
Increasing the Predictability of Modern COTS
Hardware through Cache-Aware OS-Design

Hendrik Borghorst
Embedded System Software

Computer Science 12, Technische Universität Dortmund
Email: hendrik.borghorst@udo.edu

Olaf Spinczyk
Embedded System Software

Computer Science 12, Technische Universität Dortmund
Email: olaf.spinczyk@udo.edu

Abstract—Real-time operating systems have been around for
some time, but they are never designed for being used on modern
multi-core processors with unpredictable timing behavior. An
important source of unpredictability is the different timing
between the processor and the DRAM-controller. Operating-
system-based cache management is one possibility to reduce the
timing variations of the processor by controlling the code and
data which resides in the cache. The cache eliminates the timing
differences between the memory and the processor.

I. MOTIVATION AND RELATED WORK

With increasing complexity of today’s multi-core proces-
sors, their timing behavior gets more unpredictable, which
leads to big fluctuations of the execution times for tasks
and operating system functions like interrupt handling. This
means that the overall response time of a system depends
on the timing behavior of all the shared resources like the
caches or buses [1]. This problem prohibits the use of such
systems for time-critical applications like cyber-physical sys-
tems. Cyber-physical systems need to react on certain events
within a predictable time bound. Therefore it is critical that
the overall response time of the operating system is stable.
Different timings of the main processor and the memory can
be neutralized by the use of caches. But caches can introduce
new problems like unwanted cache eviction which would also
lead to unstable execution times.

Cache partitioning can be used to prevent cache eviction for
multi-task or multi-core applications. Cache preloading can be
used to prevent timing variations caused by simultaneous bus
accesses from multiple participants.

R. Mancuso et al. proposed a cache management framework
for applications running on the Linux operating system [2].
The approach, presented in their paper [2], loads specific
application code and data to a partition of the shared cache
and locks it afterwards. This approach shows an significant
reduction of the application’s execution time variation. Their
method eliminates the timing variations caused by shared
caches and random memory accesses. In contrast to this
method the later presented approach works on the level of the
operating system. The advantage of managing the cache within
the operating system allows operating system functionality to
be predictable as well.

J. Liedtke et al. worked on operating system controlled
caches for single-core processors [3]. They used a technique

0 5000 10000
0

100

200

access number

A
cc

es
s

tim
e

in
cy

cl
es

(a) without preloading

0 5000 10000
0

100

200

access number

A
cc

es
s

tim
e

in
cy

cl
es

(b) with preloading

Fig. 1: Comparison of data access times (64kB range)

called cache coloring to reduce the risk of cache eviction for
multi-tasking applications. They could show that it is possible
to reduce the variation of the execution time with the use of
cache partitioning. Nonetheless their work is based on single-
core systems and does not consider the properties of a multi-
core system with shared resources such as the memory and
buses.

As a preparation to proof the later presented operating sys-
tem concept, we created a prototype operating system which
used a basic cache management to preload tasks on activation.
To evaluate the concept of cache resource management, we ran
four tasks on a dual-core ARM Cortex-A9 processor. Each task
was confined to a distinct memory area and accessed random
memory addresses with and without preloading and locking
of the shared L2 cache. The results of this test are shown in
Figure 1 where single memory accesses are shown with their
corresponding access time. The diagram in Figure 1a illustrates
that there is a very high fluctuation of memory access times.
For comparison Figure 1b demonstrates that the preloading
of the data to access shows a significant reduction of the
previously mentioned access time fluctuation. The benchmark
was done for a memory area of 64 kB per task which is twice
the size of the level 1 cache, so there are already level 1
cache misses which are represented by the upper one of the
two distinct lines in the diagrams.

The execution times for the cache preloading itself were
tested separately. It was measured that the execution times
are proportional to the preloading size, if it is guaranteed
that only one processor core is preloading at the same time.
This knowledge is crucial to the whole idea to get the system
predictable.

41



With this knowledge it is possible to create an operating
system that takes control over the content inside the cache
so that the execution times for operating system functions
and interrupt handling become predictable. To achieve this we
present an operating system model which is designed with the
sources of unpredictability in mind.

II. OPERATING SYSTEM MODEL

The idea of the new operating system is to sort out some
problems that existing real-time operating systems present
when they are executed on modern multi-core architectures
that utilize some shared resources like caches and memory
buses.

Modern multi-core processors often include shared caches
that are structured as associative caches which features multi-
ple cache ways to reduce the cache miss rate. Each cache way
represents a part of the whole cache. The target architecture
used for this paper features an shared second level cache with
16 cache ways with 64 kB capacity each.

To solve the issues of unpredictable caches and memory
access latencies, the operating system and the applications
have to fit inside the partitioned shared L2 cache. One solution
to achieve this, is to divide the system into small pieces. We
call each of these pieces operating system component (OSC).
The implementation of the operating system is done in a
highly modular way so that we can define very fine granular
components. These components can than be grouped together
into larger components to be optimal for the desired target
platform. The optimal component size depends on the specific
sizes of the cache structure of the hardware. For example a
component needs to be smaller than the biggest shared cache
and not to small which would effectively be the same like one
random memory access. A good size would be a multiple of
the cache way size.

One problem with existing embedded operating systems
is that there is usually only one stack per core when using
operating system functions. This makes it hard to predict
where the local data is located when the processor jumps to
operating system code. This could lead to cache eviction if
operating system functionality is requested. To solve this, each
OSC contains its own stack by what we enable the operating
system to contain all code and data on the level of OSCs.

Another problem with existing solutions is that normal
function calling allows no control over the data and control
flow which could lead to cache eviction problems. To solve this
the new operating system prohibits direct data passing between
OSCs. Instead the system operates on a strictly event-based
nature. These events are handled by the operating system so
that it can control the contents of the cache.

Each OSC can define input triggers which will activate
a specific OSC. Each input trigger needs a function which
is called after the OSC is activated. To activate these input
triggers, output events, that each OSC can define, are required.
These events can be connected to the input triggers of other
OSCs. The creation of the connections between events and
triggers of OSCs is done during the time of compilation. For

OS-Init

Task2Ethernet-
Driver Socket

Task1UART-
Driver UART-Buffer

Interrupt-
Handler

Interrupt

Code

Data

Stack

Timer-
Driver Scheduler

operating system component shared data critical OSC

triggerevent
shared data

event-trigger connection

Timer-
Interrupt

Ethernet-
Interrupt

UART-
Interrupt

invoke_Scheduler

start_Scheduler

schedule_Task2

schedule_Task1

Fig. 2: Operating system model with critical/non-critical com-
ponents

performance reasons this is a static linkage with hard coded
function pointers. If an OSC wants to send an event it needs
to do it by the use of a system call.

To solve the issue of uncontrollable data flow, the operating
system specification allows shared data between two or more
OSCs. Shared data must stay inside the cache until no OSC
needs it anymore. These shared data objects need to be cache-
aware by design so that the application developer needs to
make the data structures efficient on constrained space. There
are several approaches on cache-aware data structures and
their optimizations. For example T. Chilimbi et.al. present a
way to make pointer-based data structures cache-aware [4].
They introduce a method which can optimize different data
structures, that are based on indirect data accesses, via a
modified version of the dynamic memory management method
malloc. In addition they present a way to specifically optimize
tree-based data structures so that they reduce the number of
cache-misses drastically. Those methods could be integrated
within the operating system so that the application developer is
presented with an API that takes care of the cache prefetching.
It should be noted that the focus of this operating system is not
on heavy data computation but on comparable small real-time
task-sets with data structures that fit into the shared caches.

Another critical problem of the system is the interrupt
handling because it is impossible to predict when interrupts
arrive. Therefore it is critical that the whole minimal first
stage of the interrupt handling is locked permanently to the
cache. The first stage would then emit an event with the
interrupt number. This event is handled like any other event.
This ensures that the interrupt handling stays predictable by
assuring that the unpredictable part always remains inside the
cache. The preloading of the remaining interrupt handling is
by definition predictable. With this model a periodic behavior
is also possible to achieve by using a timer with a periodic
configuration but the system is not limited to periodic config-
urations.

42



way0 way1 wayn

Int-Handler
Cache-Manager

way2

. . .

way0 way1 waynway2

Task 1 . . .

way0 way1 waynway2

Task 1 . . .

Int-Handler
Cache-Manager

Int-Handler
Cache-Manager

unlock cache way &
prefetch OSC

lock cache

Permanently locked Temporarily locked

Temporarily unlocked

Fig. 3: Cache way states during an OSC-transition

A schematic representation of the presented operating sys-
tem model is shown in Figure 2. The figure visualizes how
different OSCs could be connected with each other. As high-
lighted in the figure, each OSCs consists of an separate code,
data and stack segment. Events connect OSCs with each
other as visualized by the punctuated lines. The Interrupt-
Handler is marked in red because it is time critical and
needs to stay locked permanently. The ellipsis in Figure 2
represents a shared data object. The figure shows an operating
system which uses a timer component to emulate a time-based
behavior. The operating system itself is not limited to time-
based events and could react predictable to sporadic events as
well because the critical part of the interrupt handler handles
interrupts within guaranteed time bounds.

This operating system needs a special kind of scheduler
because it does not schedule tasks directly but needs to
schedule the execution of events. Events can be prioritized so
that time critical events are handled before uncritical events.
The scheduler needs to minimize the cache eviction and data
flow from the main memory as well. As a result of this it
needs to optimize which OSCs are active inside the cache and
which can be swapped away.

Figure 3 shows the different states of the cache during the
execution of the system. It represents an simplified version of
a cache structured into n cache ways. Each cache way can
be locked individually. Therefore it is possible to control the
cache content manually by unlocking only one cache way at
once which guarantees that the data is allocated to that specific
way during prefetching. The uppermost row visualizes the
state in which only the critical parts are locked and loaded
inside the cache. This is the state in which the operating
systems resides after successful initialization. The row in the
middle of Figure 3 represents the cache state in which an OSC
was prefetched, right before the needed cache way gets locked
again. The cache management unlocks only the cache ways

that are needed for the OSC to activate. This is not limited
to only one cache way per OSC. It is also possible for OSCs
to spread across multiple cache ways. In this case the cache
ways would be unlocked and prefetched consecutively. After
successful prefetching of the OSC the cache management
locks all cache ways again to prevent cache eviction from
happening which is the state of the bottom row in Figure 3.

III. HARDWARE PLATFORM

For now the operating system needs special hardware fea-
tures to control the cache. Cache locking is needed to prevent
cache eviction when loading new OSCs. For the purposes
of evaluation we used a Texas Instrument OMAP4460 ARM
processor [5] that uses an external level 2 cache controller
and is compatible to the ARM Cortex-A9 processor. This
cache controller has sophisticated control features like cache
lockdown by cache way and by core [6]. This means that it is
possible to control in what cache way new cached data gets
allocated. The processor was clocked at 921 MHz during the
experiments.

The level 2 cache features 16 cache ways, each with a size
of 64 kB. Thus a optimal size for the OSCs would be 64 kB
or multiples of this value. For now the OSCs get aligned to
this size during the linking process which makes it convenient
to prefetch those components to specific cache ways.

IV. ONGOING AND FUTURE WORK

The presented operating system is just a proof of concept
for now. We evaluated that it is possible to take control over
the contents of the shared cache with a basic cache control
implementation that prefetched data and code to the cache
and locked the cache afterwards. Another thing we measured
is the required time to prefetch bulk data. Our results show
that we can achieve a prefetch time which is linear to the
prefetch size. It was measured that the prefetch time per byte
is around 8 clock cycles if more than 128 bytes are prefetched
in a bulk transfer. For the component size of 64 kB this bulk
transfer require around 0.57 ms.

In the future we intend to focus our research on some
specific topics regarding the operating system model. One
part of this will be the scheduling of the event dispatching.
There are several optimization criteria for the scheduling. For
instance the minimization of cache evictions, to maximize the
overall processor utilization and to keep the overall response
time of the system minimal.

Furthermore we intend to analyze the timing behavior of
the operating system. This includes analysis of the transition
times, prefetch times and the OSC function execution times
to guarantee that the execution time of the whole system will
stay inside a time bound.

Also the operating system needs a good software develop-
ment model. It is important that the implementation of the
event-based system is not overly complicated. One possible
solution for this could be the use of an aspect-orientated
language like AspectC++ [7].

43



Another topic to explore is how to extend the supported
hardware base. One potential substitute for locking critical
OSCs inside the cache could be a static ram which many new
embedded processors include. It may also be possible to isolate
one core of the system to interrupt handling. This would mean
that the first stage interrupt handler should not be evicted from
the level 1 cache if it is small enough. For systems lacking the
support for cache locking the use of traditional software-based
cache partitioning algorithms is necessary [8].

Finally the operating system needs evaluation under several
circumstances. We expect that the manual management of the
cache content will introduce some overhead on the compu-
tational performance of the system. Therefore an comparison
with existing operating systems like RT-Linux [9] or RTEMS
[10] is needed. The overall system response time also needs
evaluation with various workloads.

V. CONCLUSION

This paper presents a possible solution for the unstable
execution times of modern multi-core systems on the level
of the operating system. This is done by manually controlling
which data and program code resides in the cache. By this the
operating system shifts the unpredictability of random DRAM-
accesses to predictable bulk memory transfers. To realize this
the operating system operates on a event-based nature and
is structured as a set of OSCs, which can be loaded into the
cache on-demand or permanently based on a cache scheduling
strategy. At the moment the operating system only exists as a
proof of concept but we intend to explore this concept further.

REFERENCES

[1] D. Dasari, B. Akesson, V. Nelis, M. Awan, and S. Petters, “Identifying
the sources of unpredictability in COTS-based multicore systems,” in
2013 8th IEEE International Symposium on Industrial ES (SIES), June
2013, pp. 39–48.

[2] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core ar-
chitectures,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th, April 2013, pp. 45–54.

[3] J. Liedtke, H. Haertig, and M. Hohmuth, “OS-controlled cache pre-
dictability for real-time systems,” in Proceedings of the 3rd IEEE Real-
Time Technology and Applications Symposium (RTAS ’97), ser. RTAS
’97. Washington, DC, USA: IEEE Computer Society, 1997, pp. 213–.

[4] T. Chilimbi, M. Hill, and J. Larus, “Making pointer-based data structures
cache conscious,” Computer, vol. 33, no. 12, pp. 67–74, Dec 2000.

[5] “OMAP4460 ES1.x Technical Reference Manual,” http://www.ti.com/
lit/pdf/swpu235, accessed: 2015-02-20.

[6] “PL310 Cache Controller - Technical Reference Manual,”
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0246a/DDI0246A_
l2cc_pl310_r0p0_trm.pdf, accessed: 2015-04-18.

[7] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “AspectC++: An
aspect-oriented extension to C++,” in Proceedings of the 40th Interna-
tional Conference on Technology of OO Languages and Systems (TOOLS
Pacific ’02), Sydney, Australia, Feb. 2002, pp. 53–60.

[8] F. Mueller, “Compiler support for software-based cache partitioning,”
SIGPLAN Not., vol. 30, no. 11, pp. 125–133, Nov. 1995. [Online].
Available: http://doi.acm.org/10.1145/216633.216677

[9] “Real-Time Linux Wiki,” https://rt.wiki.kernel.org/index.php/Main_
Page, accessed: 2015-04-29.

[10] A. Colin and I. Puaut, “Worst-case execution time analysis of the
RTEMS real-time operating system,” in Real-Time Systems, 13th Eu-
romicro Conference on, 2001., 2001, pp. 191–198.

44


