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Abstract— Real-time control systems, originally arisen from
simple, state-machine–based discrete elements, nowadays com-
prise sophisticated and manifold software-based algorithms con-
solidated with different applications on single, yet powerful
microcontrollers. Real-time operating systems were introduced to
handle this complexity by providing APIs to describe the desired
system behavior, however, at the cost of losing the clarity and
explicitness of state-machine–based representations.
This paper presents an approach to bring the RTOS back to the
roots of a hardware-implementable finite state machine. The con-
cept is based on a detailed static analysis of the application–kernel
interaction to distill the real-time operating system behavior and
find a FSM-based representation of the expected OS states and
transitions. We apply our idea to a realistic control application
based on an OSEK operating system, which results in a feasibly
sized programmable logic array implementation. Having such a
representation at hand might further leverage thorough system
verification and validation based on existing and mature FSM
analysis tools.

I. INTRODUCTION

Up to twenty-five years ago, embedded real-time control
systems were typically designed by electrical engineers as
finite state machines (FSMs) out of discrete elements. With
the advent of cheap 4-bit and 8-bit microcontrollers, software
has begun to take over the role of wiring discrete elements,
but the paradigm of implementing control systems as FSMs
remained. In comparison, the employment of a full-blown
real-time operating system (RTOS) as underlying system
software is a relatively young trend, triggered by the increasing
complexity of control applications and the necessity of hardware
consolidation. This is not always warmly welcomed by control-
system engineers [18, 15], which is understandable, as the
simple FSM paradigm has had some clear advantages: It is well
understood (especially by certification authorities) and there is a
large body of formal methods, heuristics, and tools available for
optimization and validation, which leads to highly specialized,
efficient implementations with low hardware requirements. On
the other hand, employing an RTOS and its concepts (e.g.,
tasks, events, resources) can significantly ease the development
of more complex control applications.

In this paper, we explore the possibility to get the best
of both worlds: The idea is, to keep the RTOS interface for
application development, but implement the RTOS itself (or
more precisely: its concrete instance) as a FSM. Thereby, it
becomes possible to use existing FSM-based analysis and
validation tools (also) on the RTOS – or to push the RTOS
completely “back into hardware” for perfect isolation.
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Fig. 1: The operating system’s state determines its behavior.
On system-call events, the OS changes this internal state.

A. Our Idea in a Nutshell

In theory, every computing system could be modelled as a
FSM. This also holds for the RTOS: Every syscall, triggered
synchronously by the application or asynchronously by an
interrupt, can be considered as a transition on the OS-internal
state (such as the ready list). The problem, however, is state
explosion, caused by complex states and indeterminism in the
control flow: Every syscall is a potential point of rescheduling
at which, depending on the dynamic state of the ready list,
some other task may be selected to continue execution.

The core idea of our approach is to reduce such indeter-
minism as far as possible at compile time: We exploit static
knowledge about the RTOS configuration and its semantics in
combination with a whole-system analysis across all control
flows of the application to figure how the RTOS is actually used.
Thereby, we derive a model on how the concrete application
interacts with the kernel. We replace parts of the traditional OS
implementation by an implementation of the derived model and
(partially) specialize each syscall in the application at caller
side to interact with the model.

The possible transitions on the kernel’s state (such as the
outcome of a scheduling decision) can thereby be greatly
reduced at compile time, in many cases even to exactly one: If
for instance, some task A triggers another task B for execution
(ActivateTask(B)), this is a potential point of rescheduling.
In a strictly priority-based system, however, the result can be
reduced (by considering the scheduler semantics) to exactly two
possible follow-up states: Depending on the relative priorities
of A and B, either A is running and B is set ready (as shown
in Figure 1) or vice versa. If we can further determine their
priorities by static analysis, the effective result of this concrete
syscall invocation can be reduced to exactly one follow-up
state.
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Fig. 2: Methodic Overview. From the general OSEK specification, and one concrete application, we generate a specialized OS
implementation in several steps.
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Fig. 3: Application Logic of a small (complete) OSEK System

Of course, in real-world systems, not all kernel interactions
can be reduced that easily – especially interrupt-based alarms
are a significant source of indeterminism. Nevertheless, our
results show that the resulting state reduction makes it still
feasible to generate the RTOS instance as a simple FSM.

B. Structure of the Paper

We apply our idea to the OSEK [13] / AUTOSAR [1]
standards employed in the automotive industry. The RTOS
included in these standards is an event-triggered, priority-driven,
preemptive kernel. Its static configuration includes the number
of tasks, their priority, the events they can wait for, and the
resources they synchronize on using a static stack-based priority
ceiling protocol. Without loss of generality, we choose OSEK
as the running example throughout the paper.

In Figure 3, an example OSEK application is shown. It
consists of one ISR, one normal task, and the idle loop. On
an interrupt request (IRQ), the ISR may or may not activate
the task. After the task finished its execution, it terminates
and the OS executes the idle loop until the next IRQ occurs.
Based on this example, the following Section II presents the
static analysis and FSM construction. Finally, we provide
first preliminary results on applying our concept to a realistic
application scenario, and discuss further possible use cases.
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Fig. 4: State-Transition Graph for Figure 3. Each node is an
abstract representation of the system at a one point in time.

II. IMPLEMENTATION

We divide our approach into three distinguishable parts:
(1) The extraction of fine-grained interaction knowledge from
the application. (2) The transformation to an executable model
of the operating system. (3) The concrete implementation
of the executable model. Figure 2 depicts the information
flow of all three stages. With the system-state enumeration
(SSE), we extract the interaction as a state-transition graph
(STG) that enumerates all possible system states and their
execution sequences. We identify all visible kernel states and
construct a (minimized) FSM. As one possible implementation,
we assign binary vectors for inputs, states, and outputs of the
FSM and encode the minimized truth table as programmable
logic array (PLA) simulation in software. In the following, we
will investigate these steps in a greater detail.
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A. System-State Enumeration

In the first step, we statically analyze the interaction of a
given application with an abstract OSEK operating system. We
already described this extraction step in previous work [5].
Therefore, we outline the system-state enumeration (SSE)
mechanism only briefly and focus on the extracted fine-grained
interaction knowledge, which is expressed as a STG.

The system-state enumeration combines three different
sources of information in a forward simulation of the system:
First, the system semantics, as defined by the OSEK specifi-
cation [13]. Second, the system configuration, as declared in
a domain-specific configuration language (OIL). And, third,
the application logic, which is extracted from the control-flow
graphs of the compiled application. The configuration already
contains coarse-grained information about the system, like
the set of tasks and their priorities. Together with the system
semantics, we calculate fine-grained knowledge to predict the
operating system’s decisions in presence of the given application
logic.

The SSE discriminates two block archetypes in the ap-
plication: computation and system-call blocks. In computation
blocks, the application does not issue system calls and therefore
the OS state cannot be changed synchronously. Nevertheless,
IRQs can only occur in computation blocks, and are modeled
as asynchronous activation of ISR proxy tasks. The other block
archetype contains system calls, which interact with the kernel
synchronously and modify its state.

The central data structure for the SSE is the abstract system
state (AbSS), which captures information about a system at a
given point in time. For each task, an AbSS includes the ready
flag, the current priority, and which block should be executed
next in a task’s context. Except the initial state, each AbSS
has one task marked as the currently running task. In Figure 4,
each node represents a simplified AbSS for the example system
from Figure 3. For each task (interrupt-service routines and
idle task included), the node contains the blocks to be executed
next, while the currently active task is highlighted.

The SSE discovers all possible AbSSs for the given
application, by repeated application of a systemSemantic()
function on already discovered states until no new states appear.
This transition function evaluates the block of the currently
running task, calculates the block’s influence on the current
system state, and emits one or more follow-up states. For
example, in Figure 4 only AbSS H executes block œ next.
Since block œ contains a TerminateTask() system call, the
transition function emits one follow-up state B with T1 marked
as not-ready. Furthermore, the transition function applies the
OSEK scheduling rules and marks the idle task as running. All
discovered AbSSs and their follow-up states are connected in
the state-transition graph (STG).

interrupt-service routines (ISRs) are modeled with proxy
tasks, which are assigned the highest possible priority and are
executed under interrupt blockade. They are activated by the
transition function within computation blocks. In Figure 4, the
idle state B has two follow-up states: first, a self loop, since it
is its own CFG successor. Secondly, the idle state can proceed
to state C . This transition is the result of a virtual IRQ and
the ISR entry block   will be executed next.

The STG contains all possible state–state transitions for
the given application. Depending on the application and its
structure, it can become very large, but remains always finite.
It is important to note, that each AbSS in the graph represents
the system immediately before a block is executed. For a more
detailed discussion on the SSE and mechanisms to ease the
state explosion we refer to our previous work [5].

B. Kernel-Visible System States

As desired, the STG subsumes the application’s control
flow, as well as the kernel’s scheduling decisions. We aim
to implement only the OS’ behavior. Therefore, we have to
separate state transitions into application transitions and OS
transitions. The application transitions are implemented by the
application itself, in terms of branches, loops, and function calls.
They are executed directly by the processor. Our specialized
kernel should only implement the OS transitions, since only
those are dictated by the OSEK specification.

As already said, each state represents the system right before
a certain block is executed. Some states execute a computation
block next, some a system-call block. Only the latter ones,
system-call states, will ever be visible to an OS implementation.
Therefore we partition all AbSSs in the STG into regions of
states which are indistinguishable from the kernel’s perspective.
These regions are connected subgraphs within the STG; system-
call states can only occur as leaf nodes in a region. In Figure 4,
the states G , H , and I form such an region. This region
cannot be extended to AbSS F , since F is a system-call state
and must, therefore, be a leaf node in a different region.

These regions are constructed by repeated merging of initial
minimal regions: Initially, each AbSS is located in its own
region. For each state in a region, we merge the successor
regions into the region, if the originating state is computational.
Furthermore, we merge a predecessor region, if the preceeding
state is a computational state. This process is repeated until no
further changes happen.

With this construction, all states with a successor outside
their region are system-call states. Since the OS state is only
modified at the region’s border, all inner states, which are
computational, have the same task marked as running.

From these regions, we construct the initial finite state
machine (FSM) for the kernel: Each region corresponds to a
state in the FSM. An FSM transition from state A to state B
is present, if a system-call state in region A can proceed to
region B. The input event for this transition is the execution of
the system-call block. Each FSM state exposes the currently
running task as an output. It is noteworthy, that each system-
call block results in a different FSM input signal, even if they
invoke the same system service.

Figure 5 shows the resulting state machine with the AbSS
regions drawn next to each FSM state. The constructed FSM
matches the observation that an OS is a FSM with system calls
as inputs and the currently scheduled task as output. In our
construction, the resulting FSM is a Moore machine.

C. State-Machine Minimization

The resulting FSM already exhibits the required kernel
transitions when triggered by external events and system calls.
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Fig. 5: Symbolic Finite State Machine with abstract system
state next to each state.

Nevertheless, the number of states and transition edges is
not minimal yet. Minimization of state machines is a well
covered and long standing topic [12, 8]. Therefore, we will
only investigate on the specifics for our operating-system FSM.

For the minimization of FSMs, states are grouped into
equivalence classes (ECs), where each state within exposes the
same observable behavior. From each equivalence class, a new
state in the minimized FSM is generated, and transitions are
added accordingly to the EC connections.

Our FSM is not an acceptor for a formal language.
Furthermore, we are allowed to remove triggers from the system
by wiping out system-call sites. We only have to ensure that
the scheduling sequence remains the same. Therefore, we adapt
the EC construction to fit these requirements.

First, we demand that each state in an EC results in the
same current running task. Furthermore, the set of possible
follow-up ECs must be equal for all states within an EC. The
follow-up ECs of an state are those ECs which are reachable in
the FSM when following the transitions. We used an adapted
Moore algorithm [12] to find the most coarse EC partition of
the FSM which fits both requirements.

In the minimized FSM, many transitions are self loops. If all
transitions that are triggered by one system-call block are self
loops, we wipe out the system-call site. The specific system-call
signal never transfers the system into an observable different
state; it is useless for our implementation. In the example (see
Figure 5), the FSM is already minimal after its construction,
but in general the size of FSM decreases significantly. With
the FSM minimization, we have completed the construction of
the executable model.

D. State Assignment and Logic Minimization

The last step is the implementation of the executable
model and its linking to the application. The possibilities to
implement the calculated FSM are endless. We chose to present
an approach directed towards an OS implementation that fully
resides in hardware. This would result in a specialized OSEK
implemented as a processor extension.

However, while this is still a topic of further research, we
currently provide a software simulated programmable logic
array implementation of the generated FSM. While dispatching,
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interrupt handling, and timer control is still implemented
traditionally, the OS logic is already suited for a hardware
implementation.

One main challenge of implementing a FSM in hardware
is the selection of bit vectors for inputs, states, and output
signals. This encoding largely influences the minimal required
complexity of the hardware implementation. Luckily, many
methods were already proposed to solve this problem for
different hardware designs [17, 4, 16].

We decided to use the NOVA program [17] to choose the
encoding of our FSMs. The driving factor of this decision
was the availability of the NOVA source code. NOVA targets
optimal encoding for two-level logic implementations. NOVA
chooses input and state encoding for our FSM, while we choose
the output encoding arbitrarily. The result of the assignment
process is shown in Figure 6.

From the FSM and the encoding of inputs, states, and
outputs, we generate a truth table with one line for each
transition. Each line consists of the input word, the current
state, the next state, and the desired output. To achieve an
efficient implementation of this truth table in hardware, we use
the ESPRESSO [2] heuristic logic minimizer.

From the minimization result, a PLA implementation can
be derived in hardware. Figure 7 shows the final OS execution
model for our running example. The resulting component takes
the current system-call–block number and the saved system
state as inputs. Each line in the AND array checks a certain
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disable_interrupts();
OS_state, task = fsm_step(0b000, OS_state);
switch_to(task);
// Never returns, IRQ enable in next task

Õ
TerminateTask() called from T1

Fig. 8: TerminateTask() implementation called from T1.

TABLE I: Size of graphs, machines, and implementation after
each step for the I4Copter task setup (11 tasks, 3 alarms, 1
ISR, 1 Resource).

Step w/o Ann. w/ Ann.

State-Transition Graph [S(T)] 1,563,169 (2,098,236) 20,063 (23,876)
Symbolic FSM [S(T)] 407,530 (942,597) 6,242 (10,055)
Minimized FSM [S(T)] 2,938 (8,822) 667 (1,212)
Two-Level Logic [AND Terms] 5,144 728
Software PLA Table [Bytes] 35,798 4,566

bit pattern and emits a logic 1, if the pattern matches. The OR
array decides which outputs of the AND array will enable a
bit in the output word. In our case, the output word consists
of a new FSM state and the currently running task.

In our current implementation, we simulate this PLA in
software by iterating over all lines in the ESPRESSO output.
We use the task output word as an input for the dispatcher.

We replace every system-call site with a specialized code
fragment that calls the FSM. Figure 8 exemplifies the imple-
mentation of the system-call block Õ. The fsm_step() function
contains the PLA simulation, while the bitstring 000 identifies
the call location exactly.

III. PRELIMINARY RESULTS

Currently, we do not produce hardware components from
the execution model, but use a (slow) PLA software simulation.
Therefore, we will only show some preliminary results for a
realistic scenario to give an impression of the general feasibility.

We implemented the presented approach for the dOSEK [7]
system generator1. As evaluation scenario, we use a realistic
real-time workload. We revive a setup, already presented
in previous work [6], resembling a real-world safety-critical
embedded system in terms of a quadrotor helicopter control ap-
plication. The scenario consists of 11 tasks, which are activated
either periodically or sporadically by an interrupt. In total, 4
asynchronous events can trigger within computation blocks.
Inter-task synchronization is done with OSEK resources and a
watchdog task observes the remote control communication.

In the first column of Table I, the sizes of the system at
different steps is given. While the STG has more than 1.5
million states and 2 million transitions, the (unminimized)
FSM already reduces the size significantly. The minimization
of the FSM removes 99.28 percent of the internal states.
The state assignment and the logic minimization achieve a
implementation of the execution model with 5,144 AND
terms (rows in the PLA). In our software implementation,

1Code is released as free software at https://github.com/danceos/dosek

the minimized truth table occupies 35,798 bytes of read-only
memory, while the implemented FSM requires 4 bytes of
volatile memory for storing the current state.

In the second column of Table I, we show the results for
the same system, but with additional annotations for the SSE
analysis. We declared four task groups. Each group handles a
different job in the system, which is released through an external
signal (alarm or IRQ). The annotation forbids the retrigger of
the signal while not all tasks of a group have finished their
execution. This annotation is a qualitative statement that the
deadline of the job is smaller than its period. This qualitative
statement, which has to be supplied by the real-time developer,
was already described in previous work [5].

With the annotation, the system has a 98.72 percent smaller
STG, which, of course, was the intention of the annotation in the
first place. Surprisingly, the state count of the minimized FSM
shrinks only by 77.3 percent with annotations. This smaller
decrease factor indicates an unnecessary edge redundancy in
the STG without annotations.

IV. DISCUSSION

In this paper, we derive an OS instance specifically tailored
towards a given application. We used the OSEK API as a
markup language to annotate the desired task orchestration
and interaction. When we perceive the system configuration
and placement of system calls as the abstract intentions of
the real-time engineer, we can switch our focus from the
traditional way of implementing the specification, to realizing
only the developer’s intended behavior. Encoding the minimized
FSM in hardware is only one of many possible options. More
importantly, this demonstrates the expressive power of the
STG and the various FSMs as immediate representations of
the system. Furthermore, pushing the OS logic fully into the
hardware, we achieve perfect isolation. Not a single instruction
would be needed for the OS execution. Only special opcodes
would be reserved for giving inputs to the hard-coded FSM.

Apart from that, a FSM representation is not only useful
for implementing the desired OS logic, but can also be used
as watchdog for an off-the-shelf OSEK system. Fed with the
same inputs, the actual OS must expose the same behavior.
Combined with a WCET-based intrusion detection [19], an
effective security scheme could be derived from static analysis
of the system behavior.

Besides implementing the system behavior, the immediate
representations make the actual kernel behavior accessible to
other tools: The minimized FSM representation can be used to
test whether the behavior of one real-time system is equivalent
to or partially embedded in another system.

Our immediate representations may also assist the ver-
ification of tailored OS implementations: If we prove the
equivalence of STG (or FSMs) to the OSEK standard for
a certain application, and furthermore show the equivalence
of the actual implementation to the STG, we get an OSEK
implementation that is verified for a certain application; even
in the presence of extensive system tailoring.

V. RELATED WORK

The RTSC [14] that significantly inspired this work also uses
the OSEK API as markup language to annotate the desired real-
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time behavior. It translates the system from an event-triggered
to a table-driven, time-triggered system. Unlike our approach,
their immediate representation is flow insensitive.

Chen and Aoki [3] use a formal model of OSEK and model
checking techniques to automatically generate test cases for
OSEK/OS. Their approach does not incorporate information
about the configuration or the inner structure of a specific
application, but emits whole applications as test-cases. Our
application specific FSM could be used to generate application-
specific event sequences to test the application, as well as the
kernel.

In the sensor-network community, state machines are
recognized as mean to compactly implement application and
control logic. Kim and Hong [9] proposed state machines as
well-suited paradigm for sensor nodes. Their SenOS kernel is
an executor for transition tables, where each task comes with
its own table. In contrast to our approach, the tables are not
derived automatically.

Kothari, Millstein, and Govindan [10] proposed an auto-
matic derivation of FSMs from TinyOS applications through
symbolic execution. They derived “user-readable FSMs” in
order to make the application logic more comprehensible to
developers. As they state, their interrupt semantic is incomplete.
Additionally, TinyOS has a simpler execution model than OSEK,
since tasks have no wait states and only execute in a run-to-
completion manner. Also, all their inferred FSMs do not exceed
16 states.

There are many projects implementing parts of the (or the
whole) operating system in hardware. As one example, the
ReconOS project [11] extends the multithreaded programming
model across the hardware/software boundary. ReconOS pro-
vides a unified synchronization and communication API for
hardware, which is executed on an FPGA, and software threads.
Nevertheless, ReconOS is not tailored explicitly to fine-grained
application logic, but mimics a generic, POSIX-like, interface.

VI. CONCLUSION

Many years of embedded real-time control engineering
piled more and more abstraction layers on top of each other to
ease the development process at the cost of complex software
stacks and operating systems. In this paper, we presented an
approach to descend these layers from an abstract RTOS-based
control application back to the roots of an FSM-based PLA.
Preliminary results already show the feasibility of our approach
on the example of a realistic real-time application. Distilling the
RTOS behavior not only allows to push it back into hardware,
but might also leverage profound verification and validation of
the system as a whole.
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