
Preliminary design and validation of a modular framework for
predictable composition of medical imaging applications

M.M.H.P. van den Heuvel†, S.C. Crăcană†, H.L. Salunkhe†, J.J. Lukkien†, A. Lele† and D. Segers‡

†Eindhoven University of Technology, Eindhoven, The Netherlands — ‡Barco N.V., Kortrijk, Belgium

Abstract—In this work, we present a software framework
which enables us to analyse the performance of medical imaging
algorithms in isolation and to integrate these algorithms in a
pipeline, thereby composing a medical application in a modular
manner. In particular, we show how public-domain middleware
can be configured in order to achieve predictable execution of a
use-case application. On this use case we applied formal analysis
and we validated the promised performance on a real platform.

I. INTRODUCTION

Many safety-critical products are traditionally developed
using hardware-software co-design. For example, the software
of medical imaging devices is often run on dedicated hardware.
However, these days custom-off-the-shelf (COTS) hardware has
become an attractive alternative for the development of safety-
critical devices, because the performance and programmability
have significantly increased over the past decade. This trend is
driven by innovations in the consumer electronics (CE) markets.
Nevertheless, there are challenges that slow down the adoption
of CE technology for medical devices. Firstly, the product
design becomes more software oriented requiring companies
to implement their existing imaging algorithms in software.
Secondly, the medical application of such devices requires
strict certification regarding their performance.

Just like in CE, medical imaging algorithms typically impose
real-time constraints with highly transient variations in the
rendering of their streams. For CE devices, however, allocating
a static amount of processing resources to video applications
is unsuitable [1], because it leads either to frame misses or
to an over-provisioning of resources. To enable cost-effective
video processing, many quality-of-service (QoS) strategies [2]
have been developed. These strategies estimate the required
processing resources by the processing pipeline dynamically
and then allocate resources for image processing which may
or may not be sufficient. In the latter case, a work-preserving
approach is often taken in which the processing of the current
frame is completed and a next frame is skipped [2]. However,
for medical imaging applications, as considered in the current
paper, the loss of video content and quality compromises are
unacceptable.

In this paper, we analyze how a framework made from COTS
hardware and COTS software fits the design process of medical
imaging devices. The challenge with COTS hardware is that
we miss a predictable execution architecture. Moreover, COTS
software is not designed to give guarantees and often lacks
real-time scheduling of the imaging algorithms that we use.
We know however that in practice we may have good results.

This work was supported in part by the European Union’s ARTEMIS Joint
Undertaking for CRYSTAL under grant agreement No. 332830.

Fig. 1. Overview of tools and methods deployed in the engineering work
flow in order to achieve predictable composition of medical video applications.
For more details, we refer the interested reader to [3].

II. MODULAR SOFTWARE FRAMEWORK

In order to support modularity in the composition of a
video application, we have decided to develop a flexible
framework based on configurable public-domain middleware
(see Figure 1), i.e., using Qt and gStreamer. The key idea behind
this framework is that a video application can be decomposed
into several imaging components (called plugins by gStreamer)
with standard interfaces. These plugins can then be connected to
each other, thereby creating a pipeline. Since Qt and gStreamer
support different COTS hardware platforms, the combined
framework allows for a reuse of imaging algorithms (wrapped
in gStreamer’s software plugins) in various setups and products.

The integration of Qt and gStreamer is work in progress.
Firstly, our industrial partners are co-developing the Qt-
quickstreamer plugin which extends the Qt Modeling Language
(QML), so that QML can be used to compose an imaging
pipeline from gStreamer plugins in an intuitive way. Secondly,
Burks and Doe [4] investigated how custom imaging algorithms
can be automatically imported from their development tools
(Matlab Simulink) into a gStreamer plugin, i.e., an algorithm
is wrapped into a plugin with a proper gStreamer interface.
The integration of Qt and gStreamer is therefore expected to
decouple the development of custom imaging algorithms and
their integration.

Our aim is to integrate this modular software framework in
the development flow of medical devices. We must therefore
establish a predictable match between the execution model of
gStreamer and the execution model being used at the stage of
performance modeling. The remainder of the paper presents
a case study in which prediction models are used to trade
certain performance of an imaging application for its required
processing resources during its real execution in our framework.

37

TABLE I
PREDICTED VERSUS EVALUATED RESOURCE USAGE FOR THE EXAMPLE PIPELINE, WITH OR WITHOUT A BACK-PRESSURED GSTREAMER IMPLEMENTATION.

Back-pressure Memory allocation Max. run-time memory usage Predicted throughput Measured throughput
(number of frames per queue) (number of frames per queue) (frames per second) (frames per second)

yes (2,1,1) (1,1,1) 28 31.4
no (2,2,2) (2,2,2) 31 31.8

Fig. 2. An example video processing pipeline which we analysed using
formal SDF analysis and which we implemented and validated in gStreamer.
Each plugin in the pipeline has been benchmarked on a frame-by-frame basis,
denoted by (BCET, ACET, WCET) in milliseconds.

III. USE CASE: FROM PERFORMANCE MODELS TO
RESOURCE ALLOCATION AND VALIDATION

In this section, we model and implement an H264 client (see
Figure 2). Since the software has to run on a medical device,
we are interested in predicting, controlling and validating its
execution time and memory usage. We therefore want to follow
a standard design practice in which we control concurrency
and memory usage to influence response times and throughput.
Table I gives an overview [3] of the predicted performance
and the real performance of such a controlled pipeline.

A. Experimental setup
We measure and validated the performance of our example

pipeline on a X86-64 quad-core system. Each core offers two
hardware threads. The example pipeline requires a number of
software threads less than the number of hardware threads.

The threads are scheduled by Ubuntu 12.04 LTS (Linux
kernel 3.11) and controlled by the gStreamer 0.10 and Qt 5.2
frameworks on top. The application running the pipeline is set
to have the highest priority in the system and the threads get
unique processor affinities (bound to separate cores). With this
configuration we ensure that threads get executed as soon as
possible, i.e., as mandated by our prediction models.

We fed the pipeline synthetic video sequences, generated
using GStreamer’s videotestsrc element (an open-source H264
encoder). They contain different patterns (white, checkers, noise
and zone-plate). All sequences contain 1000 frames.

B. Constraining the data input stream
We compare two techniques to process all data in real time,

i.e., without data loss and with finite sizes of queues. We
therefore use a data source that reads compressed video content
from a file. Some platforms (including gStreamer) support a
synchronization mechanism, called back pressure, that suspends
the data source when its output buffer is full and prevents data
from getting overwritten. Alternatively, when the data source
is uncontrollable, a traffic shaper can control the amount of
data being pushed into the processing pipeline.

Synchronization may also be established over a network
connection [5], so that the server stops sending packets when
the client cannot handle more. This requires application-level
streaming protocols on top of standard networking stacks,
which need to be implemented and maintained. Alternatively,
(without back-pressure support) the data source must constrain

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
on

d)

Total queue size (frames)

(1,1,1)

(2,1,1)
(2,2,1) (2,2,2)

Fig. 3. Pareto optimal storage distributions of queues (AB, BC, CD) in a
back-pressured example pipeline.

the amount of data being pushed into the pipeline. Some COTS
network hardware is able to limit the data transmission rates
by means of prioritization and buffering of specified real-time
data [6]. We have implemented a traffic shaper in software as
a gStreamer plugin in order to simulate streaming behaviour.

Our traffic shaper consumes and produces exactly one video
frame periodically by inserting time delays between video
frames. After the traffic shaper, we apply gStreamer’s x264
plugin for decoding video frames, gStreamer’s color-space
conversion (Csp) and a synthetic spatial up scaler, which
generates a random delay. These plugins all execute in a self-
timed manner. Finally, the sink displays the processed video
frames on the screen. For each of these gStreamer plugins, we
have measured their execution times on a frame-by-frame basis
for various video content; Figure 2 shows the best-case (BCET),
average-case (ACET) and worst-case (WCET) execution times.

C. Concurrency control and allocation of processing resources

A gStreamer pipeline can be mapped onto several threads
by explicitly placing queues between processing plugins. The
plugins that are mapped upon the same thread execute in a static
order, so that their execution times add up. A total of three
queues, called AB, BC and CD, are placed after the traffic
shaper, x264 decoder and Csp, respectively. With a certain
positioning of queues, we can model the pipeline using the
synchronous-dataflow (SDF) formalism.

An SDF graph allows us to compare the two algorithms
by Stuijk et al. [7] and Salunkhe et al. [8] for computing the
queue sizes and the corresponding throughput of the pipeline
for setups with and without back pressure. The advantage of
having a back-pressure mechanism is that waiting times of
threads can be traded for throughput. Additional buffering at
appropriate places in the pipeline may allow threads to work
ahead and thereby increase the throughput. Figure 3 shows
the Pareto optimal buffer allocations of our example pipeline
obtained using the algorithm of Stuijk et al. [7].

38

Time (t)

fra

m
es

 in
 q

ue
ue

Fig. 4. Snapshot of unbounded memory usage of an unconstrained pipeline.

Time (t)

fra

m
es

 in
 q

ue
ue

Fig. 5. Snapshot of controlled memory usage of a non-back-pressured pipeline.

We recall that without back-pressure one must constrain the
throughput at the input of the pipeline in order to bound the
application’s memory requirements. Moreover, plugins must
execute in a self-timed manner, because delaying their execution
may add buffer requirements to avoid data corruption. For such
constrained applications, Salunkhe et al. [8] have proposed
an algorithm to determine the Pareto point corresponding to
the highest possible throughput. They use life-time analysis of
data in the buffers based on the BCET and WCET of plugins
in order to optimize the queue sizes1. In order to apply their
algorithm, our traffic shaper limits the throughput at the input.
D. Performance validation

As shown in the methodology overview in Figure 1, the
performance analysis is said to feed back configuration pa-
rameters to the application. The measured execution time
parameters are the basis for a queue placement strategy, as
tacitly applied in the previous subsection, and then allows us to
mathematically predict trade offs in worst-case queue sizes and
minimal throughput. We now validate the real-time memory
usage and the real throughput of the pipeline (see Table I).

In gStreamer we log the number of buffered frames by
instrumenting push and pop events of the queues in the pipeline;
each buffer has the capacity of storing a video frame. Buffer
access may or may not be be guarded by back pressure2.

First, we look at a scenario of uncontrolled memory usage
in which both our traffic shaper and gStreamer’s back-pressure
mechanism are disabled. In this scenario, the entire file is
read from disk as fast as possible and stored into memory (see
Figure 4). Since file readings have negligible WCETs compared
to the later processing steps in the pipeline (see Figure 2), this
experiment shows that, as can be expected, the memory storage
requirements are proportional to the input size.

Secondly, we monitor the controlled memory usage for our
pipeline (with and without back pressure). Figure 5 and Figure 6
show the number of frames [0..2] stored in the queues. We
confirmed that in both cases all frames in the file were actually
being displayed at the output, i.e., both with and without back-
pressure we report the absence of data loss. Table I reports

1BCETs are irrelevant with back-pressure, because a delay of the earliest
start time of plugins on new data can be enforced, which enables tighter
life-time analysis based on just WCETs (see [8] for more details).

2The snapshots are created from the logged event traces with TimeDoctor [9].

Time (t)

fra

m
es

 in
 q

ue
ue

Fig. 6. Snapshot of controlled memory usage of a back-pressured pipeline.

Time (t)

fra

m
es

 in
 q

ue
ue

Fig. 7. Zoom in on the initialization phase of a non-back-pressured pipeline.

the worst-case occupancies of the queues. Even without back
pressure, the queues appear to be sized tightly and conservative.

As shown in Figure 5 and Figure 6, however, the queues
in the pipeline are only occasionally fully occupied. Figure 5
also shows that initially the file reader works ahead one frame
when back pressure is disabled. Figure 7 zooms in on the initial
phase of the non-back-pressured pipeline. After an initialization
phase, the execution pattern stabilizes and follows a repetitive
order as dictated by our periodic traffic shaper.

IV. CONCLUSIONS

This paper presented a software framework for predictable
composition of medical video applications. We configured
middleware software in a way that the video pipeline is forced
to execute closely in accordance with our formal application
models. Formal (dataflow) analysis has been demonstrated on a
case study in which we obtained optimized parallel executions
of imaging algorithms by controlling execution delays and
allocating memory appropriately. Since our initial experiments
indicate that we can predict the performance of applications
accurately, we consider our software framework a promising
solution for the future design of medical streaming applications.

REFERENCES
[1] D. Isović, G. Fohler, and L. Steffens, “Timing constraints of MPEG-2

decoding for high quality video: Misconceptions and realistic assumptions,”
in Proc. ECRTS, July 2003, pp. 73–82.

[2] C. C. Wüst, L. Steffens, W. F. Verhaegh, R. J. Bril, and C. Hentschel,
“QoS control strategies for high-quality video processing,” Real-Time Syst.,
vol. 30(1-2), pp. 7–29, 2005.

[3] S. C. Crăcană, “Modular composition of imaging applications on
commercial-off-the-shelf programmable hardware platforms,” Master’s
thesis, Eindhoven University of Technology, Aug. 2014.

[4] S. D. Burks and J. M. Doe, “Gstreamer as a framework for image
processing applications in image fusion,” Proc. SPIE, vol. 8064, pp.
80 640M–80 640M–7, June 2011.

[5] G.-M. Muntean and L. Murphy, “Feedback-controlled traffic shaping for
multimedia transmissions in a real-time client-server system,” in Springer,
LNCS, ICN Networking, 2001, vol. 2093, pp. 540–548.

[6] E. Wandeler, A. Maxiaguine, and L. Thiele, “On the use of greedy shapers
in real-time embedded systems,” ACM TECS, vol. 11(1), pp. 1–22, 2012.

[7] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer
requirements and throughput constraints for synchronous dataflow graphs,”
in Proc. DAC, 2006, pp. 899–904.

[8] H. Salunkhe, O. Moreira, and K. van Berkel, “Buffer allocation for real-
time streaming on a multi-processor without back-pressure,” in Proc.
ESTIMedia, Oct. 2014.

[9] M. Rutten, “TimeDoctor Version 1.4.3,” May 2013. [Online]. Available:
http://sourceforge.net/projects/timedoctor/

39

