, in High Performance Computing and Simulation (HPCS),
2011 International Conference on, july 2011, pp. 525–532.

[5] Adapteva, “Epiphany Architecture Reference”, http://adapteva.com/
docs/epiphany arch ref.pdf, 2015.

[6] Peter J Denning, “Virtual memory”, ACM Computing Surveys (CSUR),
vol. 2, no. 3, pp. 153–189, 1970.

[7] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer”, IBM Syst. J., vol. 5, no. 2, pp. 78–101, June 1966.

[8] P. J. Denning, “Working Sets Past and Present”, IEEE Trans. Softw.
Eng., vol. 6, no. 1, pp. 64–84, January 1980.

[9] M.D. Hill and M.R. Marty, “Amdahl’s Law in the Multicore Era”,
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[10] R. Bodik B. C. Catanzaro J. J. Gebis P. Husbands K. Keutzer
D. A. Patterson W. L. Plishker J. Shalf S. W. Williams K.
Asanovic and K. A. Yelick, “The landscape of parallel
computing research: A view from Berkeley”, Tech. Rep.
UCB/EECS- 2006-183, EECS Department, University of Califor-
nia, Berkley, http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-183.html, December 2006.

[11] D. Ungar and S. Adams, “Hosting an object heap on manycore hardware:
an exploration”, SIGPLAN Not., vol. 44, no. 12, pp. 99–110, 2009.

[12] Alessandro Morari, Antonino Tumeo, Oreste Villa, Simone Secchi, and
Mateo Valero, “Efficient sorting on the tilera manycore architecture”, in
Computer Architecture and High Performance Computing (SBAC-PAD),
2012 IEEE 24th International Symposium on. IEEE, 2012, pp. 171–178.

[13] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt, “Cache-
conscious wavefront scheduling”, in Proceedings of the 2012 45th An-
nual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2012, pp. 72–83.

[14] X. Chen, L. Chang, C. I Rodrigues, J. Lv, Z. Wang, and W.i Hwu,
“Adaptive cache management for energy-efficient gpu computing”, in
Microarchitecture Annual IEEE/ACM Int. Symp. on. IEEE, 2014, pp.
343–355.

[15] Donald J. Hatfield, “Experiments on page size, program access patterns,
and virtual memory performance”, IBM Journal of research and
development, vol. 16, no. 1, pp. 58–66, 1972.

[16] A. Basu, J. Gandhi, J. Chang, M. Hill, and M. Swift, “Efficient
virtual memory for big memory servers”, in ACM SIGARCH Computer
Architecture News. ACM, 2013, vol. 41, pp. 237–248.

[17] B. Jacob and T. Mudge, “Uniprocessor virtual memory without tlbs”,
IEEE Trans. on Computers, vol. 50, no. 5, pp. 482–499, 2001.

[18] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li,
“The parsec benchmark suite: Characterization and architectural implic-
ations”, Tech. Rep. TR-811-08, Princeton University, January 2008.

[19] Nicholas Nethercote and Julian Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation”, in ACM Sigplan notices.
ACM, 2007, vol. 42, pp. 89–100.

[20] OVPWorld.org, “Open virtual platforms (ovp) an introduction and
overview”.

[21] xilinix.com, “Microblaze soft processor core”.
[22] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles,

“Dynamic storage allocation: A survey and critical review”, in Memory
Management, pp. 1–116. Springer, 1995.

[23] Mohamed Shalan and Vincent J Mooney, “A dynamic memory manage-
ment unit for embedded real-time system-on-a-chip”, in International
Conference on Compilers, Architecture and Synthesis for Embedded Sys-
tems: Proceedings of the 2000 international conference on Compilers,
architecture, and synthesis for embedded systems, 2000, vol. 17, pp.
180–186.

18

Transactional IPC in Fiasco.OC
Can we get the multicore case verified for free?

Till Smejkal, Adam Lackorzynski, Benjamin Engel and Marcus Völp

Operating Systems Group
Technische Universität Dresden, Germany

<name>.<surname>@tu-dresden.de

Abstract—Already announced in 2007 for Sun’s Rock proces-
sor but later canceled, hardware transactional memory (HTM)
finally found its way into general-purpose desktop and server
systems and is soon to be expected for embedded and real-time
systems. However, although current hardware implementations
have their pitfalls, hindering an immediate adoption of HTM
as a synchronization primitive for real-time operating-systems,
we illustrate on the example of a transactional implementation
of the L4/Fiasco.OC inter-process communication (IPC) how
extended versions of HTM may revolutionize kernel design and, in
particular, how they may reduce the verification costs of a multi-
core kernel to little more than verifying a selectively preemptible
uni-processor kernel. Removing L4/Fiasco.OC’s half thousand
lines-of-code cross-processor IPC path and making the local path
transactional, we benefit from a principal performance boost for
sending cross-core messages. However for the average case, we
experience a 30 % overhead for local calls.

I. INTRODUCTION

Cyber-physical systems such as autonomous cars, medical
robots, and airplanes increasingly apply multi-core hardware
and multi-core real-time operating systems (RTOS) to meet
the performance demand of their applications. At the same
time, these systems often operate with or in close proximity of
humans, thus safety is a must and formal verification is most
rigorous in assuring that a system is to be trusted. However,
although fully verified single processor systems are at the
verge (first microkernels have already been verified [1], [2]),
multiprocessor verification remains a milestone to be taken.

Verification of uniprocessor kernels typically proceeds by
splitting the high level verification goal into smaller properties
and invariants, which are then shown to hold for arbitrary
sequences of non-preemptively executing pieces of kernel code.
One, if not the challenge when comparing the verification
of multiprocessor kernels with uniprocessor kernels is that
non-preemptive execution no longer conveys atomicity at the
granularity of non-preemptive execution, but at the granularity
of individual processor instructions. Instead of having to
consider arbitrary interleavings of large code pieces, one
must therefore establish the desired results for all possible
interleavings of machine instructions, which easily pushes
verification complexity beyond manageable bounds. Of course,
there are several tools to assist in this tasks, for example,
concurrent separation logic [3] and the multitude of approaches
that followed Owicki and Gries [4], [5] seminal work on assume-
guarantee reasoning. However, despite these tools, one must
still specify and verify the behavior of the kernel at a fine
granular and machine-dependent level.

In this paper, we argue why we believe transactions can
re-establish some of the simplicity one finds when verifying
uniprocessor kernels by reintroducing atomicity at a coarse
granularity and, most importantly, in a machine-independent
way. Our goal is not to translate uniprocessor results to the
multiprocessor case, which if possible at all requires careful
argumentation. Instead, we propose to re-implement the kernel
as sequences of large transactions to regain the atomicity of
non-preemptive execution. We evaluate on the example of
L4/Fiasco.OC’s IPC path using the hardware transactional
memory implementation found in Intel’s Haswell processors
to which degree this is possible and at which costs.

We present our transactional IPC path in Section III,
compare its performance against mainline Fiasco in Section IV
and illustrate in a semi-formal way in Section V how lifting
atomicity from individual instructions to coarse grain transac-
tions simplifies the multicore verification task to little more
than what is required when verifying uniprocessor kernels.

II. HARDWARE TRANSACTIONAL MEMORY

In 1993, Herlihy and Moss [6] proposed transactional
memory (TM) as a mechanism to assist developers in protecting
shared data structure accesses in parallel systems. Unlike lock-
protected data structures, which to scale require cumbersome to
design and error prone fine-grain locking schemes, transactional
memory performs modifications of data structures optimistically
but is prepared to discard these modifications in case of conflicts.
Especially for low-contended locks, TM avoids the locking
overhead at the expense of guaranteed progress in situations
where transactions abort.

To implement transactional operations in hardware, i.e., to
ensure atomicity of updates in case the transaction completes
and isolation in the sense that modifications remain invisible
until the transaction commits, Herlihy and Moss proposed to
exploit processor local caches as interim storage and cache
coherence protocols (such as MESI) for conflict detection.
External writes abort transactions if they are to any data loaded
into the cache or accessed while executing transactionally;
external reads abort a transaction if they are to cachelines
that are cached in exclusive modified state (M) as a result of
transactional writes. Further aborts may happen if transactional
data exceeds the capacity of the cache or for other reasons
that are specific to the concrete implementation of hardware
transactional memory (HTM).

Many software implementations of transactional mem-
ory have been proposed over the years (see e.g. [7], [8]),

19

including hybrid hardware-software solutions [9]. However,
their applicability is limited due to significant overheads
as identified by Cascaval et al. [10]. The first full fledged
hardware implementation as described by Herlihy and Moss has
been announced in 2011 for IBM’s BlueGene-Q servers [11],
followed by Intel’s Transactional Synchronization Extension
(TSX) [12] for standard PC hardware in 2012.

TSX offers two distinct features: Hardware Lock Elision and
Restricted Transactional Memory. Hardware lock elision [13]
automatically replaces locks with transactions by replacing the
acquisition of the lock with a transaction begin and the release
with an attempt to commit the transactional state collected
while executing the critical section. In contrast, restricted
transactional memory (RTM) exposes the complete transaction
interface to the programmer allowing her to start, commit and
abort transactions through special processor instructions. The
limitations of RTM are conflict detection only at the granularity
of cachelines but no finer, the bounded amount of memory that
can be accessed from within a transaction, and, as far as Intel’s
implementation is concerned, the lack of any progress guarantee
with regard to which transaction will abort. In particular, RTM
aborts transactions on interrupts, system calls and in many
other situations, including the execution of some privileged
instructions.

Our main focus in this paper is on safety, security and
correctness but not on lifeness and guaranteed completion.
Nevertheless, we will argue why transactions should be
considered as a mechanism to simplify the kernel and why
real-time systems require future implementations of hardware
transactional memory to convey progress guarantees similar to
those provided by IBM in BlueGene-Q.

III. TRANSACTIONAL INTER-PROCESS COMMUNICATION

With TxLinux Ramadan et al. [14] have already shown
the value of hardware transactional memory for synchronizing
access to kernel data structures. However, to leverage the full
potential of HTM for both simplifying in-kernel locking and
verifying multi- and manycore kernels, all system calls must
execute transactionally, at least to the best degree possible.

To demonstrate the feasibility (and drawbacks) of almost
fully transactional system calls, we use as an example an
implementation of L4/Fiasco.OC’s IPC path with Intel’s RTM.

A. The L4/Fiasco.OC Microkernel

L4/Fiasco.OC is a 3rd-generation capability-based micro-
kernel designed for use in both security and real-time critical
scenarios. Following Liedtke’s design principle [15], the L4
family microkernel provides only those functionality in the
kernel, which cannot sensibly be implemented at application
level. This is the functionality required to isolate user-level
subsystems (capabilities and address spaces) and inter-process
communication (IPC), which provides a safe and secure means
for communicating between these subsystems.

IPC messages in L4 may contain both data and capabilities,
which are required to invoke kernel-implemented objects (such
as IPC gates to send messages to other threads). IPC is
synchronous, that is the sender blocks until the receiver is
ready to receive, which removes buffer allocation from the

IPC path and allows the threads’ user-level control block to
be used as message buffer. Through IPC operations, threads
may send or receive messages or they may call other threads,
which is an atomic send and receive operation in the sense
that when the callee receives the message, the caller is already
ready to receive from this thread. IPC is transparent, that is
IPC uniformly works in the same way irrespective of the core
on which the receiver is executing. It may be on the same core,
in which case we say IPC is local or on a different processor
core than the sender, in which case IPC is cross processor.

Mainline L4/Fiasco.OC [16] comes with two tightly inte-
grated IPC paths: a fast path for core-local communication and a
cross-processor IPC path, designed to preserve the performance
of local IPC as much as possible. In this paper, we explore how
IPC and especially cross-processor IPC can be implemented
with HTM mechanisms. Besides simplifying the cross-processor
IPC path (when compared to existing non-TM approaches),
we show that, with a few exceptions, transactions span the
same parts of the code that executes non-preemptively in the
core-local case. For these exceptions, we explain why they have
to execute non-transactional and sketch how one can further
reduce the amount of non-transactional code.

B. IPC with RTM

Ideally, from the viewpoint of verifying the kernel and to
minimize transaction overhead, the entire IPC operation should
be a single transaction. However, there are two general obstacles,
which prevent us from turning IPC and, more generally, system
calls into a single transaction each: (i) privileged instructions
and device accesses abort transactions unconditionally; and
(ii) transactional state may become too large to fit the L1
cache, which also leads to aborts. In the L4/Fiasco.OC IPC
path, the transaction-aborting operations are the programming
of timeouts, which involves setting the hardware-timer to the
earliest pending timeout, and the reloading of the page-table
base register, when IPC switches to a thread in another address
space. In addition, on architectures such as ARM, the transfer
of memory capabilities causes aborts when TLB entries have
to be flushed as a result of upgrading page-table entries.

Fig. 1 shows a schematic of the L4/Fiasco.OC IPC path
and the steps involved when the left-hand thread calls either
one of the two right-hand side threads (in the same or in
a different address space). Immediately after entering the
kernel (e.g., with sysenter on x86-systems), execution
may proceed transactionally (with xbegin) after setting the
address of the abort handler (black dot #1 in Fig. 1). IPC
proceeds by checking whether the receiver is waiting for the
sender (i.e., it has already executed a receive operation) or
whether the receiver is still involved in other operations (e.g.,
it may be running). In the first case, the sender and receiver
rendezvous and the kernel starts the message transfer. After
the transfer completes, which in case of a transfer of memory
capabilities may require additional preemption points and hence
transactions, the caller prepares its receive phase to ensure that
it is ready to receive when the receiver replies. In case of
capability transfers, the TLB shootdown can either be deferred
to after the IPC operation or handled immediately after the
capability transferring transaction commits. Switching to the
receiver involves storing and reloading the register state and
stack pointers of the IPC partners. These operations can be

20

handshake

rendezvous

user

kernel

message
transfer

prepare
receive

switch
thread

switch
address space

prepare
wait

schedule

receiver is ready to receive

wait for
receiver

enter kernel exit kernel exit kernel

select next
threadset timeout

wait

load page table

1 2 3

4

deferred to

Fig. 1. Schematics of the L4/Fiasco.OC IPC path for an IPC call operation to a peer thread within the same (middle thread denoted by the wiggling line) or
another (right thread) address space, that is intra vs. inter address space communication. Black (and dashed white) dots mark the begin and end of transactions.
The path either directly proceeds to the receiver or stops at the preemption point wait. As part of waiting, the scheduler is invoked to select the next ready-to-run
thread to which it then switches. Dark gray operations are privileged operations, which cannot be executed transactionally. They are deferred until after the end of
the transaction.

executed transactionally without risk of abort. Therefore, when
sending to a thread in the same address space, only one
transaction is required, unless capability transfers needs to
be preemptible. The transaction starts at the black dot #1 and
commits immediately before returning to user-level (e.g., with
sysexit) at #2.

If the receiver resides in a different address space, the
page-table base register must be reloaded, which causes an
unconditional abort when executed transactionally. Therefore,
we defer the actual address space switch to the point in time
after the transaction commits at #3 and execute it immediately
before returning to the user. The instructions that remain non-
transactionally are the check whether an address space switch
is pending and the mov %1, cr3 instruction, which performs
the switch of the page table and hence of the address space.
For a verification, these arbitrary interleavings of these two
instructions of the transactions and other non-transactional code
must be considered. However, because only few operations must
be deferred. We expect these interleaving to remain within
manageable complexity.

So far we have only considered the case where the receiver
is ready to receive from the sender and not involved in some
other operation. If this is not the case, the sender blocks waiting
for the receiver to execute the receive and message transfer1.

L4/Fiasco.OC limits the time senders have to wait for
receivers to participate in the IPC with timeouts. As we have
already explained. Timeouts require programming the hardware
timer, which is not possible from within a transaction. However,
the actual programming of the timer can be deferred to the
wait preemption point (white-dashed dot #4) and with some
additional restructuring of the implementation also to the point
in time when the scheduler switches to the next thread to
run. Notice, interrupts remain disabled and the timer will be
programmed before any user-level code is executed on this
core. The programming of the hardware timer is a second
case where code must be executed non-transactionally and
interleavings must be considered at the instruction level. To
become ready to receive, a send timeout can be specified, which

1 For simplicity, Fig. 1 illustrates only the sender-driven part of the IPC
path.

the kernel programs by writing to the hardware timer register.
Like with the page-table load, we defer this programming
of the hardware timer register to the point in time when the
transaction is committed.

When enlarging the transaction in the prescribed way, we
must of course validate that the transactional state stays small
enough to fit in the transaction-storing cache (i.e., L1 in case of
Intel Haswell). In addition, we have to ensure that transactions
remain small enough to avoid frequent aborts due to conflicts.
With the additional preemption point at #4, no capacity aborts
occurred and, as we shall see in Sect. IV, the probability of
other IPC operations causing retries is little more than 10−7%.

C. Manipulating Page-Table Entries Transactionally

One uncertainty that remained from the documentation [17]
was whether page-table manipulations in Intel Haswell adhere
to the transaction semantics, that is, whether page-table walks
by one processor causes aborts of transactions that modify
the walked page table. We therefore performed a small test,
which transactionally updates the page table on one core while
accessing the mapped memory on another core, to confirm
that the page-table walker actually triggers aborts. As long as
this implementation is maintained, only possibly required TLB
shootdowns must remain outside the transaction. Otherwise,
if the page-table walker bypasses the transaction mechanism
and evaluates transactional state, large parts of the kernel’s
address space implementation would have to be moved out
of the transaction because intermediate state would become
visible that gets discarded if the transaction aborts.

IV. EVALUATION

Similar to other research in the area of hardware transac-
tional memory, there are two main aspects to consider when
evaluating transactions in L4/Fiasco.OC: First, whether it is
possible to reduce the complexity of the kernel code, and second,
whether the performance of the kernel can be improved or not.

A. Reducing Kernel Complexity

With HTM, writing synchronized code is easier than
with traditional locking mechanisms. This characteristic is

21

mainly related to two aspects: First, difficult problems such as
deadlocks, priority inversion, and convoying do not exist with
HTM because transactions do not block during their execution.
Instead, they execute optimistically and roll back in case of
conflict. Second, the programmer needs not to decide which
portions of its code can run in parallel and hence which fine-
grain lock to use where. Transaction detect automatically and
at the granularity of cache lines, whether data accesses conflict.
Hence, it is possible to use transactions also for larger critical
sections because the conflict sets are determined dynamically.
Still short transaction reduce the likelihood of conflict and the
aborts they entail.

The IPC mechanism of the L4/Fiasco.OC microkernel
already distinguishes core-local from cross-core communication
in its locking mechanisms, by requiring that changes of
critical process information is performed on the home core
of the modified thread. Hence, if two threads perform an
IPC operation while on the same core, no synchronization
is needed. To protect locally unsynchronized critical IPC state
from inconsistent modification during cross-core IPC, the cross-
processor IPC path temporarily stops the partner’s core to
perform the modification there. This operation requires a
comprehensive and time intensive synchronization via inter
processor interrupts (IPI).

With the introduction of RTM in IPC, we removed the
restriction that process information can only be changed on
the process’ home core. Instead, all modifications are executed
transactionally. This way, the flow of executing local and cross-
processor IPC have become identical and can be handled in
one routine. The only remaining difference is in the way how
the transitions from the sender context to the receiver context
are realized. While the local IPC case requires only a scheduler
activation, the cross-processor IPC case still requires an IPI to
trigger scheduling on the remote core.

Hence, we were able to remove most of the complexity of
cross-processor IPC path and replaced it with a simpler local
IPC path. We expect to be able to make similar changes to
other kernel routines and thereby further reduce the complexity
of the kernel.

Unfortunately, since Intel R©’s RTM extension does not
provide any progress guarantee for the transactions, our
implementation has a significant drawback. We always have
to have a fallback mechanism to guarantee completion of all
system calls in case of transaction aborts. Our current approach
is to first retry the transaction for a couple of times and then
to revert to the traditional cross-processor IPC path, which
we could have removed otherwise to safe about 400 lines of
code. In general, there is no need to abort all transactions, as
demonstrated in IBM’s HTM implementation [18], where later
transactions cannot abort earlier transactions.

In situations where probabilistic completion and progress
guarantees suffice, fall-back mechanisms are not required and
the IPC operation could simply be aborted if it did not succeed
within a limited number of retries. In Table I, we have collected
a statistics to determine the number of retries required. During
our performance benchmark (see Section IV-B), 8.64 · 10−5%
of the IPC operations failed to commit directly and only 1.05 ·
10−7% failed after a second attempt. We did not observe an
IPC operation that did not complete after two retries.

TABLE I. STATISTICS ABOUT THE ABORT AND RETRY BEHAVIOR OF
THE TRANSACTIONS USED IN THE L4/FIASCO.OC KERNEL

Total Direct Commit 1 Retry 2 Retries > 2 Fallback
10,446,981,951 10,446,972,918 9022 11 0 0

B. Performance

Yoo and Leis [19], [20] observed for their benchmarks
a general performance advantage of using HTM, except in
those that required no synchronization in the first place. To
see whether, besides the above reduction in code complexity,
IPC benefits from similar advantages when the number of
parallel operations increases, we have performed the following
experiments on an Intel Haswell i4770 running at 3.4 GHz.
We expected significant improvements in the multiprocessor
case and low overheads for local IPC.

0

1000

2000

Intra Process Inter Process
C

yc
le

s

With TM Without TM

1044
503

1569 1156

Fig. 2. Minimum number of processor cycles needed to perform a processor
local IPC send-receive operation a) within one process (intra process) and b)
between two processes (inter process) with the usage of TM and without it.
(Deviation in the result is negligible.)

To determine the performance characteristics of local IPC,
we measured the costs of transferring an empty message
between two threads using an IPC send-receive operation. We
compared intra process and inter process communication. As
shown in Fig. 2, our implementation introduces a significant
overhead of about 107 % for IPC between threads of the same
process and of about 35 % for IPC between two processes.
Our analysis indicates that the house keeping for the four
transactions we need for one IPC send-receive operation
introduces this performance decrease. Each transaction costs
about 100 cycles.

0

50

100

1 2 4 80.5 1.5 2.5 3.5 4.5R
el

at
iv

e
T

hr
ou

gh
pu

t

Clients

0

50

100

1 2 4 80.5 1.5 2.5 3.5 4.5

Clients

With TM Without TM

Fig. 3. Average number of full IPC round trips achieved in a second by 1, 2,
4, or 8 clients communicating with one server (left) or equally many servers
(right) with the usage of TM relative to the same number without the usage
of TM. Deviations in the results are negligible.

While IPC cycle counts reveal raw kernel performance,
they generally reveal little insight on application performance.
We have therefore also measured two benchmarks, which
simulate client-server communication, a scenario common in
microkernel-based systems. We measured the relative through-
put in IPC send-receive operations between (a) an increasing
number of client threads communicating with one server thread
and (b) an increasing number of client threads communicating

22

with dedicated server threads. Fig. 3 shows that the transactional
implementation introduces a performance degradation between
28 % and 35 % in all scenarios. This overhead is consistent
with the results of the raw IPC performance benchmark. In
total, the original local IPC implementation, which requires
no further synchronization, performs significantly better than
transactional IPC.

0

10000

20000

IPC send IPC send-receive

C
yc

le
s

With TM Without TM

2409 12435 13359 14799

Fig. 4. Minimum number of processor cycles needed to perform a cross-
processor IPC operation within one process with a) only sending and b)
sending and receiving with the usage of Transactional Memory and without it.
Deviations in the results are negligible.

For cross-processor IPC we tried to run a similar benchmark
as described above. Unfortunately, this was not possible because
this test triggered the RTM implementation bug in Haswell [21].
Our system failed silently. To still provide performance char-
acteristics, we therefore measured the number of processor
cycles required for a cross-processor IPC send operation as
well as a cross-processor IPC send-receive operation. However,
in contrast to the local IPC benchmark, every IPC operation had
to wait for a constant time to avoid the above bug. Consequently,
the measured values do not present the full potential of our
system, but just an indication how future systems behave. As
it can be seen in Fig. 4, our implementation performs better
than the original code. Especially, the IPC send operation runs
up to five times faster than its traditional counterpart. This
large difference between the two implementations is mainly
because we were able to remove the time expensive IPI from
the critical path as we only need it to trigger the rescheduling on
the remote core in a fire-and-forget fashion. The sender could
proceed immediately. For the IPC send-receive operation, we
have to wait for one IPI to trigger the scheduling of the receiver
and for a second during the reply. As IPI costs dominate IPC
send-receive costs, our transactional implementation performs
as well but no better than the traditional path. For a saturated
server, we expect these costs to be hidden because the server
will then find the next request pending when it replies to the
current one.

V. SIMPLIFYING THE MULTICORE VERIFICATION TASK

s0 s1 s2 s3 sn-1 sn…

transaction core I

transaction core II

WI
RI

WII

RII

s0s1 s2 s3sn-1 sn… …

Fig. 5. Parallel interleaved execution of transactional operations exhibits the
same visible states as a corresponding sequential execution.

Before we proceed with our argument why we believe
that a consequent application of transactions will simplify
the multiprocessor verification task to little more than what
is required for a uniprocessor kernel, let us clarify our
assumptions and goals. Our focus is on verifying multiprocessor
kernels, not on translating uniprocessor verification results
to a multiprocessor setting, which if at all possible requires
additional arguments. We assume transactions to be correct and
complete with regard to device side effects. That is, accesses
to memory used by the kernel that origin from a device must
adhere to the cache protocol and cause aborts if they conflict
with transactional kernel state.

Our confidence is based on the following observation.
If kernel code executes transactionally, interaction with this
code is limited to points in time equivalent to the beginning
of the transaction respectively to the time it commits. Any
other interaction (by devices or remote cores) will cause
an abort and unrolling of transactional state. By “equivalent
times” we mean that all interacting write must happen before
the transaction reads this data. Our argument, which we are
currently transforming into a machine-checked proof, goes as
follows. If the majority of the kernel executes transactionally,
the trace positions, which characterize the execution of atomic
machine instructions, can be rearranged to obtain a trace, which
matches the execution behavior of a uniprocessor kernel with
selectively preemptible system calls. Instead of considering
all possible interleavings at the granularity of atomic machine
instructions, it therefore suffices to consider only those inter-
leavings where the instructions inside a transaction execute one
after another and without other instructions interleaving. Fig. 5
shows this interleaving and the rearrangement into blocks. It
suffices to consider only traces such as the one below, where
transactions execute as blocks. Positions of transaction I (white)
are combined to a single block and executed after the positions
of transaction II (gray).

The rearrangement is possible because we know from the
correctness of transactions that cached state becomes only
visible if external writes went to a different set of physical
addresses than transactional reads or writes. Let RI , WI ,
RII and WII denote these read and write sets for the two
transactions. We conclude that for the interleaving of core
I and core II , cached state of core II becomes visible
only if WI ∩ (RII ∪ WII) = ∅ and likewise for core I if
WII ∩ (RI ∪ WI) = ∅. But then we can shuffle the trace
positions such that preserving the order of transactions, all
positions of core II (who committed first in this trace) occur
before those of core I (who committed last) follow. We
realize that these traces are identical with regard to the visible
memory updates. Notice in particular that the above address
disjointness rules out that core I may depend on the state
written by core II (black part in s0, s3, sn) since otherwise
core I’s transactions would have aborted. But now the trace
is identical to a sequential execution of the system calls in
a non-preemptive manner while restricting the observation of
state to the preemption points.

Notice, for deferred operations, we still require the machin-
ery to verify kernel code at machine granularity. For these, we
have to consider all possible interleavings of these instructions
and of the transactions at their boundaries. The latter is because
we require devices to abort transactions in case of conflict.

23

VI. RELATED WORK

Ramadan et al. [14] were first to demonstrate the benefit
of HTM for synchronizing operating-system code. However,
unlike TxLinux, we take a more holistic approach trying to
turn every system call into a sequence of transactions to benefit
from the simplified interleaving in the verification task. In this
regards, our work is more closely related to TxOS by Porter
et al. [22] and their attempt to provide transactional kernel
behavior for certain mechanisms such as I/O. Of course, there
is a large body of work beyond the operating-system kernel.
For example, Karnagel et al. [23] and Leis et al. [20] use RTM
to improve the performance of in-memory database systems,
Kleen [24] extends the GNU C pthreads library to use HTM
for transactional synchronization. Ariel et al. [25] formally
specify HTM for the purpose of verifying correctness of their
implementation, a task which Gupta et al. [26] extend to HTM
implementations with non-transactional writes as for example
supported in AMD’s ASF proposal [27]. To the best of our
knowledge this is the first work to realize how a consequent
application of HTM can simplify the verification task.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown how L4/Fiasco.OC’s CPU-
local IPC path can be converted into an almost completely
transactional multiprocessor path. For scenarios where stochas-
tic completion guarantees suffice, we observe a performance
improvement in the cross processor case at the costs of
significantly increasing uniprocessor costs by almost a factor
of 2, and requiring retries in 1.05 ∗ 10−7 % of all cases. In
addition, we have shown how a consequent re-implementation
using transactions may simplify the multiprocessor verification
task by allowing similar reasoning for the transactions as
in the uniprocessor case. Obvious directions for future work
include a re-evaluation on newer-generation hardware, progress
guarantees for HTM and the lifeness guarantees they entail,
and an extension of the described approach to applications and
user-level servers.

ACKNOWLEDGMENT

This work is in part funded by the German research council
DFG through the cluster of excellence “Center for Advancing
Electronics Dresden” cfaed and DFG-SPPEXA’s project FFMK.

REFERENCES

[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: formal verification of an os kernel,”
in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, ser. SOSP ’09. ACM, 2009, pp. 207–220.

[2] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta,
“Design, Implementation and Verification of an eXtensible and Modular
Hypervisor Framework,” in IEEE Security and Privacy, Oakland, 2013.

[3] S. Brookes, “A semantics for concurrent separation logic,” Theor. Comput.
Sci., vol. 375, no. 1-3, pp. 227–270, Apr. 2007.

[4] S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs,” Acta Informatica, vol. 6, pp. 319–340, 1976.

[5] ——, “Verifying properties of parallel programs: an axiomatic approach,”
Communications of the ACM, vol. 19, pp. 279–285, 1976.

[6] M. Herlihy and J. E. B. Moss, Transactional memory: Architectural
support for lock-free data structures. ACM, 1993, vol. 21, no. 2.

[7] N. Shavit and D. Touitou, “Software transactional memory,” Distributed
Computing, vol. 10, no. 2, pp. 99–116, 1997.

[8] T. Harris and K. Fraser, “Language support for lightweight transactions,”
in ACM SIGPLAN Notices, vol. 38, no. 11. ACM, 2003, pp. 388–402.

[9] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson, “Architectural support for
software transactional memory,” in 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06), 2006.

[10] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee, “Software transactional memory: Why is it only a
research toy?” Queue, vol. 6, no. 5, p. 40, 2008.

[11] R. Haring and B. Team, “The blue gene/q compute chip,” in The 23rd
Symposium on High Performance Chips (Hot Chips), vol. 4, 2011, pp.
125–180.

[12] Intel R©, “Intel R© Architecture Instruction Set Extensions Programming
Reference,” https://software.intel.com/sites/default/files/m/9/2/3/41604,
2012.

[13] R. Rajwar and J. R. Goodman, “Speculative lock elision: Enabling
highly concurrent multithreaded execution,” in Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture. IEEE
Computer Society, 2001, pp. 294–305.

[14] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, and E. Witchel, “MetaTM/TxLinux: transactional memory
for an operating system,” ACM SIGARCH Computer Architecture News,
vol. 35, no. 2, pp. 92–103, 2007.

[15] J. Liedtke, “On µ-kernel construction,” in Proceedings of the 15th ACM
Symposium on Operating System Principles (SOSP), Copper Mountain
Resort, CO, Dec. 1995, pp. 237–250.

[16] “The Fiasco.OC Microkernel,” http://os.inf.tu-dresden.de/fiasco/, 2014,
[Online, accessed 27-Nov-2014].

[17] Intel R©, “Intel R© 64 and IA-32 Architectures Optimization Reference
Manual,” http://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-optimization-manual.pdf,
2014.

[18] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael, “Evaluation of Blue Gene/Q hardware sup-
port for transactional memories,” in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques. ACM,
2012, pp. 127–136.

[19] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance evaluation
of intel R© transactional synchronization extensions for high-performance
computing,” in Proceedings of SC13: International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2013, p. 19.

[20] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware transactional
memory in main-memory databases,” in Data Engineering (ICDE), 2014
IEEE 30th International Conference on. IEEE, 2014, pp. 580–591.

[21] Intel R©, “Haswell Specification Update,” http://www.intel.com/
content/dam/www/public/us/en/documents/specification-updates/
xeon-e3-1200v3-spec-update.pdf, 2014.

[22] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel,
“Operating system transactions,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 2009.

[23] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel,
and W. Lehner, “Improving in-memory database index performance with
intel transactional synchronization extensions,” in in Proc. 20th Int’l
Symp. High-Performance Computer Architecture, 2014.

[24] A. Kleen, “Lock elision in the gnu c library,” http://lwn.net/Articles/
534758/, 2013, [Online, accessed 29-Now-2014].

[25] A. Cohen, J. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck, “Verifying
correctness of transactional memories,” in Formal Methods in Computer
Aided Design, 2007. FMCAD ’07, Nov 2007, pp. 37–44.

[26] A. Cohen, A. Pnueli, and L. Zuck, “Mechanical verification of transac-
tional memories with non-transactional memory accesses,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, A. Gupta
and S. Malik, Eds. Springer Berlin Heidelberg, 2008, vol. 5123.

[27] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier et al., “Evaluation
of AMD’s advanced synchronization facility within a complete transac-
tional memory stack,” in Proceedings of the 5th European conference
on Computer systems. ACM, 2010, pp. 27–40.

24

A New Configurable and Parallel Embedded
Real-time Micro-Kernel for Multi-core platforms

Antonio Paolillo, Olivier Desenfans, Vladimir Svoboda, Joël Goossens, Ben Rodriguez

PARTS Research Center, Université Libre de Bruxelles, Mangogem S.A. and HIPPEROS S.A.
Corresponding author: antonio.paolillo@ulb.ac.be

Abstract—One of the main on-going initiatives of the PARTS
Research Center together with HIPPEROS S.A. is the creation of
a new Real-Time Operating Systems family called HIPPEROS.
This paper focuses on the design and the implementation of
its new real-time multi-core micro-kernel. It aims to address
the challenge of efficient management of computing resources
for competing real-time workloads on modern MPSoC platforms
while maintaining the level of assurance and reliability of existing
production systems. The objective of this paper is to present an
overview of its inner architecture.

I. INTRODUCTION

For the past twenty years, real-time theory has widely
explored the possibility to use multi-core and many-core plat-
forms for embedded systems. However, while this topic seems
to be very mature in the literature, the safety-critical software
industry still relies on uni-core techniques for operating system
implementations. The industry state-of-the-art regarding multi-
core platforms is to fully separate the processing resources
in time and space isolated partitions with very few possible
communication channels between the different partitions and
therefore to consider that each partition operates as an inde-
pendent uni-core platform. Examples of de facto standards for
these techniques are ARINC653 [1] and AUTOSAR [2].

While from a conservative point of view these are the
most reliable and predictable solutions, these are not the best
available options in the real-time research w.r.t. efficiency,
resource utilisation and cost. Moreover, the rising demand of
computational power per silicon area happening in every do-
main — including safety-critical systems — puts a pressure on
the low-level, middleware and kernel developers to implement
efficient policies for real-time process management.

In recent years, efforts in the research community have
been made to adapt existing general-purpose kernels such as
Linux in order to provide a real-time execution environment
suitable for the evaluation of efficient multi-core real-time
scheduling and resource allocation policies [3], [4]. The main
advantage of this approach is to reuse the existing kernel code
base which has been tested and validated by millions of users
worldwide. However this approach cannot be directly exploited
in production systems. Indeed Linux is not originally intended
nor designed to support neither hard real-time constraints nor
safety-critical applications. Moreover it is not conforming to
the highest demanding certification standards of this industry
such as DO-178-B (level A, B) or ISO26262. As a conse-
quence, the latest real-time multi-core algorithms have not
been tested in a strict and realistic hard real-time environment
yet. As stated by Brandenburg in [5]:

Ideally, [...], worst-case kernel overheads [...]
should be determined analytically. However, for the
foreseeable future, this will likely not be possible
in complex kernels such as Linux. Instead, it would
be beneficial to develop (or extend existing) µ-
kernels of much simpler design with LITMUSRT-like
functionality.

This kind of kernel would have to be built from the ground
up with hard real-time and multi-core constraints integrated
as parts of its base design principles. This would allow for
simpler, finer-grained measurements of the overheads intro-
duced by different implementations of the various solutions
the literature has to offer. Moreover the architecture of this
kernel must scale with an increasing number of cores to allow
execution on many-core platforms.

In order to address the challenge of providing efficient
multi-core kernel implementations while still providing the
same level of assurance and reliability of the existing indu-
stry quality standards, the PARTS Research Center, together
with the company MangoGem S.A., launched the HIPPEROS
project in 2010. The development of the HIPPEROS kernel
started in June 2013. HIPPEROS aims to provide a family
of RTOS solutions, each adapted specifically to the different
needs of the real-time system designer and including the
implementation of the latest results of the research community.
It stands for HIgh Performance Parallel Embedded Real-time
Operating Systems.

II. SYSTEM OVERVIEW

We started the project by developing a new kernel from
scratch running as a bare-metal system on ARM and x86
systems. The objective is to have a fully configurable kernel,
running transparently on different architectures and platforms
with an arbitrary number of cores, that will be the seed of
the different RTOS solutions mentioned above. With such a
flexible design it would be possible to deeply explore the
practicability of real-time theory solutions. To reach this the
kernel has the following design characteristics:

• for scalability reasons, it has a distributed asymmetric
micro-kernel architecture, meaning that each core can
execute a local part of the kernel (the lightweight and
very local operations like simple system calls or process
context switching), while a dedicated core executes the
heavy parts of the kernel (complex system calls, schedu-
ling decisions, shared resources handling, etc), allowing
to execute several parts of the kernel in parallel; to the

25

best of our knowledge, this kernel design approach is very
rare for real-time systems although it is already used in
high performance computing and scalable non real-time
kernels [6]–[8];

• it is configurable at build-time to efficiently suit the
different needs of the system designer or application
developer; e.g. the scheduling policy or the resource
allocation protocol for real-time processes can be chosen
at build-time; notice that only the chosen policies will be
embedded in the production executable binary image of
the kernel (mainly for code size reasons);

• to manage hard real-time workloads, it implements the
popular process model used in the real-time scheduling
research literature: the concept of periodic and sporadic
tasks generating jobs to schedule with a finite time budget
and deadline.

By combining the available configuration options, the
HIPPEROS build system is able to generate a large variety of
RTOS solutions, ranging from a low-overhead statically linked
run-time executive implementing the simple rate monotonic
scheduling policy [9] to a full fledged micro-kernel based ope-
rating system supporting several independent ELF applications
with memory isolation between processes, inter-core message
passing IPC and optimal scheduling policies.

This distributed and highly configurable kernel supporting
real-time workloads aims to provides both a productive system
to industry application designers and an experimental software
platform to real-time researchers. The goal is to test, validate
and run into production low-overhead energy efficient hard
real-time systems running on modern embedded multi-core
platforms with different instruction set architectures.

III. PROCESS MODEL

To derive straightforward implementations of state-of-the-
art algorithms, we chose to faithfully interpret the task model
w.r.t. real-time scheduling theory. We map the popular task
model of real-time literature [9] to the internal HIPPEROS
process abstraction. More specifically, we implemented con-
strained deadline sporadic and periodic tasks.

A set of tasks is statically registered to the kernel. Each
task is configurable by providing the following information: an
executable program and timing information (sporadic/periodic,
offset, deadline, period and worst-case execution time). Time
unit for these values is the number of kernel ticks, a configu-
rable atomic time period. At kernel initialisation time, the
process manager module registers one process for each of these
tasks and configures it according to the task parameters.

The scheduler API is preemptive and priority-based: each
time a process changes state, the scheduler module is called to
decide if some process context switches must occur according
to their priority. If a real-time process overruns its associated
task’s WCET or misses its deadline, a configurable policy
is applied. It could be that the process is killed (the reason
being the non-respect of its contract with the kernel), the event
ignored or the priority of the process changed.

These simple mechanisms allow to easily implement and
evaluate theoretical multi-core scheduling algorithms (like
RUN [10], U-EDF [11] or power- and thermally-aware algo-
rithms) and the associated resource allocation protocols. The

model could be easily extended in the future to support mixed-
criticality tasks: it would require vectorial timing information
rather than scalars.

IV. ASYMMETRIC KERNEL ARCHITECTURE

A recurring problem in kernel design for multi-core plat-
forms is how to distribute the privileged work amongst the
different processing resources. Usual implementations like
Linux use a symmetric design, where each core goes through
the same kernel code and protect data structures with fine-
grained lock mechanisms. However, this approach can lead to
kernel serialisation, meaning that each kernel thread is actually
executed sequentially (each waiting for the completion of one
other) and has been proven not to scale with an increasing
number of cores [6], [12]. Furthermore, in [12], Cerqueira et al
suggest an asymmetric distribution of the work, where one core
has the responsibility to execute the scheduler and dispatches
the processes to the other cores through message passing.

We adopted a similar solution in the HIPPEROS kernel
design: a designated core called the master core is responsible
for managing the global resources, keeping a coherent state of
the system and calling the scheduler to decide which process
has to be preempted or dispatched. We went further than [12]
by implementing this design not only for the scheduler but also
for system calls and process message passing mechanisms. It
allows the kernel to be executed in parallel.

The principle is the following: each time a scheduling
decision has to be made (e.g. a process changes state), the
master core must be woken up. When the master core has to
notify another core (called slave core) that it has to execute a
context switch (process preempted or dispatched), the master
sends a software-generated inter-processor interrupt (IPI) to the
slave core to notify it of the changes. When a process executing
on a slave core calls a system call that may impact scheduling,
the remote system call mechanism is used. The slave part of
the kernel serialises the system call arguments, triggers an IPI
to the master and goes back to user mode to execute a busy
loop waiting for the response of the master part of the kernel.
Notice that this busy loop is process-specific, executed in user
mode and can be interrupted by a context-switch request of
the master core.

In opposition to the symmetric approach, this master/slave
kernel architecture requires almost no locking mechanism as
the system’s global state must not be shared and is only visible
by the master core.

To correctly implement the system calls and the context
switches, some small data structures are shared between the
master and each slave. These data structures are currently
protected with mutexes, and wait-free data structures are
considered to be integrated for the foreseeable future. Notice
that as the contention on these data structures is limited by
the process-to-kernel interactions, several slave cores require
distinct mutexes. Therefore, the peak contention of the con-
currency mechanisms is low. In the long term, our goal is to
be able to predictably bound this contention. As the shared
data structures between master and slaves are limited to what
is necessary for system calls and context switches and the
rest of the system state (e.g. scheduler data structures) is

26

maintained only by the master, we also expect to have limited
performance-degrading cache-line bouncing.

The inter-process communication (IPC) scheme is built on
top of this master-slave RPC mechanism. We support two
different API for IPC: the Copy buffer IPC (CB-IPC), where
the message is copied from the sender buffer to the receiver
buffer and the Zero copy IPC (ZC-IPC), where a page is shared
between the sender and the receiver (no copy is then performed
when passing the message). When a process calls the send or
receive system calls, the master core is warned through an IPI
to update the process states accordingly. However, in case of
CB-IPC, the message is copied locally by the slave to avoid
overloading the master with memory operations.

We expect this approach to scale up to 8 cores of the
embedded platform. More cores contacting the master would
eventually overload it, resulting in a situation where some
running processes have to wait for the execution of all the
system calls of the processes executing on the other cores. For
more cores (e.g. for execution of HIPPEROS on a many-core
platform), we foresee the usage of techniques like clustering,
where several independent micro-kernel instances would be
executed in parallel, like the Helios Satellite Kernels [8]. Each
parallel kernel would be responsible of a subset of the platform
processing cores with independent scheduling, memory mana-
gement and process message passing. Processes on different
clusters that want to communicate would use a dedicated inter-
kernel communication channel. This mechanism still needs to
be implemented and evaluated.

V. KERNEL CONFIGURABILITY

As HIPPEROS targets deeply embedded systems, the
majority of options is configured at build-time to suit the
specific requirements of the embedded software. Policies and
components must then be chosen at build-time.

One of the goals of the kernel is to be portable across
a large variety of architectures and platforms. The kernel
currently supports ARM and x86 architectures. There is a wide
variety of hardware platforms implementing these architectures
and these targets can have very different levels of comple-
xity and features. For example, a Memory Management Unit
(MMU) can be present or not on a given platform. Therefore,
the kernel must be configurable to the point of presenting
several memory models, according to the presence or absence
of a MMU. It is necessary to provide a MMU-free memory
model as some of the critical embedded platforms used in
production today are still MMU- and cache-free.

The scheduling policy (Partitioned-RM, Global-EDF, etc.)
in place is also a modular component that is chosen at kernel
build-time. For energy efficiency reasons, the number of cores
of the target platform actually used can be configured too:
the user could decide to only use a subset of the resources
available on the target platform. Moreover, the set of cores
could be shared between several operating systems (several
HIPPEROS instances as mentionned in section IV or other
OSes). Therefore, decide which cores are used or not will allow
HIPPEROS to be suited for mixed-criticality environment with
space partitioning: the execution of several OSes with various
levels of criticality on top of hypervisor software.

VI. CONCLUSION

In this paper, we introduced a new configurable kernel
designed for embedded multi-core platforms. In opposition
to the traditional research approaches, our kernel is written
from scratch and explores new ways of distributing privileged
work among the different cores of the platform by relying
on its asymmetric architecture. System reliability is enforced
by design using a micro-kernel architecture. By implementing
scalable policies inside the kernel, it will be adapted to modern
and future multi-/many-core platforms.

To enable straightforward implementation of existing real-
time scheduling strategies, we faithfully implemented the lite-
rature task model: periodic and sporadic jobs with a limited
execution budget and a deadline.

Thanks to the high level of configurability and modularity
built in the kernel by design, we expect to provide a new
benchmarking platform to the research community.

Future developments will involve the integration of the
HIPPEROS RTOS in mixed-criticality environments where a
RTOS running highly critical workloads can be executed in
parallel with a general purpose OS like Linux to make an
effective usage of the modern MPSoC platforms.

A free academic license of the product will be available for
distribution. The RTOS is now being validated for various use
cases within the ARTEMIS CRAFTERS project by the PARTS
Research Center and MangoGem S.A.. This work is supported
by the Innoviris grant RBC/12 EUART 2a. The kernel is used
in industrial Proof of Concept projects by HIPPEROS S.A.,
which further develops it into a full-blown certifiable RTOS.
HIPPEROS is a registered trademark of HIPPEROS S.A..

REFERENCES

[1] Avionics Application Software Standard Interface, Airlines Electronic
Engineering Committee, Aeronautical Radio INC, June 2013.

[2] Guide to Multi-Core Systems, AUTOSAR, March 2014.
[3] J. M. Calandrino, H. Leontyev, A. Block, U. Devi, and J. H. Anderson,

“LitmusRT: A testbed for empirically comparing real-time multiproces-
sor schedulers,” in 27th IEEE Int. Real-Time Systems Symposium, 2006.

[4] D. Faggioli, M. Trimarchi, F. Checconi, M. Bertogna, and A. Mancina,
“An implementation of the earliest deadline first algorithm in Linux,”
in 24th Annual ACM symposium on Applied Computing, 2009.

[5] B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, The University of North Caro-
lina, 2011.

[6] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): The
case for a scalable operating system for multicores.” SOSP, 2009.

[7] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new
os architecture for scalable multicore systems.” SOSP, 2009.

[8] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt,
“Helios: Heterogeneous multiprocessing with satellite kernels.” SOSP,
2009.

[9] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.
[10] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “RUN: Optimal

multiprocessor real-time scheduling via reduction to uniprocessor,” in
IEEE 32nd Real-Time Systems Symposium, Nov. 2011.

[11] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic, “U-
EDF: An unfair but optimal multiprocessor scheduling algorithm for
sporadic tasks,” in ECRTS, 2012.

[12] F. Cerqueira, M. Vanga, and B. Brandenburg, “Scaling global scheduling
with message passing,” in Proceedings of the 20th IEEE Real-Time and
Embedded Technology and Applications Symposium, April 2014.

27

Adaptive Resource Sharing in Multicores

Kai Lampka Jonas Flodin Wang Yi
Department of Information Technology, Uppsala University

Adam Lackorzynski
Technische Universität Dresden

Abstract—This short paper presents an adaptive, operating
system (OS) anchored budgeting mechanisms for controlling
the access to a shared resource. Temporarily blocking accesses
from a core reduces the waiting times of other applications
executing in parallel on other cores. This helps to guarantee
the assumed worst case execution time bounds at run-time. In
addition to our previous work [1], the presented scheme considers
shifting of unused access bandwidth among applications and takes
advantage from a time-triggered scheduling policy for executing
real-time applications at core-level.

I. INTRODUCTION

a) Motivation: Sharing of hardware as found in COTS
multicores brings in hidden dependencies when consolidating
hard and soft real-time applications on a single processor.
These dependencies can provoke timing faults that are difficult
to foresee and can corrupt the functionality of the system.

The challenge inherent to the design of the run-time
environment to support the timing correct execution of mixed
critical workloads is three-fold.

Firstly, hard real-time tasks need to be isolated, such that
their assumed upper bound on their execution time always
holds. In addition, standard real-time analysis builds on task
sets with known bounds on their execution times. The feasibil-
ity of a scheduling strategy, shown at design time, is guaranteed
to hold at run-time if the upper bounds on the execution times
(and activation frequencies) are not violated. As unaccounted
waiting at a resource prolong execution times, it can become
a threat to a systems timing correctness.

Secondly, resource sharing needs to be considerably dy-
namic, to avoid over-provisioning and thereby achieve good
utilization of the used equipment.

Thirdly, the mechanism to coordinate the access to a shared
resource must not be too complex to limit the computational
overhead experienced at run-time.

b) Technical problem description: As an example to
resource sharing, this short paper considers the sharing of the
dynamic random access memory (DRAM).
When carrying out a worst-case response time analysis
(WCRT) for quantifying the computation time consumption
of an application, one has to assume that a memory access
from a core can be delayed by all other memory accesses
occurring while the respective access is waiting at the DRAM-
controller. With n access requests from other cores, this yields
a delay of (n + 1) times the worst case service time until
a request is served. This assumption is conservative as it
overapproximates the actual behaviour of the system at run-
time. However, it is safe as long as less than n competing
access requests occur. It is therefore of uttermost importance
to ensure at run-time that the number of competing memory

This work is partly funded by DFG-SPPEXA’s project FFMK.

access requests is bounded by a pre-defined number and
one does not experience unaccounted waiting times due to
unaccounted memory requests.
In this short paper, we summarize our effort to do this
efficiently and effectively and point out directions for improve-
ments left to the future.

c) Related Work: For dealing with memory access
contention effects in the setting of multicore architectures,
several strategies have been proposed.
Time deterministic memory designs avoid interference by
physically separating relevant parts of the memory hierarchy
and exclusively assigning parts to cores. This ranges from the
use of scratchpad memories [5] to the partitioning of main
memory [3]. However, these techniques all rely on the layout
of the memory hierarchy.
Another way to feature timing predictability is provision of
isolation mechanisms as part of the run-time environment. At
the level of OS, this can be done by controlling the virtual
to physical address mappings [6] or by restricting access
frequencies of the main memory for each core [7], [8].

d) Own Contribution: Advancing over the work of
Pellizzoni et al. [7], [8], this short paper propose the follow-
ing innovations when it comes to resource access budgeting
schemes: (a) we enable lifting of budgets, namely once all
real-time tasks are pre-maturely completed. (b) we also feature
donation of budgets. But, donation is only allowed, if the
donating real-time task has already terminated.
Both features can be considered safe, the safeness of budget
lifting is demonstrated in [1]. The safeness of budget donation
comes from the fact that we avoid premature shifting of
resource accesses. This is important and this way we avoid
starvation of real-time applications which could provoke tim-
ing faults.
In addition to our own work [1], this short paper presents a
budgeting scheme which takes advantage of a time-triggered
scheduling strategy of real-time applications at the levels of
cores. This way, we not only lift unneeded budgets more often.
We also hope to shift unused access budgets more often as this
can take place every time all real-time applications of a time-
frame have processed their workload.

II. SYSTEM MODEL

We consider a system deployed on a typical COTS mul-
ticore architecture. There are M CPU-cores, K of which
are executing hard real-time software and M − K cores are
executing best-effort applications.

There are N sporadic hard real-time tasks T =
{τ1, τ2, ..., τN}, each defined by the quadruple τi =
(Ci, Pi, Di, Hi), with Ci as the WCET for the task when
running alone on one hard real-time core, Pi as the minimum
inter arrival time of the task, Di ≤ Pi as the task’s relative

29

ts
2

s
1

f
1

f
2

e
1

e
2

τ
1

τ
2

budget

B
2

B
1

U
2

B
2

slack

U
1

WCET

WCET

slack

τ
1

τ
2

Fig. 1. Budgeting example with two tasks. Arrows pointing up denote job
releases and dashed vertical lines denote the point in time when a job would
have finished if it needed the entirety of its WCET.

deadline and with Hi as the largest number of memory access
requests produced by τi during one task instance.

Each core has its own fixed priority scheduler and each
task τi is mapped to one specific core out of the K hard real-
time cores.
The other cores we collectively call soft real-time cores and
they execute soft real-time or best-effort tasks, we do not make
any assumptions about the soft real-time tasks. It is these
cores which we intend to control through the presented
budgeting scheme and thereby ensure timing correctness
of the hard real-time applications running in parallel.
All cores share a single memory controller which acts as an
arbiter for serving requests to DRAM.

III. DYNAMIC BUDGETING WITH LIFTING

The initial scheme of budget enforcement and lifting is
presented in [1]. We briefly recall its working principle by
means of an example.

Fig. 1 illustrates the execution of two tasks. The upper part
depicts their interleaved execution on the hard real-time core.
The lower part shows which budget is in effect on the soft
real-time cores. The hard real-time core starts executing τ2 and
signals the soft-real time cores to use budget B2 at time s2. The
hard real-time core continues executing τ2 until time s1, when
it is preempted by the arrival of τ1, which also triggers the
soft real-time cores to switch budget to B1. When τ1 finishes
early at f1, the soft real-time cores are signaled to exchange
the budget B1 for U1, which means that they have unlimited
access to main memory until e1. At the same time, the hard
real-time core switches to executing τ2. When U1 expires at
time e1 the soft real-time cores fall back to use budget B2

until τ2 finishes at f2. The budget B2 is then switched for U2

until it expires at e2.

IV. COMBINING RESSOURCE ACCESS BUDGETING AND
TIME TRIGGERED APPLICATION SCHEDULING

A. Time-triggered execution of tasks

Scheduling of hard real-time tasks is organized according
to a standard time-triggered scheme, e. g., as defined in [2].

A time-triggered schedule at core i is a sequence of Ki

slots si,j , where s∆
i,j refers to the time length of each slot.

While executing a slot si,j , we need to guard that all the
cores running soft real-time applications do not issue more

Algorithm 1 Enforcing budgets on a soft core
1: Requires: timer T , active budget B,
2: set of active budgets Budget
3: Input: signal e mapping to a slot and action
4: procedure BSCHEDULER(signal e)
5: PREEMPTION = OFF
6: if action(e) ∈ {depleted, expired} then
7: wait4Timer(T)
8: goto line 28
9: end if

10: update(Budgets,B.beff − readPMC(), B.t− T)
11: if action(e) == activate then
12: insert(Budgets, slot(e))
13: else if action(e) == deactivate then
14: remove(Budgets, slot(e)))
15: else if action(e) == donated then
16: C = peek(Budgets, slot(e))
17: updateDonation(Budgets,B.d, C.t)
18: end if
19: while B = peek(Budgets)) 6= ∅ ∧B.t ≤ 0 do
20: remove(Budgets,B)
21: end while
22: if B == ∅ then
23: stopTimer(T)
24: else
25: setPMC(B.beff)
26: setTimer(T = B.t)
27: end if
28: PREEMPTION = ON
29: end procedure

than Beff (si,j) accesses to the main memory in total.
Below we detail on the algorithm to implement this basic

functionality. For simplicity, we ignore the distribution of
budgets and donations over multiple cores executing a soft
real-time workload,. For the presented algorithms, the distri-
bution could be arranged transparently, through a dedicated
administering core.

B. Budget enforcement for soft real-time workloads

The required functionality for guarding the number of
memory accesses such that timing correctness of the hard real-
time tasks is ensured, is provided by Algorithm 1.

The implementation details of Algorithm 1 are as follows:
we assume that there is a queue Budgets of active budgets,
with at most one active budget per hard real-time core.

Within the queue, the active budgets are ordered by increas-
ing budget sizes. The following functions are used to access
items of the queue: function replace and remove, which work
as expected. Function update(Budgets, a, b) decreases all
budgets of the queue by value a and decreases their lifetimes
by value b. This is needed once the decisive budget has reached
its lifetime or is replaced by a newly activated budget. Function
peek gives the head of the queue, i. e., the active budget with
the smallest number of allowable cache misses. The functions
does not remove the item from the queue.

The algorithm itself works as follows: upon depletion of
the decisive budget or at the end of its lifetime the core suspend

2

30

execution for the remaining lifetime, which in case of the “end
of lifetime” situation is 0 (line 5).

In case the decisive budget has reached the end of its life
time or a new budget to be activated has arrived, we update all
active budgets with respect to to the number of cache misses
and the expired time occurred during the current budget has
been made the decisive one.

In case of a premature deactivation the decisive budget, it
is removed from the budget queue and the next active budget
is fetched. This can either be the same, but updated budget, a
new one, where budgets with invalid lifetime are discarded, or
it is an empty budget (line 18-20).

In case of an empty budget all active budgets have been
prematurely invalidated and the core has a non-restricted
allowance to the main memory.

In case a valid budget is fetched from the queue, the LLC-
register and the lifetime clock counter are set accordingly (line
25 and 26).

Budget donation executed by a hard real-time core is
considered before actually fetching a budget from the queue.
Function updateDonation(Budgets, a, b) adds value a to
each budget, here parameter B.beff and does so only for those
budgets which have a residual lifetime smaller than b.

V. IMPLEMENTATION

For evaluation, we use the L4Re microkernel system that
provides the environment to run existing applications and
operating systems through virtualization as well as native
microkernel-based applications. The L4Re gives us the flexibil-
ity to use virtualization as well as specific native applications
in a very controlled environment.

Scheduling in the L4Re microkernel applies scheduling
contexts (SCs), a thread-specific data structure that contains
all information required for scheduling [4]. A special fea-
tures of the SC mechanism is that a thread, or vCPU, can
have multiple SCs, allowing to give a thread/vCPU multiple
different scheduling parameters. This is especially useful in
virtualization contexts where the guest OS can use multiple
SCs to express the requirements of its internal tasks to the
microkernel. In our work we use the SC mechanism to
implement budgets based on performance counters.

1) Hardware Performance Counters: Modern processors
have a performance monitor counter (PMC) unit that allows to
count hardware-related events in the CPU core, such as cache
misses. The core can also generate interrupts when a counter
reaches a predefined threshold. Using the PMC it is possible to
count the number of last-level cache misses which is equivalent
to the number of main memory fetches. If the number of
memory fetches reaches a certain threshold, the microkernel
may suspend the execution of soft real-time applications to
avoid an overload of the main memory with memory access
requests. The challenge is to use the PMC in such a way, that
is dynamically resetting the PMC and adjusting the threshold,
that the maximum amount of memory accesses can be placed
on the DRAM without affecting real-time applications.

2) PMC Pecularities: All Intel Core-i CPUs have a min-
imal standard set of performance counters that includes the
last-level-cache-miss counter. The first experiment we did was

checking whether our test program indeed uses all of the
memory bandwidth available. By running it on a different
number of cores in parallel we expect the runtime of each
program to increase with the number of cores. That is, on 4
cores each program shall run 4 times longer compared when
running alone in the system. We observed this behavior.

However, when we added delays to the memory access
loop in the test program, with the goal to not fully use up
all the memory bandwidth, the respective last-level-cache-
miss counter shows significantly less events although the same
amount of memory was accessed. This is likely because of the
hardware memory prefetcher where memory accesses are not
counted, as they are no cache misses. We tried to disable the
prefetcher via the IA32_MISC_ENABLE MSR [8], however,
this yields to a general protection fault when writing the MSR
on the used i7-4770 CPU. Using non-cached memory is no
choice either because those accesses do not causes cache-
relevant events, such as misses. Using other counters available
on the specific CPUs showed either the same behavior (signif-
icantly different values for with and without delay loops), or
did not count at all.

Intermediate result is that Intel-based x86 desktop CPU,
such as the i7-4770, can not be used to implement memory
access budgeting based on performance counters. We need to
look at other CPU lines, such as Xeon CPUs, or older Intel
CPUs, whether they are better suited, for example, because
they allow to disable the prefetcher. Alternatively, looking at
ARM Cortex-A CPUs shows a counter called MEM_ACCESS
which sounds promising as well.

REFERENCES

[1] Jonas Flodin, Kai Lampka, and Wang Yi. Dynamic budgeting for
settling DRAM contention of co-running hard and soft real-time tasks.
In Proceedings of the 9th IEEE International Symposium on Industrial
Embedded Systems, SIES 2014, Pisa, Italy, June 18-20, 2014, pages 151–
159, 2014.

[2] Gerhard Fohler. Joint scheduling of distributed complex periodic and
hard aperiodic tasks in statically scheduled systems. In proceedings of
the 16th IEEE Real-Time Systems Symposium, pages 152–161, 1995.

[3] Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, M. Sullivan, Ikhwan
Lee, and M. Erez. Balancing dram locality and parallelism in shared
memory cmp systems. In High Performance Computer Architecture
(HPCA) 2012, pages 1–12, Feb 2012.

[4] Adam Lackorzyński, Alexander Warg, Marcus Völp, and Hermann
Härtig. Flattening hierarchical scheduling. In Proceedings of the tenth
ACM international conference on Embedded software, EMSOFT ’12,
pages 93–102, New York, NY, USA, 2012. ACM.

[5] I. Liu, J. Reineke, and E.A. Lee. A pret architecture supporting
concurrent programs with composable timing properties. In ASILOMAR
2010, pages 2111–2115, Nov 2010.

[6] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and
Chengyong Wu. A software memory partition approach for eliminating
bank-level interference in multicore systems. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, pages 367–376, New York, NY, USA, 2012.
ACM.

[7] Heechul Yun, Gang Yao, R. Pellizzoni, M. Caccamo, and Lui Sha.
Memory access control in multiprocessor for real-time systems with
mixed criticality. In Real-Time Systems (ECRTS), 2012 24th Euromicro
Conference on, pages 299–308, 2012.

[8] Heechul Yun, Gang Yao, R. Pellizzoni, M. Caccamo, and Lui Sha. Mem-
guard: Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms. In RTAS 2013, pages 55–64, 2013.

3

31

Implementing Adaptive Clustered Scheduling in
LITMUSRT

Aaron Block
Department of Mathematics and Computer Science

Austin College
Sherman, TX

Email: ablock@austincollege.edu

William Kelley
BAE Systems

Fort Worth, TX

Abstract—In this paper, we develop an adaptive scheduling
algorithm for changing the processor shares of tasks on real-
time multiprocessor systems where tasks are assigned to clusters
of processors. Additionally, we implement this adaptive algorithm
as a LITMUSRT plugin. Our focus is on adaptive systems that are
deployed in environments in which tasks may frequently require
significant share changes. Prior work on enabling real-time
adaptivity on multiprocessors has focused primarily on systems
where tasks are scheduled from a global priority queue. The
algorithm proposed in this paper use feedback and optimization
techniques to determine at runtime which adaptations are needed.

I. INTRODUCTION

Real-time systems that are adaptive in nature have received
considerable recent attention for both uniprocessor and multi-
processor environments [1], [4]–[6], [10], [11]. In prior work
[5], we designed and implemented an adaptive multiprocessor
scheduling algorithm (A-GEDF), in which all tasks are sched-
uled from a single global priority queue and can freely migrate
between processors. As shown in [9], global systems have the
advantage that they can fully utilize a multiprocessor system
and still guarantee that deadlines will miss their deadlines
by at most a bounded amount. However, Bastoni et al. [2]
demonstrated that for soft-real time systems with many pro-
cessors (i.e., 12 or more cores), global scheduling algorithms
are inferior to algorithms in which tasks can migrate between
a cluster of processors that share a common cache. In this
work, we designed and implemented (as a LITMUSRT plugin)
an alternative adaptive multiprocessor real-time scheduling
algorithm (A-CEDF), which is a modification of A-GEDF that
uses a clustered scheduling algorithm as its basis rather than
a global scheduling algorithm. In this paper, we showed that
adaptive behavior (which can improve the Quality of Service
of a soft real-time systems) can be enabled on a clustered
system without substantially increasing the scheduling cost.

II. TASK MODEL

In this section, we describe our system model and the CEDF
scheduling algorithm, upon which A-CEDF is based.

A. Sporadic Tasks

A sporadic task is defined by a worst-case execution time
and period. The fraction of a processor required by a task is

called the weight of the task, and is defined as the worst-case
execution time divided by the period. The first job of a task
may be invoked or released at any time at or after time zero.
Successive job releases of task must be separated by at least
the period of the task. The deadline of a job is period time
units after the job is released. A job is said to be active if it has
been released, but is not yet completed. In this work, we are
concerned with soft real-time systems where it is acceptable
for a job to miss a deadline as long as the amount of time that
a job can miss a deadline is bounded (such a system is said
to have bounded tardiness).

The actual execution time of job is the amount of time for
which the job is actually scheduled. The actual weight of a
job is the share of a processor that a job actually requires and
is defined by the actual execution time of a job divided by the
period of the task. We assume that actual execution time and
actual weight for a job are unknown prior to the completion
of the job since both values may differ between job releases.

The multiprocessor sporadic task scheduling algorithm that
is the most relevant to this work is clustered earliest deadline
first. (CEDF). Under CEDF, tasks are permanently assigned
to “clusters” of processing cores that share a common cache.
Jobs with work remaining are prioritized for scheduling on
a cluster by their deadline. Jobs can be scheduled on any
processor in their cluster, but cannot be scheduled outside
of their cluster. As shown in [2] for soft real-time systems,
CEDF-based scheduling tends to perform better than non-
clustered approaches when clusters contain at least six cores.

B. Adaptable Sporadic Tasks

The adaptable sporadic task system [7] extends the notion
of a sporadic task system in three major ways. First, worst-
case execution times are not assumed. Second, each task has
a set of service levels, which represent a different Quality of
Service (QoS) levels of a task. Third, tasks have a weight
translation function, which uses the actual weight and current
service level of a task to estimate the actual weight of the task
if it changed service levels.

Each service level of a task has three characteristics: a
QoS value, a period, and a code segment. When a job is
released, it is released at a given service level. That service
level determines the code segment that the job will execute,

33

the deadline of the current job (via the period) and the earliest
possible release time of the next job (again via the period).

The weight translation function of a task is an empirically-
determined function that takes as an input the current active
weight and service level of a task and provides an estimate of
what the weight of task would be if it changed to a new service
level. For example, if service level 2 for a task required twice
as much computation as service level 1 and the current weight
of a task was 0.25, then changing from service level 1 to 2
would change the weight of the task to 0.5. It is unnecessary
for the weight translation function to be perfectly accurate, but
the more accurate it is, the better an adaptive algorithm will
be optimizing system QoS. It is important to note that tasks
with lower QoS values must have lower estimated weights.
Thus, an adaptive algorithm can trade QoS for schedulability.

III. A-CEDF
In this work, we introduce the adaptive clustered earliest

deadline first (A-CEDF) scheduling algorithm. A-CEDF is
a clustered-scheduled variant of the adaptive global earliest
deadline first (A-GEDF) scheduling algorithm, which we
proposed in prior work [7]. A-CEDF is designed to schedule
adaptable sporadic task with the objective of maximizing the
total QoS while maintaining bounded tardiness. A-CEDF con-
sist of five primary components: (1) the predictor, which uses
a proportional-integral (PI) feedback controller to estimate the
weights of future jobs using the actual weights of previously
completed jobs; (2) the optimizer, which given estimated job
weights, attempts to determine an optimal set of functional
service levels; (3) the repartitioner, which given the estimated
job weights attempts to determine the optimal assignment of
tasks to clusters; (4) several reweighting rules, which are used
to change the functional service level of a task to match that
chosen by the optimizer; and (5) the CEDF algorithm. At a
high level, these components function as follows.

• At each instant, tasks are scheduled via CEDF.
• At a job’s completion, the predictor is used to estimate

the weight for the next job release.
• After a developer-specified threshold based on task

weight and time elapsed, the optimization component
uses the estimated weight to determine new service levels
for each task. If the service level of a job changes, then
the reweighing rules will enact it.

• If the clusters are “imbalanced”, then the repartitioner
will correct this behavior by migrating tasks between
clusters. If necessary, the optimization and reweighting
rules may be run as part of this process.

The primary difference between A-CEDF and A-GEDF is that
A-GEDF allow tasks to freely migrate between all processors.
Thus, A-GEDF does not need or have a repartitioner compo-
nent. That being said, A-CEDF and A-GEDF have similar
predictors, optimizers, and reweighting rules.

IV. IMPLEMENTATION

To better understand A-CEDF, we implemented this al-
gorithm in the LITMUSRT version 2014.2 (LInux Testbed

for MUltiprocessor Scheduling in Real-Time systems), which
is an extension of Linux (currently, version 3.10.41) that
allows different multiprocessor scheduling algorithms to be
linked as plug-in components [3], [8]. Our implementation of
A-CEDF consists of both a user-space library and kernel sup-
port added to LITMUSRT. Our implementation of A-CEDF
required 1,227 lines of code. Most of these changes were in
modifying LITMUSRT’s default CEDF implementation. In
prior work [7], we discussed how to modify LITMUSRT

to support adaptable sporadic tasks scheduled via global
scheduling algorithms. In this work, we focus on the additional
challenges that arise when implementing clustered real-time
adaptive scheduling algorithms.

A. Challenge: Defining “Imbalanced”

As we mentioned in Sec. III, A-CEDF repartitions when
the clusters are imbalanced. Informally, the clusters become
imbalanced if one cluster is doing more or less work than
another. However, it is not obvious how we should formally
define “imbalanced.” There are two metrics that we can use
to measure the quality of a partitioning: (1) the total weight
of all tasks assigned to a given cluster and (2) the total QoS
of all tasks assigned to a given cluster. Under either metric, a
system is “imbalanced” if the metric value (i.e., total weight
or QoS) of one cluster is higher than a user-defined threshold
the metric value of another.

In this work, we repartition the system when there is an im-
balance between the QoS of tasks assigned to different clusters.
We chose to use a QoS-based metric because the objective of
A-CEDF is to maximize the QoS without causing unbounded
tardiness. Thus, the weight balance by itself is not useful if
the system could run at a higher QoS after rebalancing. For
example, consider the following scenario. Suppose that an
external event occurs that increases the execution time for all
tasks on a given cluster. The optimizer component of A-CEDF
will reduce the service level (and hence the QoS) for every
task on the cluster. If this reduction in QoS is larger than the
user-defined threshold, then this will trigger the repartitioning
to occur. It is possible that such an event would be unnoticed
by a weight-based metric; particularly, if the total weight of
all tasks was approximately the same before the external event
and after the optimizer ran.

B. Challenge: Enacting a Repartioning

When the system determines that tasks should be reparti-
tioned, the next question is when should that repartitioning be
enacted. There are two primary approaches to this problem: (1)
migrate all tasks to new clusters immediately or (2) gradually
migrate tasks between clusters over time. In our implementa-
tion of A-CEDF, we migrate tasks gradually. Specifically, after
a repartitioning event, we migrate each task when it finishes
its active job. We chose this approach because, based on a
simple extension to our work in [6], it is possible to show that
frequently moving incomplete jobs between clusters can cause
unbounded tardiness.

34

Additionally, it is worth noting that since repartitioning
occurs because of QoS imbalances, the quicker the repartition
is enacted, the better it is for the overal QoS for the system.
Yet, quickly enacting a repartitioning is not crucial for the
functioning of the system. Thus, while gradually migrating
tasks between clusters will reduce the QoS of the system, we
believe this tradeoff is worth the cost to preventing unbounded
tardiness from occurring.

C. Challenge: Migrating a Task

In the typical implementation of CEDF, each cluster has its
own spin lock for protecting the priority queue containing all
active jobs. This prevents a race condition in which multiple
cores on the same cluster attempt to change the priority queue
at the same time. Moreover, under CEDF tasks never migrate
between clusters. This is not the case in A-CEDF.

To enable A-CEDF to migrate a task from Cluster A to
Cluster B, we need two layers of synchronization: (1) one
layer to prevent any core on Cluster B from corrupting Cluster
B’s priority queue and (2) one layer to prevent any core on
Cluster A that is migrating a task to Cluster B from corrupting
Cluster B’s priority queue. Moreover, Cluster A cannot simply
acquire Cluster B’s spin lock or a deadlock could occur (e.g.,
if Cluster B attempted to migrate a task to Cluster A at
approximately the same time that Cluster A is attempting to
migrate a task to Cluster B). To enable task migration, we
need a more sophisticated approach to synchronization. We
do so by employing the following method:

• Each cluster has a unique ID number.
• Each cluster has a prime and second spinlock.
• When entering into any critical section, a core first

acquires its cluster’s prime lock, then its second lock.
• When a task that is flagged for migration from Cluster A

to Cluster B, it executes the pseudo-code given in Fig. 1.
There are three keys to this synchronization technique. First,
the prime lock on each cluster protects the priority queue
from corruption by all cores in the same cluster. Second, the
second lock provides a means to protect a cluster’s priority
queue from external corruption (i.e., Cluster A must acquire
Cluster B’s second before migrating the task). Third, by
releasing and reacquiring second locks in a globally estab-
lished order (i.e., the code in Fig. 1), we prevent the circular
chain of dependencies that is a prerequisite for deadlock.
Notice that this ordering heuristic is similar to the double-lock
used by Linux for its native run queues.

D. Cost of Implementation

To measure the cost of an implemented A-CEDF, we ran
a simulated virtual reality human tracking system (called
Whisper [12]) on a Mac Pro with two 2.66 Ghz 6-core Intel
Xeon processors (12 cores total). Each core has 512KB of
L2 cache and each processor has 12 MB of fully shared L3
cache. Our clustered implementation of A-CEDF had two
clusters, one for each processor. Our simulated human tracking
system had 96 tasks each of which had both gradual and
sudden changes in weight. We found that the introduction of

Migrate task from Cluster A to B
1: Release Cluster A’s second lock
2: if Cluster A’s ID is less than Cluster B’s ID then
3: Acquire Cluster A’s second lock
4: Acquire Cluster B’s second lock
5: else
6: Acquire Cluster B’s second lock
7: Acquire Cluster A’s second lock
8: fi
9: Actually move task from cluster A to B
10: Release Cluster B’s second lock

Fig. 1. Pseudo-code defining task migration

adaptive techniques slightly increased the average scheduling
cost compared to a non-adaptive variant. Specifically, A-CEDF
took on average 5.8µs per scheduling decision while CEDF
took on average 4.3µs per scheduling decision. The increased
running time was primarily becasuse our implementation of
the of the optimizer and repartitioner involves sorting a large
number of tasks. It is possible to reduce the running time of
A-CEDF by using a faster, but less accurate implementation
of these two components. It is worth noting that neither
the feedback predictor nor the double-locking mechanism
appreciably increased the scheduling time.

V. CONCLUSIONS AND FUTURE WORK

In this work, we designed and implemented A-CEDF as a
LITMUSRT plugin. In the process of implementing A-CEDF,
we came across multiple issues with implementing any type
of adaptive clustered real-time scheduling algorithm. We also
established that adaptive behavior can be enabled in clustered
soft-real time systems with only a small additional scheduling
cost. In future work, we plan to compare the performance of
A-CEDF to A-GEDF at maximizing the QoS for a system.

REFERENCES

[1] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In RTSS. ’02.

[2] A. Bastoni, B. Brandenburg, and J. Anderson. An Empirical Comparison
of Global, Partitioned, and Clustered Multiprocessor Real-Time Sched-
ulers. RTSS, ’10.

[3] B. Brandenburg Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis, UNC, ’11.

[4] A. Block, J. Anderson, and G. Bishop. Fine-grained task reweighting
on multiprocessors. Journal of Embed Comp, ’11.

[5] A. Block, Adaptive Multiprocessor Real-Time Systems. PhD thesis,
UNC, ’08,

[6] A. Block, J. Anderson, and U. Devi. Task reweighting under global
scheduling on multiprocessors. Real-Time Sys., ’08.

[7] A. Block, B. Brandenburg, J. Anderson, and S. Quint. An Adaptive
Framework for Multiprocessor Real-Time Systems. ECRTS, ’08.

[8] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In RTSS, ’06.

[9] U. Devi and J. Anderson. Tardiness bounds under global EDF schedul-
ing on a multiprocessor. Real-Time Sys., ’08

[10] N. Khalilzad, F. Kong, X. Liu, M. Behnam, and T. Nolte. A feedback
Scheduling Framework for Component-Based Soft Real-Time Systems.
RTAS., ’15

[11] C. Lu, J. Stankovic, S. Son, and G. Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Sys., ’02.

[12] N. Vallidis Whisper: A Spread Spectrum Approach to Occlusion in
Acoustic Tracking. PhD thesis, UNC, ’02.

35

Preliminary design and validation of a modular framework for
predictable composition of medical imaging applications

M.M.H.P. van den Heuvel†, S.C. Crăcană†, H.L. Salunkhe†, J.J. Lukkien†, A. Lele† and D. Segers‡
†Eindhoven University of Technology, Eindhoven, The Netherlands — ‡Barco N.V., Kortrijk, Belgium

Abstract—In this work, we present a software framework
which enables us to analyse the performance of medical imaging
algorithms in isolation and to integrate these algorithms in a
pipeline, thereby composing a medical application in a modular
manner. In particular, we show how public-domain middleware
can be configured in order to achieve predictable execution of a
use-case application. On this use case we applied formal analysis
and we validated the promised performance on a real platform.

I. INTRODUCTION

Many safety-critical products are traditionally developed
using hardware-software co-design. For example, the software
of medical imaging devices is often run on dedicated hardware.
However, these days custom-off-the-shelf (COTS) hardware has
become an attractive alternative for the development of safety-
critical devices, because the performance and programmability
have significantly increased over the past decade. This trend is
driven by innovations in the consumer electronics (CE) markets.
Nevertheless, there are challenges that slow down the adoption
of CE technology for medical devices. Firstly, the product
design becomes more software oriented requiring companies
to implement their existing imaging algorithms in software.
Secondly, the medical application of such devices requires
strict certification regarding their performance.

Just like in CE, medical imaging algorithms typically impose
real-time constraints with highly transient variations in the
rendering of their streams. For CE devices, however, allocating
a static amount of processing resources to video applications
is unsuitable [1], because it leads either to frame misses or
to an over-provisioning of resources. To enable cost-effective
video processing, many quality-of-service (QoS) strategies [2]
have been developed. These strategies estimate the required
processing resources by the processing pipeline dynamically
and then allocate resources for image processing which may
or may not be sufficient. In the latter case, a work-preserving
approach is often taken in which the processing of the current
frame is completed and a next frame is skipped [2]. However,
for medical imaging applications, as considered in the current
paper, the loss of video content and quality compromises are
unacceptable.

In this paper, we analyze how a framework made from COTS
hardware and COTS software fits the design process of medical
imaging devices. The challenge with COTS hardware is that
we miss a predictable execution architecture. Moreover, COTS
software is not designed to give guarantees and often lacks
real-time scheduling of the imaging algorithms that we use.
We know however that in practice we may have good results.

This work was supported in part by the European Union’s ARTEMIS Joint
Undertaking for CRYSTAL under grant agreement No. 332830.

Fig. 1. Overview of tools and methods deployed in the engineering work
flow in order to achieve predictable composition of medical video applications.
For more details, we refer the interested reader to [3].

II. MODULAR SOFTWARE FRAMEWORK

In order to support modularity in the composition of a
video application, we have decided to develop a flexible
framework based on configurable public-domain middleware
(see Figure 1), i.e., using Qt and gStreamer. The key idea behind
this framework is that a video application can be decomposed
into several imaging components (called plugins by gStreamer)
with standard interfaces. These plugins can then be connected to
each other, thereby creating a pipeline. Since Qt and gStreamer
support different COTS hardware platforms, the combined
framework allows for a reuse of imaging algorithms (wrapped
in gStreamer’s software plugins) in various setups and products.

The integration of Qt and gStreamer is work in progress.
Firstly, our industrial partners are co-developing the Qt-
quickstreamer plugin which extends the Qt Modeling Language
(QML), so that QML can be used to compose an imaging
pipeline from gStreamer plugins in an intuitive way. Secondly,
Burks and Doe [4] investigated how custom imaging algorithms
can be automatically imported from their development tools
(Matlab Simulink) into a gStreamer plugin, i.e., an algorithm
is wrapped into a plugin with a proper gStreamer interface.
The integration of Qt and gStreamer is therefore expected to
decouple the development of custom imaging algorithms and
their integration.

Our aim is to integrate this modular software framework in
the development flow of medical devices. We must therefore
establish a predictable match between the execution model of
gStreamer and the execution model being used at the stage of
performance modeling. The remainder of the paper presents
a case study in which prediction models are used to trade
certain performance of an imaging application for its required
processing resources during its real execution in our framework.

37

TABLE I
PREDICTED VERSUS EVALUATED RESOURCE USAGE FOR THE EXAMPLE PIPELINE, WITH OR WITHOUT A BACK-PRESSURED GSTREAMER IMPLEMENTATION.

Back-pressure Memory allocation Max. run-time memory usage Predicted throughput Measured throughput
(number of frames per queue) (number of frames per queue) (frames per second) (frames per second)

yes (2,1,1) (1,1,1) 28 31.4
no (2,2,2) (2,2,2) 31 31.8

Fig. 2. An example video processing pipeline which we analysed using
formal SDF analysis and which we implemented and validated in gStreamer.
Each plugin in the pipeline has been benchmarked on a frame-by-frame basis,
denoted by (BCET, ACET, WCET) in milliseconds.

III. USE CASE: FROM PERFORMANCE MODELS TO
RESOURCE ALLOCATION AND VALIDATION

In this section, we model and implement an H264 client (see
Figure 2). Since the software has to run on a medical device,
we are interested in predicting, controlling and validating its
execution time and memory usage. We therefore want to follow
a standard design practice in which we control concurrency
and memory usage to influence response times and throughput.
Table I gives an overview [3] of the predicted performance
and the real performance of such a controlled pipeline.

A. Experimental setup

We measure and validated the performance of our example
pipeline on a X86-64 quad-core system. Each core offers two
hardware threads. The example pipeline requires a number of
software threads less than the number of hardware threads.

The threads are scheduled by Ubuntu 12.04 LTS (Linux
kernel 3.11) and controlled by the gStreamer 0.10 and Qt 5.2
frameworks on top. The application running the pipeline is set
to have the highest priority in the system and the threads get
unique processor affinities (bound to separate cores). With this
configuration we ensure that threads get executed as soon as
possible, i.e., as mandated by our prediction models.

We fed the pipeline synthetic video sequences, generated
using GStreamer’s videotestsrc element (an open-source H264
encoder). They contain different patterns (white, checkers, noise
and zone-plate). All sequences contain 1000 frames.

B. Constraining the data input stream

We compare two techniques to process all data in real time,
i.e., without data loss and with finite sizes of queues. We
therefore use a data source that reads compressed video content
from a file. Some platforms (including gStreamer) support a
synchronization mechanism, called back pressure, that suspends
the data source when its output buffer is full and prevents data
from getting overwritten. Alternatively, when the data source
is uncontrollable, a traffic shaper can control the amount of
data being pushed into the processing pipeline.

Synchronization may also be established over a network
connection [5], so that the server stops sending packets when
the client cannot handle more. This requires application-level
streaming protocols on top of standard networking stacks,
which need to be implemented and maintained. Alternatively,
(without back-pressure support) the data source must constrain

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
on

d)

Total queue size (frames)

(1,1,1)

(2,1,1)
(2,2,1) (2,2,2)

Fig. 3. Pareto optimal storage distributions of queues (AB, BC, CD) in a
back-pressured example pipeline.

the amount of data being pushed into the pipeline. Some COTS
network hardware is able to limit the data transmission rates
by means of prioritization and buffering of specified real-time
data [6]. We have implemented a traffic shaper in software as
a gStreamer plugin in order to simulate streaming behaviour.

Our traffic shaper consumes and produces exactly one video
frame periodically by inserting time delays between video
frames. After the traffic shaper, we apply gStreamer’s x264
plugin for decoding video frames, gStreamer’s color-space
conversion (Csp) and a synthetic spatial up scaler, which
generates a random delay. These plugins all execute in a self-
timed manner. Finally, the sink displays the processed video
frames on the screen. For each of these gStreamer plugins, we
have measured their execution times on a frame-by-frame basis
for various video content; Figure 2 shows the best-case (BCET),
average-case (ACET) and worst-case (WCET) execution times.

C. Concurrency control and allocation of processing resources

A gStreamer pipeline can be mapped onto several threads
by explicitly placing queues between processing plugins. The
plugins that are mapped upon the same thread execute in a static
order, so that their execution times add up. A total of three
queues, called AB, BC and CD, are placed after the traffic
shaper, x264 decoder and Csp, respectively. With a certain
positioning of queues, we can model the pipeline using the
synchronous-dataflow (SDF) formalism.

An SDF graph allows us to compare the two algorithms
by Stuijk et al. [7] and Salunkhe et al. [8] for computing the
queue sizes and the corresponding throughput of the pipeline
for setups with and without back pressure. The advantage of
having a back-pressure mechanism is that waiting times of
threads can be traded for throughput. Additional buffering at
appropriate places in the pipeline may allow threads to work
ahead and thereby increase the throughput. Figure 3 shows
the Pareto optimal buffer allocations of our example pipeline
obtained using the algorithm of Stuijk et al. [7].

38

Time (t)

fra

m
es

 in
 q

ue
ue

Fig. 4. Snapshot of unbounded memory usage of an unconstrained pipeline.

Time (t)

fra

m
es

 in
 q

ue
ue

Fig. 5. Snapshot of controlled memory usage of a non-back-pressured pipeline.

We recall that without back-pressure one must constrain the
throughput at the input of the pipeline in order to bound the
application’s memory requirements. Moreover, plugins must
execute in a self-timed manner, because delaying their execution
may add buffer requirements to avoid data corruption. For such
constrained applications, Salunkhe et al. [8] have proposed
an algorithm to determine the Pareto point corresponding to
the highest possible throughput. They use life-time analysis of
data in the buffers based on the BCET and WCET of plugins
in order to optimize the queue sizes1. In order to apply their
algorithm, our traffic shaper limits the throughput at the input.

D. Performance validation
As shown in the methodology overview in Figure 1, the

performance analysis is said to feed back configuration pa-
rameters to the application. The measured execution time
parameters are the basis for a queue placement strategy, as
tacitly applied in the previous subsection, and then allows us to
mathematically predict trade offs in worst-case queue sizes and
minimal throughput. We now validate the real-time memory
usage and the real throughput of the pipeline (see Table I).

In gStreamer we log the number of buffered frames by
instrumenting push and pop events of the queues in the pipeline;
each buffer has the capacity of storing a video frame. Buffer
access may or may not be be guarded by back pressure2.

First, we look at a scenario of uncontrolled memory usage
in which both our traffic shaper and gStreamer’s back-pressure
mechanism are disabled. In this scenario, the entire file is
read from disk as fast as possible and stored into memory (see
Figure 4). Since file readings have negligible WCETs compared
to the later processing steps in the pipeline (see Figure 2), this
experiment shows that, as can be expected, the memory storage
requirements are proportional to the input size.

Secondly, we monitor the controlled memory usage for our
pipeline (with and without back pressure). Figure 5 and Figure 6
show the number of frames [0..2] stored in the queues. We
confirmed that in both cases all frames in the file were actually
being displayed at the output, i.e., both with and without back-
pressure we report the absence of data loss. Table I reports

1BCETs are irrelevant with back-pressure, because a delay of the earliest
start time of plugins on new data can be enforced, which enables tighter
life-time analysis based on just WCETs (see [8] for more details).

2The snapshots are created from the logged event traces with TimeDoctor [9].

Time (t)

fra

m
es

 in
 q

ue
ue

Fig. 6. Snapshot of controlled memory usage of a back-pressured pipeline.

Time (t)

fra

m
es

 in
 q

ue
ue

Fig. 7. Zoom in on the initialization phase of a non-back-pressured pipeline.

the worst-case occupancies of the queues. Even without back
pressure, the queues appear to be sized tightly and conservative.

As shown in Figure 5 and Figure 6, however, the queues
in the pipeline are only occasionally fully occupied. Figure 5
also shows that initially the file reader works ahead one frame
when back pressure is disabled. Figure 7 zooms in on the initial
phase of the non-back-pressured pipeline. After an initialization
phase, the execution pattern stabilizes and follows a repetitive
order as dictated by our periodic traffic shaper.

IV. CONCLUSIONS

This paper presented a software framework for predictable
composition of medical video applications. We configured
middleware software in a way that the video pipeline is forced
to execute closely in accordance with our formal application
models. Formal (dataflow) analysis has been demonstrated on a
case study in which we obtained optimized parallel executions
of imaging algorithms by controlling execution delays and
allocating memory appropriately. Since our initial experiments
indicate that we can predict the performance of applications
accurately, we consider our software framework a promising
solution for the future design of medical streaming applications.

REFERENCES
[1] D. Isović, G. Fohler, and L. Steffens, “Timing constraints of MPEG-2

decoding for high quality video: Misconceptions and realistic assumptions,”
in Proc. ECRTS, July 2003, pp. 73–82.

[2] C. C. Wüst, L. Steffens, W. F. Verhaegh, R. J. Bril, and C. Hentschel,
“QoS control strategies for high-quality video processing,” Real-Time Syst.,
vol. 30(1-2), pp. 7–29, 2005.

[3] S. C. Crăcană, “Modular composition of imaging applications on
commercial-off-the-shelf programmable hardware platforms,” Master’s
thesis, Eindhoven University of Technology, Aug. 2014.

[4] S. D. Burks and J. M. Doe, “Gstreamer as a framework for image
processing applications in image fusion,” Proc. SPIE, vol. 8064, pp.
80 640M–80 640M–7, June 2011.

[5] G.-M. Muntean and L. Murphy, “Feedback-controlled traffic shaping for
multimedia transmissions in a real-time client-server system,” in Springer,
LNCS, ICN Networking, 2001, vol. 2093, pp. 540–548.

[6] E. Wandeler, A. Maxiaguine, and L. Thiele, “On the use of greedy shapers
in real-time embedded systems,” ACM TECS, vol. 11(1), pp. 1–22, 2012.

[7] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer
requirements and throughput constraints for synchronous dataflow graphs,”
in Proc. DAC, 2006, pp. 899–904.

[8] H. Salunkhe, O. Moreira, and K. van Berkel, “Buffer allocation for real-
time streaming on a multi-processor without back-pressure,” in Proc.
ESTIMedia, Oct. 2014.

[9] M. Rutten, “TimeDoctor Version 1.4.3,” May 2013. [Online]. Available:
http://sourceforge.net/projects/timedoctor/

39

Increasing the Predictability of Modern COTS
Hardware through Cache-Aware OS-Design

Hendrik Borghorst
Embedded System Software

Computer Science 12, Technische Universität Dortmund
Email: hendrik.borghorst@udo.edu

Olaf Spinczyk
Embedded System Software

Computer Science 12, Technische Universität Dortmund
Email: olaf.spinczyk@udo.edu

Abstract—Real-time operating systems have been around for
some time, but they are never designed for being used on modern
multi-core processors with unpredictable timing behavior. An
important source of unpredictability is the different timing
between the processor and the DRAM-controller. Operating-
system-based cache management is one possibility to reduce the
timing variations of the processor by controlling the code and
data which resides in the cache. The cache eliminates the timing
differences between the memory and the processor.

I. MOTIVATION AND RELATED WORK

With increasing complexity of today’s multi-core proces-
sors, their timing behavior gets more unpredictable, which
leads to big fluctuations of the execution times for tasks
and operating system functions like interrupt handling. This
means that the overall response time of a system depends
on the timing behavior of all the shared resources like the
caches or buses [1]. This problem prohibits the use of such
systems for time-critical applications like cyber-physical sys-
tems. Cyber-physical systems need to react on certain events
within a predictable time bound. Therefore it is critical that
the overall response time of the operating system is stable.
Different timings of the main processor and the memory can
be neutralized by the use of caches. But caches can introduce
new problems like unwanted cache eviction which would also
lead to unstable execution times.

Cache partitioning can be used to prevent cache eviction for
multi-task or multi-core applications. Cache preloading can be
used to prevent timing variations caused by simultaneous bus
accesses from multiple participants.

R. Mancuso et al. proposed a cache management framework
for applications running on the Linux operating system [2].
The approach, presented in their paper [2], loads specific
application code and data to a partition of the shared cache
and locks it afterwards. This approach shows an significant
reduction of the application’s execution time variation. Their
method eliminates the timing variations caused by shared
caches and random memory accesses. In contrast to this
method the later presented approach works on the level of the
operating system. The advantage of managing the cache within
the operating system allows operating system functionality to
be predictable as well.

J. Liedtke et al. worked on operating system controlled
caches for single-core processors [3]. They used a technique

0 5000 10000
0

100

200

access number

A
cc

es
s

tim
e

in
cy

cl
es

(a) without preloading

0 5000 10000
0

100

200

access number

A
cc

es
s

tim
e

in
cy

cl
es

(b) with preloading

Fig. 1: Comparison of data access times (64kB range)

called cache coloring to reduce the risk of cache eviction for
multi-tasking applications. They could show that it is possible
to reduce the variation of the execution time with the use of
cache partitioning. Nonetheless their work is based on single-
core systems and does not consider the properties of a multi-
core system with shared resources such as the memory and
buses.

As a preparation to proof the later presented operating sys-
tem concept, we created a prototype operating system which
used a basic cache management to preload tasks on activation.
To evaluate the concept of cache resource management, we ran
four tasks on a dual-core ARM Cortex-A9 processor. Each task
was confined to a distinct memory area and accessed random
memory addresses with and without preloading and locking
of the shared L2 cache. The results of this test are shown in
Figure 1 where single memory accesses are shown with their
corresponding access time. The diagram in Figure 1a illustrates
that there is a very high fluctuation of memory access times.
For comparison Figure 1b demonstrates that the preloading
of the data to access shows a significant reduction of the
previously mentioned access time fluctuation. The benchmark
was done for a memory area of 64 kB per task which is twice
the size of the level 1 cache, so there are already level 1
cache misses which are represented by the upper one of the
two distinct lines in the diagrams.

The execution times for the cache preloading itself were
tested separately. It was measured that the execution times
are proportional to the preloading size, if it is guaranteed
that only one processor core is preloading at the same time.
This knowledge is crucial to the whole idea to get the system
predictable.

41

With this knowledge it is possible to create an operating
system that takes control over the content inside the cache
so that the execution times for operating system functions
and interrupt handling become predictable. To achieve this we
present an operating system model which is designed with the
sources of unpredictability in mind.

II. OPERATING SYSTEM MODEL

The idea of the new operating system is to sort out some
problems that existing real-time operating systems present
when they are executed on modern multi-core architectures
that utilize some shared resources like caches and memory
buses.

Modern multi-core processors often include shared caches
that are structured as associative caches which features multi-
ple cache ways to reduce the cache miss rate. Each cache way
represents a part of the whole cache. The target architecture
used for this paper features an shared second level cache with
16 cache ways with 64 kB capacity each.

To solve the issues of unpredictable caches and memory
access latencies, the operating system and the applications
have to fit inside the partitioned shared L2 cache. One solution
to achieve this, is to divide the system into small pieces. We
call each of these pieces operating system component (OSC).
The implementation of the operating system is done in a
highly modular way so that we can define very fine granular
components. These components can than be grouped together
into larger components to be optimal for the desired target
platform. The optimal component size depends on the specific
sizes of the cache structure of the hardware. For example a
component needs to be smaller than the biggest shared cache
and not to small which would effectively be the same like one
random memory access. A good size would be a multiple of
the cache way size.

One problem with existing embedded operating systems
is that there is usually only one stack per core when using
operating system functions. This makes it hard to predict
where the local data is located when the processor jumps to
operating system code. This could lead to cache eviction if
operating system functionality is requested. To solve this, each
OSC contains its own stack by what we enable the operating
system to contain all code and data on the level of OSCs.

Another problem with existing solutions is that normal
function calling allows no control over the data and control
flow which could lead to cache eviction problems. To solve this
the new operating system prohibits direct data passing between
OSCs. Instead the system operates on a strictly event-based
nature. These events are handled by the operating system so
that it can control the contents of the cache.

Each OSC can define input triggers which will activate
a specific OSC. Each input trigger needs a function which
is called after the OSC is activated. To activate these input
triggers, output events, that each OSC can define, are required.
These events can be connected to the input triggers of other
OSCs. The creation of the connections between events and
triggers of OSCs is done during the time of compilation. For

OS-Init

Task2
Ethernet-

Driver
Socket

Task1
UART-
Driver

UART-Buffer

Interrupt-
Handler

Interrupt

Code

Data

Stack

Timer-
Driver Scheduler

operating system component shared data critical OSC

triggerevent
shared data

event-trigger connection

Timer-
Interrupt

Ethernet-
Interrupt

UART-
Interrupt

invoke_Scheduler

start_Scheduler

schedule_Task2

schedule_Task1

Fig. 2: Operating system model with critical/non-critical com-
ponents

performance reasons this is a static linkage with hard coded
function pointers. If an OSC wants to send an event it needs
to do it by the use of a system call.

To solve the issue of uncontrollable data flow, the operating
system specification allows shared data between two or more
OSCs. Shared data must stay inside the cache until no OSC
needs it anymore. These shared data objects need to be cache-
aware by design so that the application developer needs to
make the data structures efficient on constrained space. There
are several approaches on cache-aware data structures and
their optimizations. For example T. Chilimbi et.al. present a
way to make pointer-based data structures cache-aware [4].
They introduce a method which can optimize different data
structures, that are based on indirect data accesses, via a
modified version of the dynamic memory management method
malloc. In addition they present a way to specifically optimize
tree-based data structures so that they reduce the number of
cache-misses drastically. Those methods could be integrated
within the operating system so that the application developer is
presented with an API that takes care of the cache prefetching.
It should be noted that the focus of this operating system is not
on heavy data computation but on comparable small real-time
task-sets with data structures that fit into the shared caches.

Another critical problem of the system is the interrupt
handling because it is impossible to predict when interrupts
arrive. Therefore it is critical that the whole minimal first
stage of the interrupt handling is locked permanently to the
cache. The first stage would then emit an event with the
interrupt number. This event is handled like any other event.
This ensures that the interrupt handling stays predictable by
assuring that the unpredictable part always remains inside the
cache. The preloading of the remaining interrupt handling is
by definition predictable. With this model a periodic behavior
is also possible to achieve by using a timer with a periodic
configuration but the system is not limited to periodic config-
urations.

42

way0 way1 wayn

Int-Handler
Cache-Manager

way2

. . .

way0 way1 waynway2

Task 1 . . .

way0 way1 waynway2

Task 1 . . .

Int-Handler
Cache-Manager

Int-Handler
Cache-Manager

unlock cache way &
prefetch OSC

lock cache

Permanently locked Temporarily locked

Temporarily unlocked

Fig. 3: Cache way states during an OSC-transition

A schematic representation of the presented operating sys-
tem model is shown in Figure 2. The figure visualizes how
different OSCs could be connected with each other. As high-
lighted in the figure, each OSCs consists of an separate code,
data and stack segment. Events connect OSCs with each
other as visualized by the punctuated lines. The Interrupt-
Handler is marked in red because it is time critical and
needs to stay locked permanently. The ellipsis in Figure 2
represents a shared data object. The figure shows an operating
system which uses a timer component to emulate a time-based
behavior. The operating system itself is not limited to time-
based events and could react predictable to sporadic events as
well because the critical part of the interrupt handler handles
interrupts within guaranteed time bounds.

This operating system needs a special kind of scheduler
because it does not schedule tasks directly but needs to
schedule the execution of events. Events can be prioritized so
that time critical events are handled before uncritical events.
The scheduler needs to minimize the cache eviction and data
flow from the main memory as well. As a result of this it
needs to optimize which OSCs are active inside the cache and
which can be swapped away.

Figure 3 shows the different states of the cache during the
execution of the system. It represents an simplified version of
a cache structured into n cache ways. Each cache way can
be locked individually. Therefore it is possible to control the
cache content manually by unlocking only one cache way at
once which guarantees that the data is allocated to that specific
way during prefetching. The uppermost row visualizes the
state in which only the critical parts are locked and loaded
inside the cache. This is the state in which the operating
systems resides after successful initialization. The row in the
middle of Figure 3 represents the cache state in which an OSC
was prefetched, right before the needed cache way gets locked
again. The cache management unlocks only the cache ways

that are needed for the OSC to activate. This is not limited
to only one cache way per OSC. It is also possible for OSCs
to spread across multiple cache ways. In this case the cache
ways would be unlocked and prefetched consecutively. After
successful prefetching of the OSC the cache management
locks all cache ways again to prevent cache eviction from
happening which is the state of the bottom row in Figure 3.

III. HARDWARE PLATFORM

For now the operating system needs special hardware fea-
tures to control the cache. Cache locking is needed to prevent
cache eviction when loading new OSCs. For the purposes
of evaluation we used a Texas Instrument OMAP4460 ARM
processor [5] that uses an external level 2 cache controller
and is compatible to the ARM Cortex-A9 processor. This
cache controller has sophisticated control features like cache
lockdown by cache way and by core [6]. This means that it is
possible to control in what cache way new cached data gets
allocated. The processor was clocked at 921 MHz during the
experiments.

The level 2 cache features 16 cache ways, each with a size
of 64 kB. Thus a optimal size for the OSCs would be 64 kB
or multiples of this value. For now the OSCs get aligned to
this size during the linking process which makes it convenient
to prefetch those components to specific cache ways.

IV. ONGOING AND FUTURE WORK

The presented operating system is just a proof of concept
for now. We evaluated that it is possible to take control over
the contents of the shared cache with a basic cache control
implementation that prefetched data and code to the cache
and locked the cache afterwards. Another thing we measured
is the required time to prefetch bulk data. Our results show
that we can achieve a prefetch time which is linear to the
prefetch size. It was measured that the prefetch time per byte
is around 8 clock cycles if more than 128 bytes are prefetched
in a bulk transfer. For the component size of 64 kB this bulk
transfer require around 0.57 ms.

In the future we intend to focus our research on some
specific topics regarding the operating system model. One
part of this will be the scheduling of the event dispatching.
There are several optimization criteria for the scheduling. For
instance the minimization of cache evictions, to maximize the
overall processor utilization and to keep the overall response
time of the system minimal.

Furthermore we intend to analyze the timing behavior of
the operating system. This includes analysis of the transition
times, prefetch times and the OSC function execution times
to guarantee that the execution time of the whole system will
stay inside a time bound.

Also the operating system needs a good software develop-
ment model. It is important that the implementation of the
event-based system is not overly complicated. One possible
solution for this could be the use of an aspect-orientated
language like AspectC++ [7].

43

Another topic to explore is how to extend the supported
hardware base. One potential substitute for locking critical
OSCs inside the cache could be a static ram which many new
embedded processors include. It may also be possible to isolate
one core of the system to interrupt handling. This would mean
that the first stage interrupt handler should not be evicted from
the level 1 cache if it is small enough. For systems lacking the
support for cache locking the use of traditional software-based
cache partitioning algorithms is necessary [8].

Finally the operating system needs evaluation under several
circumstances. We expect that the manual management of the
cache content will introduce some overhead on the compu-
tational performance of the system. Therefore an comparison
with existing operating systems like RT-Linux [9] or RTEMS
[10] is needed. The overall system response time also needs
evaluation with various workloads.

V. CONCLUSION

This paper presents a possible solution for the unstable
execution times of modern multi-core systems on the level
of the operating system. This is done by manually controlling
which data and program code resides in the cache. By this the
operating system shifts the unpredictability of random DRAM-
accesses to predictable bulk memory transfers. To realize this
the operating system operates on a event-based nature and
is structured as a set of OSCs, which can be loaded into the
cache on-demand or permanently based on a cache scheduling
strategy. At the moment the operating system only exists as a
proof of concept but we intend to explore this concept further.

REFERENCES

[1] D. Dasari, B. Akesson, V. Nelis, M. Awan, and S. Petters, “Identifying
the sources of unpredictability in COTS-based multicore systems,” in
2013 8th IEEE International Symposium on Industrial ES (SIES), June
2013, pp. 39–48.

[2] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core ar-
chitectures,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th, April 2013, pp. 45–54.

[3] J. Liedtke, H. Haertig, and M. Hohmuth, “OS-controlled cache pre-
dictability for real-time systems,” in Proceedings of the 3rd IEEE Real-
Time Technology and Applications Symposium (RTAS ’97), ser. RTAS
’97. Washington, DC, USA: IEEE Computer Society, 1997, pp. 213–.

[4] T. Chilimbi, M. Hill, and J. Larus, “Making pointer-based data structures
cache conscious,” Computer, vol. 33, no. 12, pp. 67–74, Dec 2000.

[5] “OMAP4460 ES1.x Technical Reference Manual,” http://www.ti.com/
lit/pdf/swpu235, accessed: 2015-02-20.

[6] “PL310 Cache Controller - Technical Reference Manual,”
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0246a/DDI0246A_
l2cc_pl310_r0p0_trm.pdf, accessed: 2015-04-18.

[7] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “AspectC++: An
aspect-oriented extension to C++,” in Proceedings of the 40th Interna-
tional Conference on Technology of OO Languages and Systems (TOOLS
Pacific ’02), Sydney, Australia, Feb. 2002, pp. 53–60.

[8] F. Mueller, “Compiler support for software-based cache partitioning,”
SIGPLAN Not., vol. 30, no. 11, pp. 125–133, Nov. 1995. [Online].
Available: http://doi.acm.org/10.1145/216633.216677

[9] “Real-Time Linux Wiki,” https://rt.wiki.kernel.org/index.php/Main_
Page, accessed: 2015-04-29.

[10] A. Colin and I. Puaut, “Worst-case execution time analysis of the
RTEMS real-time operating system,” in Real-Time Systems, 13th Eu-
romicro Conference on, 2001., 2001, pp. 191–198.

44

Evaluating the Isolation Effect of Cache
Partitioning on COTS Multicore Platforms

Heechul Yun, Prathap Kumar Valsan
University of Kansas

{heechul.yun, prathap.kumarvalsan}@ku.edu

Abstract—Tasks running on a Commercial Off-The-Shelf
(COTS) multicore processor can suffer significant execution
time variations due to inter-core interference in accessing
shared hardware resources such as shared last-level cache
(LLC). Page-coloring is a well-known OS technique, which
can partition the LLC space among the cores, to improve
isolation.

In this paper, we evaluate the effectiveness of page-coloring
based cache partitioning on three COTS multicore platforms.
On each platform, we use two carefully designed micro-
benchmarks and perform a set of experiments, which generate
very high interference at the shared LLC, with and without
cache partitioning.

We made two interesting findings: (1) Without cache-
partitioning, a task can suffer up to 103X slowdown due to
interference at the shared LLC. (2) More surprisingly, we
found that cache partitioning does not necessarily eliminate
interference in accessing the LLC, even when the concerned
task only accesses its dedicated cache partition (i.e., all mem-
ory accesses are cache hits); we observe up to 14X slowdown
in such a configuration. We attribute this to contention in the
Miss Status Holding Registers (MSHRs) of the LLC.

I. INTRODUCTION

Commercial Off-The-Shelf (COTS) multicore processors
are increasingly being adopted in autonomous cars, un-
manned aerial vehicles (UAV), and other critical cyber-
physical systems (CPS). While these COTS multicore
processors offer numerous benefits, they do not provide
predictable timing—a highly desired property in many CPS
applications.

In a COTS multicore system, the execution time of a
task is determined not only by the task and the underlying
hardware architecture, but also by co-runners on different
cores due to interference in the shared hardware resources.
One of the major source of interference is shared last-
level cache (LLC). When more than two tasks execute
in parallel on cores that share the LLC, tasks can evict
each other’s valuable cache-lines, which cause negative
performance impacts. Cache-partitioning, which partitions
the cache space among the cores, is a well-known solution
to counter this problem [11], [15].

In this paper, we evaluate the effectiveness of cache
partitioning in improving timing predictability on three
modern COTS multicore platforms: one in-order (ARM
Cortex-A7) and two out-of-order (ARM Cortex-A15 and
Intel Nehalem) architecture based quad-core platforms. We
use two carefully designed micro-benchmarks and perform
a set of experiments to investigate the impacts of shared
LLC to the application execution times—with and without
applying cache-partitioning. In designing the experiments,
we consider memory-level-parallelism (MLP) of modern
COTS multicore architecture—non-blocking caches and

DRAM bank parallelism—and intend to find worst-case
scenarios where a task’s execution time suffers the most
slowdown due to cache interference.

From the experiments, we made several interesting find-
ings. First, unlimited cache sharing can cause unacceptably
high interference; we observe up to 103X slowdown (i.e.,
the task’s execution time is increased by 103 times due to
co-runners on different cores). Second, cache-partitioning is
effective especially in the in-order architecture, as it almost
completely eliminates cache-level interference. In out-of-
order architectures, however, we observe significant inter-
ference even after cache partitioning is applied. Concretely,
we observe up to 14X slowdown even when the task under
consideration only accesses its dedicated cache partition
(i.e., all memory accesses are cache hits). We attribute this
to contention in the shared miss-status holding registers
(MSHRs) [8] in the LLC (See Section V).

Our contributions are as follows: (1) experiment designs
that help expose the degree of interference in the shared
LLC; (2) detailed evaluation results on three COTS mul-
ticore platforms showing the performance impacts of the
cache-level interference. To the best of our knowledge, this
is the first paper that reports the worst-case performance
impact of MSHR contention on COTS multicore platforms.

The rest of the paper is organized as follows. Section II
describe necessary background on modern COTS multicore
architecture. Section III describe the three COTS multicore
platforms we used in this paper. Section IV experimentally
analyze MLP of the hardware platforms. Section V investi-
gate the impacts of cache (LLC) interference on the tested
platforms. We conclude in Section VI.

II. BACKGROUND

In this section, we provide necessary background on
COTS multicore architecture and software based resource
partitioning techniques.

A typical modern COTS multicore architecture is com-
posed of multiple independent processing cores, multiple
layers of private and shared caches, and a shared memory
controller(s) and DRAM memories. To support high perfor-
mance, processing cores in many embedded/mobile proces-
sors are adopting out-of-order designs in which each core
can generate multiple outstanding memory requests [12],
[4]. Even if the cores are based on in-order designs, in
which one core can only generate one outstanding memory
request at a time, they collectively can generate multiple
requests to the shared memory subsystem. Therefore, the
memory subsystem must be able to handle multiple parallel
memory requests. The degree of parallelism supported
by the shared memory subsystem—the caches and main
memory—is called Memory-Level Parallelism (MLP) [5].

45

TABLE I: Evaluated COTS multicore platforms.

Cortex-A7 Cortex-A15 Nehalem

Core 4cores@0.6GHz 4cores@1.6GHz 4cores@2.8GHz
in-order out-of-order out-of-order

LLC 512KB, 8way 2MB, 16way 8MB, 16way
DRAM 2GB, 16banks 2GB, 16banks 4GB, 16banks

A. Non-blocking caches and MSHRs
At the cache-level, non-blocking caches are used to han-

dle multiple simultaneous memory accesses. On a cache-
miss, the cache controller allocates a MSHR (miss status
holding register) to track the status of the ongoing request
and the entry is cleared when the corresponding memory
request is serviced from the lower-level memory hierarchy.
For the last-level cache (LLC), each cache-miss request is
sent to the main memory (DRAM). As such, the number of
MSHRs in the LLC effectively determines the maximum
number of outstanding memory requests directed to the
DRAM controller. It is important to note that MSHRs are
typically shared among the cores [7] and when there are
no remaining MSHRs, further accesses to the cache—both
hits and misses—are prevented until free MSHRs become
available [1]. Because of this, even if the cache space is
partitioned among cores using software cache partitioning
mechanisms, in which each core is guaranteed to have its
dedicated cache space, accessing the cache partition does
not necessarily guarantee interference freedom as we will
demonstrate in Section V.

B. DRAM and memory controllers
At the DRAM-level, a DRAM chip is divided into

multiple banks, which can be accessed in parallel. As such,
the number of banks determines the parallelism available on
DRAM. To maximize the bank-level parallelism, DRAM
controllers typically use an interleaved mapping, which
maps consecutive physical addresses into different DRAM
banks.

C. Cache and DRAM bank Partitioning
Cache partitioning has been studied extensively to pro-

vide better isolation and efficiency. Page coloring is a
well-known software technique which partitions cache-sets
among the cores [11], [15], [9], [16]. Also, there are a
variety of hardware based partitioning mechanisms such
as cache-way based partitioning [13], which is supported
in some commercial processors [4]. More recently, several
DRAM bank partitioning methods, mostly based on page-
coloring, have been proposed to limit bank-level interfer-
ence [17], [10], [14].

III. EVALUATION SETUP

In this paper, we use two COTS multicore platforms:
an Intel Xeon W3553 (Nehalem) based desktop machine
and an Odroid-XU+E single-board computer (SBC). The
Odroid-XU+E board equips a Samsung Exynos 5410 pro-
cessor which includes both four Cortex-A15 and four
Cortex-A7 cores in a big-LITTLE [6] configuration. Thus,
we use the Odroid-XU+E platform for both Cortex-A15
and Cortex-A7 experiments. Table I shows the basic char-
acteristics the three platform configurations we used in
our experiments. We run Linux 3.6.0 on the Intel Xeon

1 s t a t i c i n t ∗ l i s t [MAX MLP] ;
2 s t a t i c i n t n e x t [MAX MLP] ;
3
4 long run (lon g i t e r , i n t mlp)
5 {
6 lon g c n t = 0 ;
7 f o r (l on g i = 0 ; i < i t e r ; i ++) {
8 s w i t c h (mlp) {
9 c a s e MAX MLP:

10 .
11 .
12 c a s e 2 :
13 n e x t [1] = l i s t [1] [n e x t [1]] ;
14 /∗ f a l l−t h r o u g h ∗ /
15 c a s e 1 :
16 n e x t [0] = l i s t [0] [n e x t [0]] ;
17 }
18 c n t += mlp ;
19 }
20 r e t u r n c n t ;
21 }

Fig. 1: MLP micro-benchmark. Adopted from [3].

platform and Linux 3.4.98 on the Odroid-XU+E platform;
both kernels were patched with PALLOC [17] to be able
to partition the shared LLC at runtime. When cache-
partitioning is applied, the shared LLC is evenly partitioned
among the four cores (i.e., each core gets 1/4 of the LLC
space).

IV. UNDERSTANDING MEMORY-LEVEL PARALLELISM

In this section, we identify memory-level parallelism
(MLP) of the three multicore platforms using an experi-
mental method described in [3].

In the following, we first briefly describe the method for
better understanding. The method uses a pointer-chasing
micro-benchmark shown in Figure 1. The benchmark tra-
verses a number of linked-lists. Each linked-list is randomly
shuffled over a memory chunk of twice the size of the LLC.
Hence, accessing each entry is likely to cause a cache-
miss. Due to data-dependency, only one cache-miss can
be generated for each linked list. In an out-of-order core,
multiple lists can be accessed at a time, as it can tolerate up
to a certain number of outstanding cache-misses. Therefore,
by controlling the number of lists (determined by mlp
parameter in Figure 1) and measuring the performance of
the benchmark, we can determine how many outstanding
misses one core can generate at a time, which we call local
MLP. We also varied the number of benchmark instances
from one to four and measure the aggregate performance
to investigate the parallelism of the entire shared memory
hierarchy, which we call global MLP.

Figure 2 shows the results. Let us first focus on single
instance results. For Cortex-A7, increasing the number of
lists (X-axis) does not have any performance improvement.
This is because Cortex-A7 is in-order architecture in which
only one outstanding request can be made at a time. On the
other hand, for Cortex-A15, the performance improves up
to six lists and then saturates. This suggests that the Cortex-
A15’s local MLP is six. In case of Nehalem, performance
improves up to ten concurrent lists, suggesting its local
MLP is ten. As we increase the number of benchmark
instances, the point of saturation become shorter in both
Cortex-A15 and Nehalem. When four instances are used in

46

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 3 4 5 6 7 8 9 10

B
a
n
d
w

id
th

 (
M

B
/s

)

MLP/instance

1 instance
2 instances

3 instances
4 instances

(a) Cortex-A7

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 3 4 5 6 7 8 9 10

B
a
n
d
w

id
th

 (
M

B
/s

)

MLP/instance

1 instance
2 instances

3 instances
4 instances

(b) Cortex-A15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B
a
n
d
w

id
th

 (
M

B
/s

)

MLP/instance

1 instance
2 instances

3 instances
4 instances

(c) Nehalem

Fig. 2: Aggregate memory bandwidth as a function of MLP/benchmark.

TABLE II: Local and global MLP

Cortex-A7 Cortex-A15 Nehalem
local MLP 1 6 10

global MLP 4 11 16

Cortex-A15, the aggregate performance saturates at three.
This suggests that the global MLP of Cortex-A15 is close
to 12; according to [2], the LLC can support up to 11
outstanding cache-misses (global MLP of 11). Note that
the global MLP can be limited by either of the two factors:
the size of MSHRs in the shared LLC or the number
of DRAM banks. In the case of Cortex-A15, the limit
is likely determined by the number of MSHRs of the
LLC (11), because the number of banks is bigger than
that (16). In the case of Nehalem, on the other hand, the
performance saturates when the global MLP is about 16,
which is likely determined by the number of banks, rather
than the number of MSHRs; according to [7], the Nehalem
architecture supports up to 32 outstanding cache-misses.
Table II shows the identified local and global MLP of the
the three platforms we tested.

V. UNDERSTANDING CACHE INTERFERENCE

In this section, we investigate performance impacts of
cache-level interference on COTS multicore platforms.

While most previous research on shared cache has fo-
cused on unwanted cache-line evictions that can be solved
by cache partitioning, little attention has been paid to the
problem of shared MSHRs in non-blocking caches, which
also can cause interference. As we will see later in this sec-
tion, cache partitioning does not necessary provide isolation
even when the application’s working-set fits entirely in a
dedicated cache partition, due to contention in the shared
MSHRs.

To find out worst-case interference, we use various com-
binations of two micro-benchmarks: Latency and Band-
width [18]. Latency is a pointer chasing synthetic bench-
mark, which accesses a randomly shuffled single linked
list. Due to data dependency, Latency can only generate
one outstanding request at a time. Bandwidth is another
synthetic benchmark, which sequentially reads or writes a
big array; we henceforth refer BwRead as Bandwidth with
read accesses and BwWrite as the one with write accesses.
Unlike Latency, Bandwidth can generate multiple parallel
memory requests on an out-of-order core as it has no data
dependency.

Table III shows the workload combinations we
used. Note that the texts with parentheses—(LLC) and

TABLE III: Workloads for cache-interference experiments.

Experiment Subject Co-runner(s)
Exp. 1 Latency(LLC) BwRead(DRAM)
Exp. 2 BwRead(LLC) BwRead(DRAM)
Exp. 3 BwRead(LLC) BwRead(LLC)
Exp. 4 Latency(LLC) BwWrite(DRAM)
Exp. 5 BwRead(LLC) BwWrite(DRAM)
Exp. 6 BwRead(LLC) BwWrite(LLC)

(DRAM)—indicate working-set sizes of the respective
benchmark. In case of (LLC), the working size is config-
ured to be smaller than 1/4 of the shared LLC size, but
bigger than the size of the last core-private cache. 1 As
such, in case of (LLC), all memory accesses are LLC hits
in both cache partitioned and non-partitioned cases. In case
of (DRAM), the working-set size is the twice the size of
the LLC so that all memory accesses result in LLC misses.

In all experiments, we first run the subject task on Core0
and collect its solo execution time. We then co-schedule an
increasing number of co-runners on the other cores (Core1-
3) and measure the response times of the subject task. We
repeat the experiment on the three test platforms with and
without cache partitioning.

A. Exp. 1: Latency(LLC) vs. BwRead(DRAM)

In the first experiment, we use the Latency benchmark
as a subject and the BwRead benchmark as co-runners.
Recall that BwRead has no data dependency and therefore
can generate multiple outstanding memory requests on an
out-of-order processing core (i.e., ARM Cortex-A15 and
Intel Nehalem core). Figure 3 shows the results. When
cache-partitioning is not applied, shared, the response
times of the Latency benchmark are increased dramatically
in all three platforms—up to 6.7X in Cortex-A7, 10.4X
in Cortex-A15, and 27.7X in Nehalem. This is because
cache-lines of the Latency benchmark are evicted by the
co-running BwRead benchmark instances. If not the co-
runners, those cache-lines would never have been evicted.
On the other hand, applying cache-partitioning is shown to
be effective in preventing such cache-line evictions hence
providing performance isolation, especially in Cortex-A7
and Intel Nehalem platforms. In the Cortex-A15 platform,
however, the response time is still increased by up to 3.9X
even after partitioning the cache. This is an unexpectedly
high degree of interference considering the fact that the

1The the last core-private cache is L1 for ARM Cortex-A7 and Cortex-
A15 while it is L2 for Intel Nehalem.

47

 1

 2

 3

 4

 5

 6

 7

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(a) Cortex-A7

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(b) Cortex-A15

 0

 5

 10

 15

 20

 25

 30

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(c) Nehalem

Fig. 3: [Exp.1] Slowdown of Latency(LLC) with BwRead(DRAM) co-runners.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(a) Cortex-A7

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(b) Cortex-A15

 0
 1
 2
 3
 4
 5
 6
 7
 8

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(c) Nehalem

Fig. 4: [Exp.2] Slowdown of BwRead(LLC) with BwRead(DRAM) co-runners.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(a) Cortex-A7

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(b) Cortex-A15

 1
 2
 3
 4
 5
 6
 7
 8
 9

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(c) Nehalem

Fig. 5: [Exp.3] Slowdown of BwRead(LLC) with BwRead(LLC) co-runners.

cache-lines of the subject benchmark, Latency, are not
evicted by the co-runners as a result of cache partitioning.

B. Exp. 2: BwRead(LLC) vs. BwRead(DRAM)

To further investigate this phenomenon, the next exper-
iment uses the BwRead benchmark for both the subject
task and the co-runners. Therefore, both the subject and
co-runners now generate multiple outstanding memory
requests to the shared memory subsystem in out-of-order
architectures. Figure 4 shows the results. Note that while
the behavior of Cortex-A7 is similar to the previous ex-
periment, the behaviors of Cortex-A15 and Nehalem are
considerably different. In the Nehalem platform, in partic-
ular, the performance isolation benefit of cache partitioning
is completely eliminated as the subject benchmark suffers
from the similar degree of slowdowns regardless of cache-
partitioning. In other words, the results suggest that cache-
partitioning does not necessary provide expected perfor-
mance isolation benefits in out-of-order architectures. We
initially suspected the cause of this phenomenon is likely
the bandwidth competition at the shared cache, similar

to the DRAM bandwidth contention [17]. The following
experiment, however, shows it is not the case.

C. Exp. 3: BwRead(LLC) vs. BwRead(LLC)

In this experiment, we again use the BwRead benchmark
for both the subject and the co-runners but we reduced the
working-set size of the co-runners to (LLC) so that they
all can fit in the LLC. If the LLC bandwidth contention
is the problem, this experiment would cause even more
slowdowns to the subject benchmark as the co-runners
now need more LLC bandwidth. Figure 5, however, does
not support this hypothesis. On the contrary, the observed
slowdowns in both Cortex-A15 and Nehalem are much less,
compared to the previous experiment in which co-runners’
memory accesses are cache misses and therefore use less
cache bandwidth.

MSHR contention: To understand this phenomenon, we
first need to understand how non-blocking caches processes
cache accesses from the cores. As described in Section II,
MSHRs are used to allow multiple outstanding cache-
misses. If all MSHRs are in use, however, the cores can

48

no longer access the cache until a free MSHR becomes
available. Because servicing memory requests from DRAM
takes much longer than doing it from the LLC, cache-
miss requests occupy MSHR entries longer. This causes
a shortage of MSHRs, which will in turn stall additional
memory requests even when they are cache hits.

D. Exp. 4,5,6: Impact of write accesses

In the next experiments, we further validate the problem
of MSHR contention by using the BwWrite benchmark as
co-runners. BwWrite updates a large array and therefore
generates a line-fill (read) and a write-back (write) for each
memory access. The additional write-back requests add
more pressure in DRAM and therefore delay the processing
of line-fill requests, which in turn further exacerbate the
shortage of MSHRs. Figure 6, Figure 7, and Figure 8 show
results. As expected, the subject tasks generally suffer even
more slowdowns due to the additional write-back memory
traffic.

E. Summary

Figure 9 show the maximum observed slowdowns in all
experiments. When the LLC is partitioned, we observed
up to 14.2X slowdown on Cortex-A15, 7.9X slowdown on
Nehalem, and 2.1X slowdown on Cortex-A7. When the
LLC is not partitioned, we observed up to 26.3X slowdown
on Cortex-A15, 103.7X slowdown on Nehalem, and 6.8X
slowdown on Cortex-A7.

In summary, while cache space competition (i.e., cache-
line evictions) is certainly an important source of inter-
ference, eliminating the space competition through cache-
partitioning does not necessary provide ideal isolation in
COTS multicore platforms due to the characteristics of
non-blocking caches. Through a series of experiments, we
demonstrated that the MSHR competition can also cause
significant interference, especially in out-of-order cores.

VI. CONCLUSION

Many prior works focus on cache partitioning to ensure
predictable cache performance. In this paper, we showed
that cache partitioning does not necessarily provide pre-
dictable cache performance in modern COTS multicore
platforms that use non-blocking caches to exploit memory-
level-parallelism (MLP). We quantified the degree of MLP
on three COTS multicore platforms and performed a set of
experiments that are specially designed to expose worst-
case interference in accessing the shared LLC among the
cores.

The results showed that while cache-partitioning
help reduce interference, it can still suffer significant
interference—up to an order of magnitude slowdown—
even when the task under consideration accesses its own
dedicated cache partition (i.e., all cache-hits). This is be-
cause there are other important shared resources, partic-
ularly MSHRs, which need to be managed in order to
provide better isolation on COTS multicore platforms. We
plan to address the issue as our future work.

REFERENCES

[1] Memory system in gem5. http://www.gem5.org/docs/html/
gem5MemorySystem.html.

[2] ARM. Cortex-A15 Technical Reference Manual, Rev: r2p0, 2011.
[3] D. Eklov, N. Nikolakis, D. Black-Schaffer, and E. Hagersten.

Bandwidth bandit: quantitative characterization of memory con-
tention. In Parallel Architectures and Compilation Techniques
(PACT), 2012.

[4] Freescale. e500mc Core Reference Manual, 2012.
[5] A. Glew. MLP yes! ILP no. ASPLOS Wild and Crazy Idea

Session98, 1998.
[6] P. Greenhalgh. Big. little processing with arm cortex-a15 & cortex-

a7. ARM White paper, 2011.
[7] Intel. Intel R©64 and IA-32 Architectures Optimization Reference

Manual, April 2012.
[8] D. Kroft. Lockup-free instruction fetch/prefetch cache organization.

In International Symposium on Computer Architecture (ISCA),
pages 81–87. IEEE Computer Society Press, 1981.

[9] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
Gaining insights into multicore cache partitioning: Bridging the
gap between simulation and real systems. In High Performance
Computer Architecture (HPCA). IEEE, 2008.

[10] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference
in multicore systems. In Parallel Architecture and Compilation
Techniques (PACT), pages 367–376. ACM, 2012.

[11] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni. Real-Time Cache Management Framework for Multi-
core Architectures. In Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2013.

[12] NVIDIA. NVIDIA Tegra K1 Mobile Processor, Technical Reference
Manual Rev-01p, 2014.

[13] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In High-
Performance Computer Architecture, 2002. Proceedings. Eighth
International Symposium on, pages 117–128. IEEE, 2002.

[14] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein,
and R. Rajkumar. Coordinated bank and cache coloring for
temporal protection of memory accesses. In Computational Science
and Engineering (CSE), pages 685–692. IEEE, 2013.

[15] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making Shared
Caches More Predictable on Multicore Platforms. In Euromicro
Conference on Real-Time Systems (ECRTS), 2013.

[16] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache
partitioning system using page coloring. In Proceedings of the 23rd
international conference on Parallel architectures and compilation,
pages 381–392. ACM, 2014.

[17] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC:
DRAM Bank-Aware Memory Allocator for Performance Isolation
on Multicore Platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2014.

[18] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Mem-
Guard: Memory Bandwidth Reservation System for Efficient Per-
formance Isolation in Multi-core Platforms. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013.

49

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(a) Cortex-A7

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(b) Cortex-A15

 0

 20

 40

 60

 80

 100

 120

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(c) Nehalem

Fig. 6: [Exp.4] Slowdown of Latency(LLC) with BwWrite(DRAM) co-runners.

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(a) Cortex-A7

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(b) Cortex-A15

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(c) Nehalem

Fig. 7: [Exp.5] Slowdown of BwRead(LLC) with BwWrite(DRAM) co-runners.

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(a) Cortex-A7

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(b) Cortex-A15

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0 1 2 3N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

of co-runners

shared
partitioned

(c) Nehalem

Fig. 8: [Exp.6] Slowdown of BwRead(LLC) with BwWrite(LLC) co-runners.

 0
 2
 4
 6
 8

 10
 12
 14
 16

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n
 T

im
e

partitioned shared

(a) Cortex-A7

 0
 2
 4
 6
 8

 10
 12
 14
 16

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n
 T

im
e

partitioned shared

(b) Cortex-A15

 0
 2
 4
 6
 8

 10
 12
 14
 16

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n
 T

im
e

partitioned shared

(c) Nehalem

Fig. 9: Maximum observed slowdowns in all experiments.

50

An experience report on the integration of ECU
software using an HSF-enabled real-time kernel�

Martijn M.H.P. van den Heuvel, Erik J. Luit, Reinder J. Bril,
Johan J. Lukkien, Richard Verhoeven and Mike Holenderski

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven (TU/e),

Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Abstract—This paper gives an overview of the challenges we
faced when integrating automotive software components on an
embedded electronic control unit (ECU). The results include the
design of a communication abstraction layer, management of
scarce ECU resources and a demonstration of temporal isolation
between components in an industrial case study.

Index Terms—Automotive software; Virtualization; Real-time
scheduling; Component-Based Software Engineering (CBSE).

I. INTRODUCTION

Today’s vehicles contain an ever increasing amount of soft-
ware. These software functions consist of various components
that replace mechanical controllers. The current market situation
reinforces the challenges of integrating these software functions
on a shared platform, because adding a new function into a
vehicle often means purchasing pre-manufactured hardware and
software with little information about the internal behavior [1].

The AUTOSAR consortium, however, recognized that a
revolutionary performance increase of in-vehicle electronic
systems comes from the composition and the integration of
independently developed software functions. In AUTOSAR,
functions are developed using components which are executed
as tasks by an OSEK-certified operating system (OS). Some
of these tasks may share memory-mapped input-and-output
(I/O) devices, actuation devices (such as brakes) and software
pieces [1] (such as object detection). The protocols that manage
synchronization on these shared resources may further impact
I/O delays experienced by the tasks of a component. Many com-
ponents, especially those that implement control functionality,
are sensitive to timing and fluctuations in actuation delays.

Hierarchical scheduling frameworks (HSFs) support prom-
ising techniques to control such timing delays and fluctuations.
In order to support composition of components and temporal
isolation between them, Nolte et al. [2] investigated the
applicability of HSFs into AUTOSAR. The HSF is implemented
using so-called servers as a layer between the AUTOSAR OS
and the AUTOSAR Runtime Environment. The AUTOSAR
standard allows for inclusion of proprietary technology, as long
as the extensions can be abstracted to an AUTOSAR OS [2].
In this work we apply an HSF to real automotive software and
we demonstrate its use in the field by means of video material.

�This work is supported by the Dutch High-Tech-Automotive-Systems innov-
ation programme under the VERIFIED project (Grant number: HTASI10003).

The remainder of this paper is organized as follows. Sec-
tion II gives a brief overview of the case study being explored
in this paper. Section III then presents the software components
that were developed for our use case. Section IV describes the
deployment of those software modules on our ECU. Section V
discusses some of the practical challenges we faced in the
development and deployment of our ECU software. Finally,
Section VI concludes this paper.

II. AN AUTOMOTIVE CASE STUDY

In this work we integrated 3 software applications into a
Jaguar XF (see Figure 1): an active suspension controller [3], a
supervisory controller and a run-away process. We established
timing predictable execution of these applications by means of
an HSF, which allocates a server to each application.

The active suspension is part of a more comprehensive
Integrated Vehicle Dynamics Controller (IVDC), which is
meant to stabilize a vehicle in critical situations. The IVDC
further improves the electronic stability program (ESP) of a
car by adding suspension control to the integrated control [3].

A supervisory controller checks the correctness of the shared
sensor and actuator data and handles faults when necessary. It
is split up in a Central Supervisory Control (CSC) which
coordinates central actions for the 4 wheels and a Local
Supervisory Control (LSC) which controls a single suspension
unit for one wheel. More precisely, the CSC implements logic
to coordinate the suspension per axle and for the entire car.

The run-away process can be put in a mode where it
consumes all processor cycles and it runs at the highest
priority. It is used to demonstrate temporal isolation between
the three applications, i.e., each application can consume only
the resources allocated to its server and nothing more.

A. Logical view to hardware

We use various ECUs in the car which are connected to a
fieldbus; some of these nodes are virtual ones. Each wheel is
controlled locally. In our setup, one wheel is controlled by an
ECU while the other wheels are controlled by a dSPACE [4]
system (hence, the other ECUs are not deployed in real and their
software runs on a central dSpace node). dSPACE provides a
powerful hardware platform and tools for prototyping embedded
applications. The CSC also executes on the dSPACE system.

51

τ1 τ2 . . . τn τ1 τ2 . . . τn

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control Suspension control

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on local ECU–

Figure 1. In this project we employed 4 ECUs at each corner of a test car for active suspension. A central dSpace coordinates the local ECUs. It therefore
implements components for supervisory control and software-based integrated-vehicle-dynamics (IVDC) state estimation. We have integrated their local
counterparts, i.e., 2 components which are (semi-)independently developed by various project partners, through an HSF with well-defined mechanisms for
resource virtualization on a local ECU.

The ECU that we used is a Freescale EVB9S12XF512E
evaluation board with a 16-bits, MC9S12XF512 processor and
32 kB on-chip RAM. The clock speed of the processor was set
to 40MHz in order to accommodate the processing load. The
board provides, among others, 16 Analog to Digital Converters
(ADCs), several PWM outputs, a CAN controller and a FlexRay
controller. The Freescale board is connected to an extension
board which protects the processor hardware from electric
overloads, it offers voltage division and it provides connectors
to the processor board and to the environment.

B. This work

In this work, a dedicated ECU is deployed in order to control
the suspension of one of the four wheels of a car. On this
ECU, we implement and run three different applications:

Two control loops for active suspension: these tasks
run at 400 Hz and 100 Hz, respectively (i.e., tasks with
periods of 2.5 ms and 10 ms). These loops execute a
control model (developed using Matlab/Simulink) and
they interact directly with the hardware.
The LSC process: it receives commands from the CSC,
sends commands to the control loops, receives data from
the control loops and sends state information to the CSC.
Run Away Process (RAP): on command it switches
between a state in which it sends an “I’m alive" message
each period and a state in which it tries to consume all
CPU cycles.

Using our HSF extensions in MicroC/OS-II, temporal isolation
is demonstrated between the three applications. Hence, the
other applications are protected against the RAP. Moreover, we
describe their mapping on a platform with scarce resources.

III. ECU SOFTWARE

In this section we give an overview of the software
modules that are integrated on our ECU. Figure 2 shows the

microC/OS-II + HSF
+ Main LSC ASD Runtime

4PH active control Communication
stub Run-Away Process

Hardware drivers Depends on

Figure 2. An overview of the software modules, including their dependencies,
which we have integrated in our ECU.

dependencies between the different modules. Firstly, we briefly
recapitulate MicroC/OS-II and its HSF. Secondly, we introduce
the LSC and its run-time libraries. Thirdly, we introduce the 4-
point-hydraulic (4PH) suspension control. Finally, we describe
our communication stub.

The hardware drivers are not further described. These drivers
were mostly delivered with MicroC/OS-II or by Freescale.
Moreover, the most interesting part is described by our
communication stub1, which provides an abstraction layer for
the underlying fieldbus drivers (either CAN or FlexRay).

Also the RAP is not discussed in further detail. The reason
is that the RAP is a fairly simple process, i.e., an event-
triggered infinite loop which is introduced for the purpose
of demonstrating temporal isolation within an HSF.

1The dependencies of the communication stub to the application modules
(LSC, RAP and 4PH active control) are just there to ease their definitions of
message types; they can be avoided by means of singleton-like patterns.

52

A. MicroC/OS-II and its HSF

MicroC/OS-II is a microkernel which is maintained and
supported by Micrium [5] and is applied in many application
domains, e.g., automotive2. The kernel is open source and avail-
able for free for non-commercial purposes. The MicroC/OS-II
kernel features preemptive multitasking for up to 256 tasks,
and its size is configurable at compile time, e.g. services like
mailboxes and semaphores can be disabled.

This section recapitulates our proprietary HSF module for
MicroC/OS-II [6, 7]. Extending MicroC/OS-II with basic HSF
support requires a realization of the following concepts:

1) Server scheduling: Similar to the MicroC/OS-II task
scheduling approach, we introduce a ready queue for
servers indicating whether or not a server has capacity left.
When the scheduler is called, it activates the ready server
with the highest priority. The fixed-priority scheduler of
MicroC/OS-II then selects the highest-priority ready task
from the group of tasks corresponding to the running
server. The implementation of periodic servers turned
out to be very similar to implementing periodic tasks [6].

2) Task scheduling: After masking the task groups of all
servers except the tasks of the active one, the MicroC/OS-
II fixed-priority scheduler subsequently determines the
highest priority ready task; this code is unmodified.

3) Idle Server: We reserve the lowest task priority levels for
an idle server, which contains MicroC/OS-II’s idle task
at the lowest local priority. This server cannot deplete its
budget, so that the idle server can always be switched
in whenever no other server is eligible to execute.

A major effort in the HSF’s realization translates into a
hierarchical representation of timed events. In a system we
therefore employ four timer queues to control tasks and servers.
In case of single level scheduling, we have just a single system
queue that represents the timer events associated with the arrival
of tasks. In an HSF, we use this existing system queue for
the scheduling of servers. The timers in this queue represent
budget-replenishment events corresponding to the start of a
new period. In addition there is a local queue for each server
which keeps track of the timers needed to manage the tasks
inside a server such as the arrival of periodic tasks. At any
time at most one server can be running on the processor; all
other servers are inactive. When a server is suspended, its local
queue is deactivated. In this configuration the hardware timer
drives two timer queues, i.e., the local queue of the active
(running) server and a system queue.

When the running server is preempted, its local queue is
deactivated and the queue belonging to the newly scheduled
server is activated. In order to ensure correct execution, the
time that passed since the previous deactivation needs to be
accounted for upon activation. To keep track of this time we
introduce a third queue: the stopwatch queue. Upon deactivation
of a server, a timer is added to this queue. Whenever a server
is activated, its local queue is synchronized with the stopwatch,

2Unfortunately, the suppliers of MicroC/OS-II have discontinued the support
for an OSEK-compatibility layer.

i.e., all timers in its local queue which would have expired
if the server was running are handled. As a result, all local
timers with a smaller value than the stopwatch timer are popped
from the local queue and the corresponding stopwatch event is
subsequently deleted from the stopwatch queue. The time spent
to synchronize the local queue of the newly activated server
with global time is accounted to this server and subtracted
from its budget.

Finally, a fourth queue represents timers that expire relative
to the server budget. These events trigger the depletion of (a
fraction of) the server’s budget. We call these virtual timers as
their notion of time is limited to the server budget. Rather than
putting these in the system queue we have a separate queue
for them, since otherwise we would need to insert them into
the system queue upon activation and remove them again upon
deactivation. In this new configuration, at every tick interrupt
at most four queues are updated: a system queue, an active
server queue, a stopwatch queue, and an active server virtual
queue. The last queue does not need to get synchronized when
a server is resumed, because a deactivated server does not
consume its budget.

We refer the interested reader to [6] for a detailed perform-
ance evaluation of MicroC/OS-II and our HSF.

B. Local supervisory control and its ASD runtime

The Local Supervisory Control (LSC) consists of code
generated from formally verified state charts. These state charts
are programmed using the ASD:Suite [12]. Although ASD’s
underlying model-checking techniques can guarantee absence
of faults in the state-chart models, absence of faults is not
automatically guaranteed in the modeled program unless code
generation techniques are applied.

For this purpose, amongst other approaches, Broadfoot and
Broadfoot [8] proposed to bridge the gap between formal
methods and the informal world of software engineering by
combining the sequence-based specification method (SBS) [9]
and the process algebra Communicating Sequential Processes
(CSP) [10]. Broadfoot and Hopcroft [8, 11] extended this
work by developing automated translations between SBSs,
CSP and executable code, such that the operational semantics
are preserved. This led to the invention of Analytical Software
Design (ASD) and together with the commercial product
ASD:Suite [12], developed and owned by Verum, enables its
full integration into industrial practices.

Using ASD, we describe the provided interface of the LSC
component, which consists of the following methods:

� comm_ok;
� controls_enabled;
� reset_system;
� reset_errors.

These methods can be called by other components in the system,
i.e, in our case, the communication stub.

The behaviour behind the interface of the LSC component
is then captured by a state chart, as shown in Figure 3. It has
the following states: uninitialized, passive and active. The state
changes of the LSC are triggered by the received commands

53

Uninitialized

Initialized

Passive

Active

StandBy Error

Full Performance Degraded

reset errors

[i v1 faulty]
[i v2 faulty]

reset errors

[!comm ok]

[!comm ok][controls enabled] [!controls enabled] [dp1 faulty]
[dp2 faulty]

[comm ok] reset system

Figure 3. A state-chart representation of the LSC.

from incoming network messages. From the uninitialized state,
a transition is made to the initialized/standby state when the
LSC receives the comm_ok message from the communication
stub. This message is sent as soon as the first message is
received from the CSC. When the controls_enabled signal is
received, the active/full performance state is entered.

When faults are detected, the LSC goes into either the
degraded state or into the passive state. The degraded state
is entered if the measured sensor data (i.e, the pressure and
current) deviate from their expected values. These errors are
reported to the CSC and the LSC can return to the full
performance state when the reset_errors message is received.

In the passive states the local 4PH suspension control acts
independently of the central control. This happens, e.g., when
the communication between the dSpace box and our ECU
fails. The communication is considered to be correct (see
Section V-B) as long as maximally two messages from the
CSC are missed, either because these did not arrive at the ECU
or because the ECU could not process these in time. If the
communication fails, i.e., when more than two messages are
not received, then the passive state is entered. When messages
are arriving again, the communication stub sends the comm_ok
message again and the full performance state is re-entered.
Otherwise, the LSC stays in the passive state.

Finally, the above design is formally verified by ASD. By
modeling its environment, e.g., the interface of the commu-
nication stub which may use the LSC’s provided interface,
concurrency issues of tasks interacting with the LSC can be
avoided. Subsequently, MISRA C compliant source code [13]
has been generated which implements the model.

C. 4PH active suspension

The local 4PH suspension control of our ECU controls the
suspension unit at one wheel of the car. The suspension unit
for one wheel consists of a conventional suspension extended

with a hydraulic system. The hydraulic system consists of a
fluid-filled cylinder with a piston that divides the cylinder into
two parts. The pressure on both sides of the piston can be
varied by two electrically operated valves, so that the piston
and the rod attached to it can move in both directions. The
valves are actuated via Pulse Width Modulation (PWM), so
the effective voltage applied is determined by the ratio of the
duty cycle and the period of the PWM. Hydraulic pressure is
measured on both sides of the valves. Also the actual current of
the valves and the voltage of the power supply are measured.

The code generated from this active-suspension application
for our ECU consists of 2 control loops: one controls the
pressure of the valves at 100Hz and the other controls the
current at 400Hz. The central dSpace box runs the software
for the other 3 wheels of the car and it runs the CSC which
implements logic to coordinate the suspension per axle and for
the entire car. The entire control application has been modelled
and tested using Matlab-Simulink. For details on the vehicle
dynamics, we refer the interested reader to [3].

D. Communication stub

The communication stub optimizes concurrent use of the
network bus and abstracts its underlying technology. In this
section, we describe how we connected our ECU to a CAN bus;
Section V-C shows how the CAN connection can be replaced
by a FlexRay connection.

The communication optimization focuses on minimizing the
number of messages to be transmitted from dSpace to the ECU
and vice versa. Messages that are to be sent at the same time are
therefore piggybackked into one packet. The abstraction takes
care of a uniform message format and it hides variations in
latency and jitter involved with communication. This is needed,
because the data structures, that define the messages being
communicated over the CAN network, are compiled differently
by the dSpace and the Freescale compilers. The communication
stub therefore encodes and decodes CAN messages.

Moreover, without any additional means, the clocks at the
dSpace box and our ECU will not be synchronized, which may
lead to jitter. Although the central controllers at the dSpace
and the local controllers at the ECU may roughly run at the
same speed, they will not be as tightly synchronized as they
would be in case both run on the same dSpace box. This may
have two consequences for a local controller:

1) When it runs ahead, it may expect an absent message;
2) When it runs behind, it may receive multiple messages.

Both problems are resolved by assuming that the local controller
has a state-message semantics. That is, the last value that has
been sent is returned and there is no synchronization between
sender and receiver.

This way of communication may lead to conflicts with the
LSC, because the LSC expects messages upon each event
that requires a change of its internal state. We have therefore
implemented a translation layer in the communication stub in
order to support event messages (see Section V-A).

54

IV. APPLICATION MAPPING

In this section, we firstly describe the mapping of applications
to tasks and servers. Secondly, we describe the mapping of
applications to messages on the fieldbus. Finally, we discuss
the mapping of applications to memory.

A. Servers and tasks
As suggested by Figure 2, the application settings of

MicroC/OS-II and the integrated ECU software are together
defined in a main file. This file includes declarations of tasks
and servers, their priorities and the stack size of the start tasks,
i.e., the task that creates the other tasks and that starts the
real-time clock. The real-time clock operates at 4000Hz, which
restricts the monitoring of the resource consumption to 10%
of the execution of the most frequent control loop.

In total we define 3 servers, i.e., given in descending priority
order: for the RAP, the active suspension and the LSC process.
The RAP and the LSC are (arbitrarily) allocated 10% processor
bandwidth each period of 10 ms. Based on our experiments,
the processor budget of the server corresponding to the active
suspension control is set to 80% of the processor bandwidth
with a period of 2.5 ms.

The local 4PH suspension control consists of two control
loops (for current control and for pressure control) which are
running on the same server. For each of the control loops,
a task is created and their priorities are assigned in a rate-
monotonic manner. In order to reduce the number of context
switches between these tasks, their execution is forced in a
strictly alternating manner (using a release offset and semaphore
protection), so that 1 execution of the 100Hz control loop is
followed by 4 executions of the 400Hz control loop. Moreover,
the offsets of the tasks are chosen such that the high-frequent
task cannot be preempted due to the server’s budget depletion.

B. Fieldbus communication
In our setup, the applications on the ECU report their status

to the CSC. The fieldbus (by default CAN) is therefore used
by three different applications, i.e., from the ECU’s sides:

� Active-suspension control: every 2.5 ms, it reports the
current and voltage set points of the valves.

� LSC: every 10 ms, it reports state and error information;
� RAP: sends an “I’m alive" message every 10 ms.

The messages from the LSC and the RAP are piggybacked on
the control messages, because these have the highest frequency.

In return, the CSC on the dSpace box replies to our ECU
every 10 ms. The messages received by our ECU contain:

1) set points and estimated valve flows for the control loops;
2) state-change commands for the LSC;
3) state-change commands for the RAP.

C. Memory management
A major challenge encountered was that the control applica-

tion (generated from Simulink) did not fit into the non-paged
memory of the processor, i.e., the application requires more
than the 8KB directly accessible RAM. Additional RAM can
be used by means of the so-called banked memory model
which enables memory paging. By loading a page into the

page window and making sure no other page is loaded into
this window, 4KB additional RAM can be directly addressed.

The support for memory paging required us to change the
functions involved in context switching, including the interrupt
service routines (ISRs), because the stack needs to store the
PPAGE register and a 24-bit function pointer (only a 16-bit
pointer is stored in the non-paged case). Paging has only
been implemented for code, not for data as this would have
required additional effort which was unnecessary to solve
our memory problems. For performance reasons, compiler
directives (pragmas) were applied to ISRs in order to link them
into non-banked memory.

V. DISCUSSION: RELIABLE COMMUNICATION

A. Joint event-triggered and time-triggered message handling

In our design, two types of message semantics have been
integrated [14]: event-message and state-message semantics.
For event-message semantics, a message is associated with
an event that is processed upon receiving the message. Also,
synchronization is needed between sender and receiver. For
state-message semantics, the last value that has been sent is
returned which represents the last known state of the sender.
Since we cannot assume intermediate synchronization between
the dSpace box and our ECU, we implemented a translation
from event-message semantics to state-message semantics.

The 4PH suspension control loops are implemented using
Matlab/Simulink. Matlab/Simulink implements time-triggered
activations of control tasks and it polls for input data, corres-
ponding to state-message semantics. The local 4PH suspension
control will therefore automatically read the data of the latest
received message, i.e., following the state-message semantics.

However, the LSC assumes event-message semantics, be-
cause the supervisory control is assumed to be activated upon
a (relevant) state change in its environment. This requires a
conversion from state-message semantics to event-message
semantics in the communication stub. For this purpose, our
communication stub provides dedicated send and receive
primitives, which we briefly describe below.

1) Sending messages: When a send primitive is called
from the communication stub interface, this will simply
cause an update of local data within the communication stub
corresponding to the send request. However, no message is
being submitted at this time. Only periodically, messages are
being packed and submitted to the CAN bus.

When multiple state changes happen for the local read data
of supervisory control, it gives rise to multiple events to reflect
those state changes. This may lead to overload situations, as
discussed in the next subsection.

2) Receiving messages: When a read primitive is called
from the communication stub, all messages (if any) will be
retrieved from the message queue of the CAN driver, in the
order of arrival. Only the latest received message will be taken
into account for handling, because a state-message semantics
is assumed. This is possible because only the local state of
the LSC needs to be updated. This message may cause a
state-change in the LSC, where only the last state matters.

55

4PH local control Communication stub CAN driver

send sensor data

Update local state of 4PH controller

send packed message

Figure 4. Interaction diagram for sending a CAN message.

Note that only a state change with respect to locally stored
data (for example, by the LSC) is translated into an “event”. In
this way we effectively transformed state-message semantics
into event-message semantics.

B. Handling communication errors and overloads

Within our system, we cannot assume that message commu-
nication is reliable. When a task attempts to send a message to
an uninitialized node in the network, a CAN error interrupt is
generated. If this interrupt is not handled properly, this causes
a crash of the control software. An ISR is therefore developed
to handle this interrupt, i.e., it resets the CAN bus with a call to
CANStart. The execution time of this ISR is considerable and
it exceeds the execution time of the control loops. In practice
this is not problematic, because uninitialized nodes typically
occur only once when the applications are bootstrapped.

Furthermore, once the communication has been initialized,
our ECU may be unable to keep up with the produced messages
of the central control running on the dSpace box. In consumer-
producer situations, a consumer (e.g., a LSC) may not be
able to keep up with the producer (e.g., the CSC delivering
commands over the network). A common technique to prevent
buffer overloads is to selectively delete incoming messages. In
this way, unacceptable latencies between the reception of the
remaining commands and their handling can be avoided.

Deleting events in a state-message semantics is only possible,
if and only if the new state of the receiver depends on just the
latest event (rather than all intermediate states). Given that state
changes of the LSC do not appear often, we experienced that
in our proof of concept pruning of messages can be ignored.

C. Replacement of CAN by FlexRay

FlexRay has been introduced in order to increase the
available network bandwidth compared to CAN. The FlexRay
technology defines a communication cycle which is divided into
static and dynamic segments. The static segment enables time-
triggered communication; the dynamic segment allows each
node to transmit its messages in the remaining bandwidth using
event-driven communications (like with CAN). In this work,
we merely used the static segment. Freescale provides a library
for this, which contains a set of functions and protocol-specific
interrupt handlers to interact with the FlexRay controller.

The payload size of FlexRay slots is configured to be
16 bytes. This allows the resolution of the messages to be
increased compared to CAN. Another advantage of this payload
size is that encoding of the messages into the slots can be
done efficiently. Consequently, all messages can be encoded

and decoded by using the union of their data (i.e., fast
piggybacking). The data structures of the FlexRay messages
are defined as a union of a set of fields and a byte array. Such a
union provides the possibility to approach the memory location
at which the structure is stored as one of the fields or as a
byte in the array. This makes the earlier described functions
to encode and decode messages obsolete.

However, since FlexRay messages are larger than CAN
messages, FlexRay communication requires more data memory
compared to CAN. This reinforces the challenges related to
efficient memory management of the applications running on
our ECU (as discussed in Section IV-C).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we revisited HSFs for facilitating timing
predictable integration of automotive software components.
Previously, we have published both the theoretical [15] and
the practical impact [6, 7] of resource virtualization on the
timeliness of synthetic components. In this paper we presented
our experiences with employing our HSF in an ECU with
real automotive software. A Jaguar XF carries our HSF with
active-suspension software, which we captured on video. Future
cars are expected to rely even more on timing predictable
composition, not just for further vehicle dynamics but also
for car-to-car control (like collision avoidance). Here real-time
systems and the internet-of-things may join their forces.

REFERENCES
[1] M. Di Natale and A. Sangiovanni-Vincentelli, “Moving from federated

to integrated architectures in automotive: The role of standards, methods
and tools,” Proc. of the IEEE, vol. 98, no. 4, pp. 603–620, April 2010.

[2] T. Nolte, I. Shin, M. Behnam, and M. Sjodin, “A synchronization protocol
for temporal isolation of software components in vehicular systems,”
IEEE Trans. on Ind. Inf. (TII), vol. 5, no. 4, pp. 375–387, Nov. 2009.

[3] B. Bonsen, R. Mansvelders, and E. Vermeer, “Integrated vehicle dynamics
control using state dependent riccati equations,” in AVEC, Aug. 2010.

[4] dSPACE GmbH, “Automotive Solutions – Systems and Applications,”
2015. [Online]. Available: https://www.dspace.com/

[5] Micrium, “RTOS and tools,” 2011. [Online]. Available:
http://micrium.com/

[6] M. Holenderski, R. J. Bril, and J. J. Lukkien, “An efficient hierarchical
scheduling framework for the automotive domain,” in Real-Time Systems,
Architecture, Scheduling, and Application. InTech, 2012, pp. 67–94.

[7] M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Transparent
synchronization protocols for compositional real-time systems,” IEEE
Trans. on Industrial Informatics, vol. 8, no. 2, pp. 322–336, May 2012.

[8] G. H. Broadfoot and P. J. Broadfoot, “Academia and industry meet:
Some experiences of formal methods in practice,” in APSEC, 2003, pp.
49–59.

[9] S. J. Prowell and J. H. Poore, “Foundations of sequence-based software
specification,” IEEE Trans. on Software Engineering (TSE), vol. 29, no. 5,
pp. 417–429, 2003.

[10] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall,
Int. Ser. in Computing Science, 1985.

[11] P. J. Hopcroft and G. H. Broadfoot, “Combining the box structure
development method and CSP for software development,” ENTCS, vol.
128, no. 6, pp. 127–144, May 2005.

[12] “Verum R© - Tools for building mathematically verified software,” 2009.
[Online]. Available: www.verum.com

[13] “MISRA - The Motor Industry Software Reliability Association,”
2004-2009. [Online]. Available: http://www.misra-c2.com/

[14] S. Poledna, “Optimizing interprocess communication for embedded real-
time systems,” in RTSS, Dec. 1996, pp. 311–320.

[15] M. M. H. P. van den Heuvel, “Composition and synchronization of
real-time components upon one processor,” Ph.D. dissertation, TU/e, The
Netherlands, June 2013, ISBN 978-94-6108-443-9.

56

Evolving Scheduling Strategies for Multi-Processor
Real-Time Systems

Frank Feinbube, Max Plauth, Christian Kieschnick and Andreas Polze
Operating Systems and Middleware

Hasso Plattner Institute
University of Potsdam, Germany

Email: {frank.feinbube, max.plauth, christian.kieschnick, andreas.polze}@hpi.de

Abstract—In recent years the multi-core era started to affect
embedded systems, changing some of the rules: While on a single
processor, Earliest Deadline First has been proven to be the best
algorithm to guarantee the correct execution of priorized tasks,
Dhall et al. have shown that this approach is not feasible for
multi-processor systems anymore. A variety of new scheduling
algorithms has been introduced, competing to be the answer to
the challenges multi-processor real-time scheduling is imposing.
In this paper, we study the solution space of prioritization-
based task scheduling algorithms using genetic programming
and state-of-the-art accelerator technologies. We demonstrate that
this approach is indeed feasible to generate a wide variety of
capable scheduling algorithms with pre-selected characteristics,
the best of which outperform many existing approaches. For a
static predefined set of tasks, overfitting even allows us to produce
optimal algorithms.

I. INTRODUCTION

Following the trends in the personal computing sector,
many embedded systems are nowadays equipped with multiple
processing units. These resources are used for non-critical
tasks like entertainment systems and critical ones, where wrong
timing is considered a failure. In real-time systems, the latter
are traditionally studied using the preemptive task model. A
task T arrives at time A in the system and is supposed to
finish its execution by its deadline AD. Furthermore, with
these critical tasks, it is usually assumed, that the worst
case execution time C is known upfront. Tasks can either
be occurring only once or periodically, where AD is also
considered to be the time interval, after which the task arrives
again. If a given set of tasks includes only periodic tasks, it is
called a periodic task set; otherwise it is called sporadic.

A task scheduling algorithm is used to schedule these tasks
onto p processors so that no task misses its deadline. This is
usually realized by assigning priorities to the tasks. If the task
set is known upfront, static scheduling algorithms can be used,
assigning fixed priorities to the tasks. This is very efficient
since the scheduling algorithm only needs to be executed once.
If the task set is not known upfront and new tasks arrive during
system runtime, dynamic scheduling algorithms need to be
utilized. They reevaluate the priorities of all known tasks and
are usually executed when new tasks arrive or at predefined
time intervals during runtime.

Born at a time when resources for embedded systems
were very restricted, traditional scheduling algorithms are
rather simplistic, usually assigning priorities based on a sin-
gle attribute: the deadline. As discussed in Section II, more

sophisticated algorithms are required in multi-core scenar-
ios. Ideally, an algorithm should be optimal, which means
that it is capable of finding a feasible schedule whenever
there exists one. While it has been proven that an optimal
algorithm for multi-core scenarios cannot exist, a number
of algorithms have been proposed that can schedule certain
classes of task sets. In Section III we describe our approach
to the problem. By applying genetic programming and state-
of-the-art accelerator technologies, we were able to evaluate a
vast variety of prioritization-based scheduling algorithms. As
shown in Section IV our implementation can be used to find
close-to-optimal algorithms tailored to task sets with specific
characteristics.

II. RELATED WORK

For single processor scenarios, optimal algorithms have
been around for a long time [1]: Rate Monotonic Schedul-
ing (RMS) [2] is an optimal static scheduling algorithm for
periodic task sets. RMS prioritizes inverse proportionally to
period lengths. Earliest Deadline First (EDF) [2] is an optimal
dynamic scheduling algorithm for sporadic task sets. Each time
a new task arrives, EDF prioritizes based on the deadlines of all
tasks. Least Laxity First (LLF) [3] is also an optimal dynamic
scheduling algorithm. The priority of each task is based on the
difference of its remaining execution time and the time until its
deadline is violated. Since this difference constantly changes
during runtime, LLF shows strong oscillation effects as shown
in Figure 1 leading to a huge amount of task switches. In
practice, task switching in embedded systems comes with a
performance overhead. Thus, there are variations of LLF such
as Modified Least Laxity First (MLLF) [4] that try to reduce
the oscillation effect.

Grundlagen

A AD C

T1 0 5 4
T2 0 5 4
T3 0 10 3

t 1 2 3 4 5 6 7 8 9 10

p0 T1 T3 T0
1 T3

p1 T2 T0
2

t 1 2 3 4 5 6 7 8 9 10

p0 T1 T2 T0
1 T0

2

p1 T2 T3 T0
2 T3

Abbildung 2.2.: Anomalie nach Levin: nicht ausführbare (z.B. nach EDF) und ausführbare

Taskanordnung durch passende Aufteilung von T2

A AD C

T1 0 10 5

T2 0 10 5

t 1 2 3 4 5 6 7 8 9

p0 T1 T2 T1 T2 T1 T2

laxity(T1) 5 4 3 3 3 2 1 1

laxity(T2) 4 4 4 3 2 2 2 1 0

Abbildung 2.3.: Oszillierendes Verhalten bei der Ausführung eines T1 und T2 mittels LLF

analog zum Beispiel von Levin et al. [2] vorgestellt.

Wie Abbildung 2.2 zeigt, besteht die einzige Möglichkeit das Beispieltaskset auszuführen

darin, dass die Tasks mit hoher Auslastung (T1, T2) zum Teil auf einem Prozessorkern aus-

geführt werden. T2 wird bewusst aufgeteilt, um auf p2 ausreichend Ressourcen für T3 zur

Verfügung zu stellen. Auslastungsbeschränkte Schedulingalgorithmen können diese Task-

sets nicht ausführen, da die ‘schweren’ Tasks mit hoher Auslastung aufgrund der hohen

Priorität je einem Prozessor zugewiesen werden, wodurch die notwendige Unterbrechung

nicht möglich ist.

Ausführungsoszillation

Zuletzt sei eine Anomalie genannt, welche vor allem bei vollständig dynamischen Schedu-

lingalgorithmen, z.B. LLF, auftritt. Mindestens zwei Tasks T1, T2 werden derart ausgeführt,

dass die Ausführung von T1 für eine Zeitspanne t0 die Priorität des wartenden Tasks T2

soweit erhöht, dass dieser die Ausführung von T1 unterbricht, um selbst ausgeführt zu wer-

den. Nach ti Zeiteinheiten wird er wiederum von T1 aus dem gleichen Grund unterbrochen.

Für die Ausführungszeiten gilt t0 < ti < t0 + e mit (i > 0, t0 > 0, e > 0) wobei t0 und

e beliebg klein gewählt werden können. Abbildung 2.3 zeigt dieses Verhalten mit diskre-

ten Schedulingzeitpunkten (t0 = 1, ti = 2, i > 0). Die Zahl der Kontextwechsel steigt für

kleinere t0, ti stark an.

13

Fig. 1. Scheduling algorithms like Least Laxity First [3] show oscillating
behavior where the priority is altered at each quantum.

In multi-processor scenarios, things get a little bit more
complicated: Besides oscillation effects, task schedulers also
have to cope with Dhall’s effect and pure global task sets.

Dhall’s effect is demonstrated in Figure 2. It describes
the scenario where there are task sets which produce a very

57

low overall system utilization, but still miss a deadline when
scheduled with traditional algorithms. A number of ”hot fixes”
to EDF and RMS were introduced that have been proven to
circumvent the problem: e.g. EDF First Fit/Best Fit [5], Earliest
Deadline Until Zero Laxity (EDZL) [6], and UMax algorithms
[7], [8]. Although Dhall’s effect is prevented, these scheduling
algorithms only allow for low system utilizations: e.g. 35.425%
for sporadic and 37.482% for periodic task sets [7], [8]. Since
this is significantly lower than the 50% utilization, that is
considered the actual limit [9], new approaches were evaluated.
Lundberg has proven that by assigning task priorities based
on the slack (AD−C) instead of the deadline, the acceptable
utilization for sporadic task sets can be increased to 38.197%
[10].

Grundlagen

A AD C

T1 0 9 2
T2 0 9 2
T3 0 10 9

t 1 2 3 4 5 6 7 8 9 10

p0 T1 T3

p1 T2

t 1 2 3 4

p0 T1 T2

p1 T3

Abbildung 2.1.: Dhall’s Effekt: nicht ausführbare (z.B. nach EDF) und ausführbare Taskan-

ordnung durch Zuweisung von T3 auf eigenen Kern

2.1.3. Schedulingeffekte im Echtzeitscheduling

Im Rahmen von Echtzeitscheduling treten unterschiedliche Effekte auf, die eine erfolgrei-

che Ausführung verhindern oder im Anwendungsfall beeinträchtigen. Im Folgenden wer-

den zwei Effekte vorgestellt, die eine erfolgreiche Ausführung von Tasksets für bestimmte

Klassen von Schedulern verhindern. Zudem wird eine Laufzeitanomalie vorgestellt, die vor

allem bei vollständig dynamischen Algorithmen auftreten kann.

Dhall’s Effekt

Dhall’s Effekt [19] tritt auf, wenn ausführbare Tasksets mit geringer Auslastung nicht aus-

geführt werden können. Insbesondere Algorithmen ohne Berücksichtigung der Auslastung,

wie RMS oder EDF, sind von diesem Effekt betroffen. Der Effekt tritt auf, wenn mehrere

hochpriorisierte Tasks (T1, T2) mit geringer Auslastung die Ausführung mindestens eines

niedriger priorisierten Tasks (T3) mit hoher Auslastung verhindern, in dem sie alle vor-

handenen Prozessoren nutzen. Durch höhere Priorisierung des Tasks mit hoher Auslastung

kann dieses Problem verhindert werden. Abbildung 2.1 illustriert diesen Effekt. Oben wird

das Taskset mittels EDF ausgeführt, bei dem T3 die Deadline nicht einhalten kann, während

unten T3, beispielsweise nach EDF-US, eine höhere Priorität erhält und T2 auf einen anderen

Prozessor verdrängt.

Anomalie nach Levin

Besonders von Bedeutung für prioritätsgetriebene Schedulingalgorithmen für Multiprozes-

soren sind Tasksets wie von Levin et al. [2] aufgeführt. Dies zeigt die Grenzen einfacher

prioritätsgetriebener Algorithmen, beispielsweise von global ausgeführtem EDF und EDF-

US Scheduling. Im Folgenden wird ein periodisches Taskset für einen Zweikernprozessor

12

Fig. 2. This two-processor scenario with three tasks demonstrates Dhall’s
effect [2]. Although it is possible to schedule all tasks according to their
deadline (bottom schedule), Earliest Deadline First (EDF) fails to do so
(schedule on top).

A popular approach to multi-processor real-time scheduling
is to statically allocate tasks to processors so that a task
will never be migrated to another one. The alternative to
this partitioned approach, is the global approach where each
processor can execute each task and tasks will be migrated
accordingly. Migrating tasks results in additional overhead, but
it is the only way to handle pure global task sets as depicted
in Figure 3. Grundlagen

A AD C

T1 0 5 4
T2 0 5 4
T3 0 10 3

t 1 2 3 4 5 6 7 8 9 10

p0 T1 T3 T0
1 T3

p1 T2 T0
2

t 1 2 3 4 5 6 7 8 9 10

p0 T1 T2 T0
1 T0

2

p1 T2 T3 T0
2 T3

Abbildung 2.2.: Anomalie nach Levin: nicht ausführbare (z.B. nach EDF) und ausführbare

Taskanordnung durch passende Aufteilung von T2

A AD C

T1 0 10 5

T2 0 10 5

t 1 2 3 4 5 6 7 8 9

p0 T1 T2 T1 T2 T1 T2

laxity(T1) 5 4 3 3 3 2 1 1

laxity(T2) 4 4 4 3 2 2 2 1 0

Abbildung 2.3.: Oszillierendes Verhalten bei der Ausführung eines T1 und T2 mittels LLF

analog zum Beispiel von Levin et al. [2] vorgestellt.

Wie Abbildung 2.2 zeigt, besteht die einzige Möglichkeit das Beispieltaskset auszuführen

darin, dass die Tasks mit hoher Auslastung (T1, T2) zum Teil auf einem Prozessorkern aus-

geführt werden. T2 wird bewusst aufgeteilt, um auf p2 ausreichend Ressourcen für T3 zur

Verfügung zu stellen. Auslastungsbeschränkte Schedulingalgorithmen können diese Task-

sets nicht ausführen, da die ‘schweren’ Tasks mit hoher Auslastung aufgrund der hohen

Priorität je einem Prozessor zugewiesen werden, wodurch die notwendige Unterbrechung

nicht möglich ist.

Ausführungsoszillation

Zuletzt sei eine Anomalie genannt, welche vor allem bei vollständig dynamischen Schedu-

lingalgorithmen, z.B. LLF, auftritt. Mindestens zwei Tasks T1, T2 werden derart ausgeführt,

dass die Ausführung von T1 für eine Zeitspanne t0 die Priorität des wartenden Tasks T2

soweit erhöht, dass dieser die Ausführung von T1 unterbricht, um selbst ausgeführt zu wer-

den. Nach ti Zeiteinheiten wird er wiederum von T1 aus dem gleichen Grund unterbrochen.

Für die Ausführungszeiten gilt t0 < ti < t0 + e mit (i > 0, t0 > 0, e > 0) wobei t0 und

e beliebg klein gewählt werden können. Abbildung 2.3 zeigt dieses Verhalten mit diskre-

ten Schedulingzeitpunkten (t0 = 1, ti = 2, i > 0). Die Zahl der Kontextwechsel steigt für

kleinere t0, ti stark an.

13

Fig. 3. This two-processor scenario with three tasks demonstrates Levin’s
pure global task sets [11]. Although it is possible to schedule all tasks
according to their deadline (bottom schedule), it is impossible to do so by
pinning tasks to a single processor (schedule on top).

There are algorithms that avoid Dhall’s effect and are
capable of scheduling pure global task sets while allowing
utilizations of up to almost 100%. Proportionate Fair Schedul-
ing [11], [12] and Dp-fair use a fluid scheduling model with
fair task progress, which requires a reprioritization of all
tasks at predefined time intervals. Largest Local Remaining
Execution First (LLREF) [13] follows a similar model, but
reprioritizes based on the laxity and execution time of the
active tasks, instead of static time intervals. When it comes to
theoretical maximal system utilization, these scheduling algo-
rithms perform exceptionally well. However, depending on the
frequency of the reprioritizations, they show oscillation effects
and introduce significant scheduling overhead. This overhead is

comprised of the execution time of the more complex schedul-
ing algorithm itself, the overhead for switching the active
tasks and the overhead for task migration between processors.
Another restriction is that the aforementioned reprioritizing
algorithms are only suitable for periodic task sets. Hong et al.
[14] formulated the hypothesis that there is no optimal priority-
driven algorithm for sporadic task sets. This hypothesis has
been proven by Fisher [15].

A. Research Gap

In this work, we contribute to the field of real-time multi-
processor scheduling by presenting an approach to:

• Identify novel algorithms by exploring the solution
space for real-time scheduling algorithms.

• Create algorithms complying with desired character-
istics such as the number of task migrations and
maximal system utilization.

As a means to implement these goals, we use genetic
programming to evolve real-time scheduling algorithms with
pre-selected characteristics. Using genetic programming for the
creation of our algorithms allows us to cover a wide variety
of scheduling alternatives, thereby helping us to identify the
attributes and functions that are most successful to reduce
overheads while allowing for a solid system utilization. While
being able to create optimal algorithms for many of the task
sets we used in our evaluation, we were unable to identify
an algorithm that is optimal for the general case. However,
these findings harmonize with the proof of Fisher [15], which
states that no optimal algorithm can exist for the general case.
Running such a compute-intense simulation to identify suitable
algorithms was only possible due to the performance of
modern processor and state-of-the-art accelerator technologies.

We are not the first to apply genetic algorithms to the
research area of scheduling algorithms for multi-processor
systems. Hou et al. [16] and Greenwood et al. [17] used genetic
algorithms and evolutionary strategies to generate heuristics for
predefined task graphs. While demonstrating the feasibility of
the approach, both studies focussed exclusively on task sets
that are known upfront and created heuristics that, while useful
in for multi-processor systems in general, did not consider real-
time requirements.

Furthermore, there are existing studies that simulate
scheduling algorithms to evaluate their qualitative and quanti-
tative characteristics [18]–[20]. These approaches are sophis-
ticated to gain insight into capabilities of a single selected
scheduling algorithm, while our approach allows sift through a
vast amount of scheduling algorithms to identify the interesting
candidates for further examination.

To the best knowledge of the authors, we are the first to
apply genetic programming for an exploration of the real-time
scheduling algorithm solution space for arbitrary task sets.

III. APPROACH

Mathematical modeling of the task scheduling domain and
proving the qualities of particular scheduling algorithms be-
comes increasingly complicated the more complex the schedul-
ing algorithms are. Thus, the next best thing would be a simu-
lation of all possible scheduling algorithms starting with a very

58

limited set of terms and functions and iteratively considering
more, when the current complexity is exhaustively studied.
Such an approach has to handle humungous state explosions
with every additional variable and function. Evolutionary pro-
cesses and genetic algorithms have proven to be ideal for
these kinds of scenarios, since they confine unpromising states
while iteratively exploring the more promising ones. [21]–[23]
This section discusses the application of genetic algorithms to
identify promising scheduling algorithms.

A. Architecture

The general architecture of our approach is depicted in
Figure 4. We start by loading the three kinds of task sets, that
we use as the workload for our simulation. The task sets are
described in detail in Section III-B. Furthermore, we generate a
number of initial prioritization schemes. Prioritization schemes
form the core of our scheduling algorithms. They encapsulate
everything that is needed to assign priorities to task sets.
The generic task scheduler shown in Figure 5 will use these
schemes to prioritize the tasks and then simply schedule them
based on their priorities.

Task sets

Read
representative

task sets

Generate
stochastic
task sets

Generate
complete
task sets

Generate
prioritization schemes

Prioritization schemes

Evalute prioritzation schemes with task sets

Rate prioritzation schemes based on scheduling success

Evolve
prioritization schemes

Fig. 4. Architecture: the evolutionary process iteratively refines the scheduling
strategies using a variety of task sets.

1 for(runtime = 0;
2 runtime < simulationEnd && !missedDeadline(tasks);
3 ++runtime)
4 {
5 activeTasks = filterActive(tasks);
6

7 // this is exchanged with each prioritization scheme
8 prioritizationScheme->prioritizeTasks(activeTasks);
9

10 orderDescendantByPriority(activeTasks);
11 tasksToSchedule = selectFirst(activeTasks, processors);
12

13 simulateDiscreteStep(tasksToSchedule);
14 }

Fig. 5. The generic scheduler is the core of our implementation. In our
implementation schedulers only differ in the way they assign priorities to
tasks at any given point in time throughout the execution. This scheduling
strategy is determined by the prioritization scheme.

The evolutionary process is conducted iteratively with the
following consecutive steps: evaluation, rating, evolving. In the
evaluation step, each prioritization scheme is used to schedule
each of the task sets. It is monitored how many tasks switches
and task migrations were required and how many of the
task sets failed to be scheduled successfully, e.g. a deadline
was missed. In the rating step, this information is used to

assign a fitness value to each of the prioritization schemes.
Based on the fitness value the well-known mechanisms of
selection, mutation and crossover are applied to create the next
generation of prioritization schemes. This process is repeated
until candidates with fitness values that are sufficient to comply
with our requirements have been found, e.g. prioritization
schemes capable of scheduling all task sets successfully, or
a predefined maximal runtime is exceeded.

By adapting the fitness rating accordingly, this architecture
allows us to easily ensure that the scheduling algorithms
comply with our requirements when balancing task migrations
and maximal supported utilization.

B. Task Sets

The quality of the resulting prioritization schemes depends
primarily on the task sets that are used for the fitness rating
of the evolutionary process. We distinguish between three
categories of task sets: representative task sets, stochastic task
sets and complete task sets.

Representative task sets are a selection of tasks sets from
the literature that is used to evaluate the capability of a
prioritization scheme to handle the ’hard’ cases. For single
processor scenarios, we have task sets that can barely be
scheduled by Rate Monotonic Scheduling (RMS), cases that
RMS fails to schedule, but Earliest Deadline First (EDF) can
schedule. In the multi-processor scenarios, we we extend these
conventional task sets so that the workload increases according
to the number of processors. Furthermore, we add task sets
that show different effects discussed in Section II. Our set
of representative task sets includes both periodic and sporadic
task sets. Most of these task sets could be scheduled with a par-
titioning strategy, e.g. without task migration. Consequently,
we added pure global task sets as described by Levin et al. [11]
to complete our mix of representative task sets. An overview of
aforementioned task sets and the ability of selected scheduling
algorithms to find a feasible schedule is presented in Table I.

While representative task sets are well suited to remove
prioritization schemes that fail to handle the problematic cases,
stochastic task sets allow us to assess the overall scheduling
performance by mitigating undesireable overfitting effects. To
accomplish this, we generate a number of task sets with a
pseudo-random generator based on a stochastic distribution.

Complete task sets are created by generating every pos-
sible combination of task distributions for a given number
of processors and number of scheduling time slices (quanta).
Since both representative task sets and stochastic task sets are
included in complete task sets, they deliver the best quality
for the evaluation. The drawback is, though, that the amount
of task sets that have to be generated grows exponentially and
renders computation unfeasible for all but very small amounts
of processors and quanta. In our experiments, we studied
complete tasks sets for up to 8 processors and quanta of up to
6 intervals, resulting in about 108 task sets.

C. Evolution

We represent each prioritization scheme as an abstract
syntax tree (AST) that can be executed for a task to produce a
priority. Figure 6 shows an example. The evolutionary process

59

TABLE I. CHARACTERISTICS OF OUR SET OF REPRESENTATIVE TASK SETS. THE RIGHT PART OF THE TABLE SHOWS WHICH PROCESSOR
CONFIGURATIONS CANNOT BE SCHEDULED BY EXISTING SCHEDULING ALGORITHMS. 1, 2, 4, 8, 16 ARE THE NUMBERS OF PROCESSORS USED.

CONFIGURATIONS MARKED WITH A * CAN ONLY PARTLY BE SCHEDULED. PLEASE NOTE THAT LEVIN’S PURE GLOBAL TASK SETS [11] CAN NEITHER BE
SCHEDULED BY APPROACHES THAT APPLY A SIMPLE PARTITIONING, NOR BY APPROACHES THAT ARE SENSITIVE TO UTILIZATION.

periodic partitionable Laxity-based global EDF EDF-US EDZL
RMS3 X X 2*
RMS4 X X 2* 4 8 16 4* 8* 16*
WikiEDF X X
Partitioned X X 2* 4* 8* 16* 4* 8* 16* 2* 4* 8* 16* 4* 8* 16*
Dhall X 2 4 8 16 1*
SlackDhall X 4* 8* 16* 1* 2* 4* 8* 16* 4* 8* 16*
Detail X 2
Split X
Interwoven X 2 4 8 16 2 4 8 16 1 2 4 8 16 2 4 8 16
Levin [11] X 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

of selection, mutation and crossover was realized according
to the literature. [21]–[23] The initial population is generated
purely randomly, with a restricted AST depth of up to 5.

Fig. 6. Prioritization schemes are represented as abstract syntax trees.
Mutations and crossovers are realized by varying and exchanging nodes. In
this example (LD −AD) + C mutates to become log(LD,AD) + C.

TABLE II. ATOMIC AND SIMPLE DERIVED TERMINALS, BASED ON THE
CURRENT TASK AND THE SYSTEM.

x random floating point values from -10.0 to 10.0
0, 1 constant values 0 and 1

m number of processors
A arrival time

RD relative deadline (relative to arrival time)
C capacity = worst case execution time

PT amount of C that has already been executed
P current task priority (starting with 0)
T current point in time

AD absolute deadline = A + RD
ST slack = RD - C

L remaining surplus time = (AD - T) - (C - PT)
U utilization created by task = C / RD

LD remaining execution time = C - PT
RU remaining utilization = LD / (AD - T)

The nodes in the AST are the terminals listed in Table
II. We distinguish between three types of basic terminals:
numbers, system terminals, task specific terminals. System
terminals comprise of the processor count and the time. Task
specific terminals are deadline, worst case execution time and
so forth. In addition to these, we provide a selection of derived
terminals. These are not essential, since they would be gener-
ated by the evolutionary process anyway, but since they are the
core of many of the popular scheduling algorithms like EDF
[2] and LLF [3] we provided them, as well. Furthermore, the
introduction of derived terminals improved the performance
of the evolutionary process significantly. Please note that the
resulting prioritization schemes do not consider the other tasks
in the system, thereby guaranteeing a linear execution time of
the represented scheduling algorithm.

The set of functions supported by our AST are: addition,
subtraction, multiplication, protected division, protected loga-
rithm, exponentiation, check for equality, check for inequality,
selecting the minimum, and selecting the maximum. Checking
for equality and inequality will produce either 1 for success
or 0, allowing a combination with the other functions: AD *
(L == 0).

The fitness of a prioritization scheme is rated according to
multiple objectives [23]. A prioritization scheme is considered
better than a similar one, if it can either schedule more task
sets successfully or needs significantly less migrations for
the scheduling. The impact of the objectives on the fitness
functions can be configured by weights. For the selection
process, we experimented with different population sizes. We
observed that a tournament based selection process with 8
participants and a population size of 100 produced the best
results.

In our experiments, we experienced overfitting effects [22],
where the identified candidates were capable of scheduling
all the task sets we trained them with. This is useful, if
you want to use the approach, to find the perfect schedule
for a specific task set. In the study of the solution space
for scheduling algorithms, it is a hindrance, though, because
overfitted prioritization schemes perform worse in the general
case. To control overfitting, we created two distinct sets of task
sets – the first to evolve the schemes and the second for the
final evaluation. Furthermore, we applied randomizations and
weighted function length negatively, since long functions tend
to overfit more, than shorter ones.

D. Implementation and Performance Tuning

For the practical evaluation, we implemented the concep-
tual architecture presented in Figure 4. Fortunately, the repeti-
tive steps of generation, evaluation and selection are suited for
a parallel implementation. Our initial measurements indicated
that the evaluation step is the predominant workload causing
99.99% of the overall execution time. As a consequence, all
optimization efforts were directed at improving the efficiency
of the evaluation step.

The time required for the evaluation process was greatly
reduced using several optimization techniques: Using a stack-
based representation of terms resulted in a decreased number
of memory allocation operations compared to a tree-based
data structure. At the same time, the stack-based structure

60

managed to increase the degree of data locality. Targeting the
goal of data locality as well, an additional blocking method
was applied to increased the amount of cache hits. Finally, we
evaluated several strategies to vectorize our implementation.
However, in contrast to the other optimizations, none of the
vectorization strategies resulted in any significant performance
improvements.

In addition to an x86 64 CPU-based implementation, we
also created prototypes targeting Intel’s Many Integrated Core
(MIC) architecture exclusively as well as a hybrid version. The
hybrid implementation applies an asymmetric load distribution
scheme between the CPU and the MIC in order to maximize
the execution speed.

The Xeon Phi accelerators based on the MIC architecture
consist of 57-61 cores that are based on a modified P54C
design. Unlike GPU compute devices, all cores of a MIC
accelerator can act independently of each other. This property
makes the MIC architecture a promising target for the parallel
evaluation of diverse prioritization functions. Since the MIC
architecture supports x86 64 instructions, the optimization we
conducted improved the performance for both architectures.

IV. EVALUATION

A. Qualitative evaluation

As described in Section III-C, we designed our implemen-
tation to assign fitness ratings based on weighted objectives.
Figure 7 shows the impact of weighting migrations with 10%.

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1
executable
executable &
#migrations

ex
ec

ut
ab

le
 ta

sk
 s

et
s

[%
]

generation

Fig. 7. Fitness ratings that are based on the number of executable task sets
exclusively show a faster evolutionary progress, but introduce a considerable
amount of task migrations.

A selection of the resulting prioritization functions is listed
in Table III. In this example, L/RU was capable of scheduling
all task sets, but required a substantial amount of task migra-
tions. As another interesting candidate, AD reduced the number
of migrations by a factor of 35.9, but failed with over 25% of
the task sets. These examples show that even simple functions
can handle the training task sets very successfully. Our second
set of task sets proved to be greater challenge. We conducted
elaborate simulation runs each with up to 200 generations.
The most successful ones were capable of scheduling 83%
of the task sets successfully. Some of them, such as 1 / L,
were capable of executing pure global task sets, but failed
with others.

TABLE III. THE QUALITY OF EXEMPLARY PRIORITIZATION
FUNCTIONS BASED ON CAPABILITY OF SCHEDULING TASK SETS AND THE

NUMBER OF REQUIRED TASK MIGRATIONS.

function # executable task sets migrations / task set
L/RU 75 100 % 862
L 71 94.67 % 819
AD 56 74.67 % 24
AD − 1.0 56 74.67 % 24

Figure 8 and Figure 9 show which terminals and functions
are most dominant. The terminals that are used by the state-
of-the-art scheduling algorithms such as laxity L, remaining
execution time LD, deadline AD are successful at surviving the
selection process. Surprisingly, the processor count, that could
be a mechanism to distinguish single-processor from multi-
processor systems is only scarcely used for prioritization. The
most prominent functions are basic arithmetic functions such
as addition and multiplication as well as selecting the minimum
and maximum. Functions allowing terminals to have strong
influence on the results such as exponentiation and logarithm
are only used rarely.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

generation

av
g.

 o
cc

ur
en

ce
 p

er
 in

di
vi

du
al

numeric val.
m
A
RD
C
PT
P
t
AD
ST
L
U
LD
RU

Fig. 8. Terminals with dynamic properties such as Laxity L, remaining
execution time LD and remaining utilization RU were especially successful in
the evolutionary process.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

3

3.5

4

generation

+
−
×
/
log
exp
=
=
min
max

av
g.

 o
cc

ur
en

ce
 p

er
 in

di
vi

du
al

Fig. 9. In our evolutionary process arithmetic operations as well as minimum
and maximum operations were predominant.

In the majority of our experiments, we found a vast amount
of candidate prioritization schemes with interesting properties.
However, a generic optimal solution was not found, concurring
with the literature [11], [14], [15].

61

B. Performance evaluation

Our optimized implementation was able to retrieve valid
prioritization functions for multiprocessor systems ranging
from 1 up to 400 processors in a feasible amount of time.
Benchmarks were performed in a test environment equipped
with two Xeon E5620 processors, each containing 4 cores
clocked at 2.40 GHz, and 24 GB of main memory. Further-
more, a Xeon Phi 5110P accelerator was employed, providing
8 GB of dedicated memory and 60 cores clocked at 1.053
GHz.

0

5

10

15

20

25

C
PU

M
IC

H
YB

C
PU

M
IC

H
YB

C
PU

M
IC

H
YB

0

1.0

0.5

1.5

ex
ec

ut
io

n
ti

m
e[

s]

0

0.1

0.2

0.3
m = ~100 m = ~101 m = ~102

Fig. 10. Across all problem sizes for m, the MIC always outperforms
the CPU. However, the hybrid approach HYP always provides an additional
performance improvement on top of the MIC performance.

The measurements illustrated in Figure 10 demonstrate that
even though evolutionary approaches require huge amounts of
compute resources, modern CPUs empower us to accomplish
the task in acceptable time. The first generation of MIC-based
hardware accelerators allowed us to push the limit a little
further by achieved speedup factors of 2 for m = ∼ 102.

V. CONCLUSION

In this work we have studied the feasibility of genetic
programming and the evolutionary process to explore the
solution space of priority-based scheduling algorithms. We
found that this approach is indeed helpful to identify the
terminals and functions that are most dominant in promising
prioritization schemes. Furthermore, we demonstrated that it is
possible to weight desired characteristics like task migration
and find optimal schedulers for static task sets by exploiting
overfitting.

None of the scheduling algorithms that we generated, not
even the most promising ones were capable to schedule all our
task sets successfully. These findings harmonize with Fisher’s
proof [15] that no optimal priority-driven scheduling algorithm
exists for arbitrary task sets.

ACKNOWLEDGEMENT

This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme 2014-2018
under grant agreement No. 644866.

DISCLAIMER

This paper reflects only the authors’ views and the Euro-
pean Commission is not responsible for any use that may be
made of the information it contains.

REFERENCES

[1] Burns, A. and Wellings, A. Real-Time Systems and Programming Lan-
guages. Addison Wesley, 2001.

[2] Dhall, S. K. and Liu, C. L. On a Real-Time Scheduling Problem.
Operations Research, 1978, Vol. 26, pp. 127-140.

[3] J. Y.-T. Leung, A new algorithm for scheduling periodic, real-time tasks.
Algorithmica, vol. 4, no. 1-4, pp. 209219, 1989.

[4] S.-H. Oh and S.-M. Yang, A modified least-laxity-first scheduling algo-
rithm for realtime tasks. Real-Time Computing Systems and Applica-
tions, 1998. Proceedings. Fifth International Conference on, pp. 3136,
IEEE, 1998.

[5] J. M. López, M. Garcı́a, J. L. Diaz, and D. F. Garcia, Worst-case utiliza-
tion bound for edf scheduling on real-time multiprocessor systems. Real-
Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference
on, pp. 2533, IEEE, 2000.

[6] C. Seongje, L. Suk-Kyoon, and L. Kwei-Jay, Efficient real-time schedul-
ing algorithms for multiprocessor systems. IEICE Transactions on Com-
munications, vol. 85, no. 12, pp. 28592867, 2002.

[7] L. Lundberg, Analyzing fixed-priority global multiprocessor scheduling.
Real-Time and Embedded Technology and Applications Symposium,
2002. Proceedings. Eighth IEEE, pp. 145153, IEEE, 2002.

[8] L. Lundberg and H. Lennerstad, Guaranteeing response times for aperi-
odic tasks in global multiprocessor scheduling. Real-Time Systems, vol.
35, no. 2, pp. 135151, 2007.

[9] A. Srinivasan and S. Baruah, Deadline-based scheduling of periodic task
systems on multiprocessors. Information Processing Letters, vol. 84, no.
2, pp. 9398, 2002.

[10] L. Lundberg, Slack-based multiprocessor scheduling of aperiodic real-
time tasks. Real-Time Systems, vol. 47, no. 6, pp. 618638, 2011.

[11] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, Dp-fair: A simple
model for understanding optimal multiprocessor scheduling, Real-Time
Systems (ECRTS), 2010 22nd Euromicro Conference on, pp. 313, IEEE,
2010.

[12] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, Proportion-
ate progress: A notion of fairness in resource allocation. Algorithmica,
vol. 15, no. 6, pp. 600625, 1996.

[13] H. Cho, B. Ravindran, and E. D. Jensen, An optimal real-time schedul-
ing algorithm for multiprocessors. Real-Time Systems Symposium, 2006.
RTSS06. 27th IEEE International, pp. 101110, IEEE, 2006.

[14] K. S. Hong and J. Y.-T. Leung. On-Line Scheduling of RealTime Tasks.
IEEE Transactions on Computers, 41:1326-1331, 1992.

[15] N. W. Fisher, The multiprocessor real-time scheduling of general task
systems. University of North Carolina at Chapel Hill, 2007.

[16] E. S. Hou, N. Ansari, and H. Ren, A genetic algorithm for multipro-
cessor scheduling Parallel and Distributed Systems, IEEE Transactions
on, vol. 5, no. 2, pp. 113120, 1994.

[17] G. W. Greenwood, A. Gupta, and K. McSweeney, Scheduling tasks in
multiprocessor systems using evolutionary strategies Evolutionary Com-
putation, 1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on, pp. 345349, IEEE, 1994.

[18] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, Cheddar: a flexible
real time scheduling framework, ACM SIGAda Ada Letters. vol. 24, pp.
1-8, ACM, 2004.

[19] F. Golatowski, J. Hildebrandt, J. Blumenthal, and D. Timmermann,
Framework for validation, test and analysis of real-time scheduling
algorithms and scheduler implementations, 13th IEEE International
Workshop on Rapid Systems Prototyping, pp. 146-152. IEEE. 2002.

[20] G.A. Lloyd, Comparing schedulability of global, partitioned and clus-
tered multiprocessor platforms using empirical analysis, 2010.

[21] T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms
for parameter optimization Evolutionary computation, vol. 1, no. 1, pp.
123, 1993.

[22] J. R. Koza Genetic programming as a means for programming com-
puters by natural selection Statistics and Computing, vol. 4, no. 2, pp.
87112, 1994.

[23] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to ge-
netic programming Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

62

Notes

OSPERT 2015 Program

Tuesday, July 7th 2015
8:00 – 9:00 Registration
9:00 – 10:30 Keynote talk: Software Architectures for Advanced Driver Assistance Systems (ADAS)

Robert Leibinger

10:30 – 11:00 Coffee Break

11:00 – 12:30 Session 1: RTOS Design Principles

Back to the Roots: Implementing the RTOS as a Specialized State Machine
Christian Dietrich, Martin Hoffmann, Daniel Lohmann

Partial Paging for Real-Time NoC Systems
Adrian McMenamin, Neil Audsley

Transactional IPC in Fiasco.OC - Can we get the multicore case verified for free?
Till Smejkal, Adam Lackorzynski, Benjamin Engel, Marcus Völp

12:30 – 13:30 Lunch

13:30 – 15:00 Session 2: Short Papers

A New Configurable and Parallel Embedded Real-time Micro-Kernel for Multi-core
platforms

Antonio Paolillo, Olivier Desenfans, Vladimir Svoboda, Joël Goossens, Ben Rodriguez

Adaptive Resource Sharing in Multicores
Kai Lampka, Jonas Flodin, Yi Wang, Adam Lackorzynski

Implementing Adaptive Clustered Scheduling in LITMUSRT

Aaron Block, William Kelley

Preliminary design and validation of a modular framework for predictable composition of
medical imaging applications

Martijn M.H.P. van den Heuvel, Sorin C. Crǎcanǎ, Hrishikesh L. Salunkhe, Johan J. Lukkien, Alok Lele,
Dominique Segers

Increasing the Predictability of Modern COTS Hardware through Cache-Aware OS-Design
Hendrik Borghorst, Olaf Spinczyk

15:00 – 15:30 Coffee Break

15:30 – 17:00 Session 3: Isolation, Integration, and Scheduling

Evaluating the Isolation Effect of Cache Partitioning on COTS Multicore Platforms
Heechul Yun, Prathap Kumar Valsan

An experience report on the integration of ECU software using an HSF-enabled real-time
kernel

Martijn M.H.P. van den Heuvel, Erik J. Luit, Reinder J. Bril, Johan J. Lukkien, Richard Verhoeven, Mike
Holenderski

Evolving Scheduling Strategies for Multi-Processor Real-Time Systems
Frank Feinbube, Max Plauth, Christian Kieschnick, Andreas Polze

17:00 – 17:30 Discussion and Closing Remarks

Wednesday, July 8th – Friday, July 10th 2015
ECRTS main conference.

© 2015 MPI-SWS. All rights reserved.

	Message from the Chairs
	Program Committee
	Keynote Talk
	Session 1: RTOS Design Principles
	Back to the Roots: Implementing the RTOS as a Specialized State Machine
	Partial Paging for Real-Time NoC Systems
	Transactional IPC in Fiasco.OC - Can we get the multicore case verified for free?

	Session 2: Short Papers
	A New Configurable and Parallel Embedded Real-time Micro-Kernel for Multi-core platforms
	Adaptive Resource Sharing in Multicores
	Implementing Adaptive Clustered Scheduling in LITMUSRT
	Preliminary design and validation of a modular framework for predictable composition of medical imaging applications
	Increasing the Predictability of Modern COTS Hardware through Cache-Aware OS-Design

	Session 3: Isolation, Integration, and Scheduling
	Evaluating the Isolation Effect of Cache Partitioning on COTS Multicore Platforms
	An experience report on the integration of ECU software using an HSF-enabled real-time kernel
	Evolving Scheduling Strategies for Multi-Processor Real-Time Systems

	Program

